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Low energy chiral EFT

I A very well motivated assumption:
QCD is a correct theory of the strong interaction.

I Perturbation theory is not applicable at low energies.

Chiral EFT provides with a solution to this problem.

I Started with:
S. Weinberg, Physica A 96, 327 (1979).



I Based on the symmetries of QCD, chiral EFT aims at
reproducing the S-matrix of QCD in low-energy region.

I Hadronic one-particle states are represented by dynamical
fields in EFT.
Effective degrees of freedom: pions, nucleons, ∆(1232), ...

I Chiral EFT provides with a systematic expansion of physical
quantities in powers of (small scale(s)/ large scale)

I Bound states require resummation of infinitely many diagrams.



I Most general Lagrangian of the EFT of Hadrons with
symmetries of QCD gives the most general S-matrix with these
symmetries.

I To obtain S-matrix of QCD one needs to fix properly the
parameters of EFT · · ·

I · · · a finite number of them to achieve a finite accuracy!

I · · · EFT 6= QCD.

QCD calculates physical quantities in terms of fundamental
parameters, EFT only relates physical quantities to each other
at low-energies, like

σk (E) = F (E , σ1(µi), σ2(µi), · · · , µ).



What to do?

I Write down the most general effective Lagrangian.

I Consider all Feynman diagrams contributing to the process in
question.

I Renormalize/subtract loop diagrams.

I Apply power counting to renormalized diagrams.

I Sum up all renormalized diagrams’ contributions up to the given
order.

I Only a finite number of diagrams contribute at any given order.



Roper resonance in chiral EFT

Roper resonance is the first nucleon resonance that decays into a
nucleon and two pions, besides decaying into a nucleon and a pion.

Despite the fact that the Roper resonance was found a long time ago

L. D. Roper, Phys. Rev. Lett. 12, 340 (1964).

a satisfactory theory of this state is still missing.

First steps in this direction within chiral EFT have been made in

B. Borasoy, P. C. Bruns, U.-G. Meißner and R. Lewis, Phys. Lett. B
641, 294 (2006).
D. Djukanovic, J. Gegelia, S. Scherer, Phys. Lett. B 690, 123 (2010).
B. Long and U. van Kolck, Nucl. Phys. A 870-871, 72 (2011).
T. Bauer, J. Gegelia, S. Scherer, Phys. Lett. B 715, 234 (2012).
E. Epelbaum, J. Gegelia, U.-G. Meißner and D. L. Yao, Eur. Phys. J.
C 75, no. 10, 499 (2015).



We present the calculation of the width of the Roper resonance at
leading two-loop order in baryon chiral perturbation theory(BChPT)
of pions, nucleons, the delta and Roper resonances.

J. Gegelia, U. G. Meißner and D. L. Yao,
“The width of the Roper resonance in baryon chiral perturbation
theory,”
arXiv:1606.04873 [hep-ph]. To appear in Phys. Lett. B



Effective Lagrangian of pions, nucleons, the delta and Roper
resonances as dynamical degrees of freedom:

Leff = Lππ + LπN + Lπ∆ + LπR + LπN∆ + LπNR + Lπ∆R.

From the purely mesonic sector we need the following structures

L(2)
ππ =

F 2

4
〈∂µU∂µU†〉+

F 2M2

4
〈U† + U〉,

L(4)
ππ =

1
8

l4〈uµuµ〉〈χ+〉+
1

16
(l3 + l4)〈χ+〉2,

where 〈 〉 denotes the trace in flavor space, F is the pion decay
constant in the chiral limit and M is the pion mass at leading order.
The pion fields are contained in the 2× 2 matrix U, with u =

√
U and

uµ = i
[
u†∂µu − u∂µu†

]
,

χ+ = u†χu† + uχ†u , χ =

[
M2 0
0 M2

]
.



Terms of the Lagrangian with pions and baryons:

L(1)
πN = Ψ̄N

{
i /D −m +

1
2

g /uγ5
}

ΨN ,

L(1)
πR = Ψ̄R

{
i /D −mR +

1
2

gR/uγ5
}

ΨR ,

L(2)
πR = Ψ̄R

{
cR

1 〈χ+〉
}

ΨR ,

L(1)
πNR = Ψ̄R

{gπNR

2
γµγ5uµ

}
ΨN + h.c. ,

L(1)
π∆ = −Ψ̄i

µξ
3
2
ij

{(
i /Djk −m∆δ

jk
)

gµν − i
(
γµDν,jk + γνDµ,jk

)
+ iγµ /Djk

γν + m∆δ
jkγµγν +

g1

2
/ujkγ5gµν

+
g2

2
(γµuν,jk + uν,jkγµ)γ5 +

g3

2
γµ/ujkγ5γ

ν
}
ξ

3
2
klΨ

l
ν ,

L(1)
πN∆ = h Ψ̄i

µξ
3
2
ij Θµα(z1) ωj

αΨN + h.c. ,

L(1)
π∆R = hR Ψ̄i

µξ
3
2
ij Θµα(z̃) ωj

αΨR + h.c. .



Here ΨN and ΨR are the fields of the nucleon and the Roper
resonance, respectively.

The Rarita-Schwinger field Ψν represents the ∆ resonance.
ξ

3
2 is the isospin-3/2 projector, ωi

α = 1
2 〈τ

iuα〉 and
Θµα(z) = gµα + zγµγν , where z is a so-called off-shell parameter.

We fix the off-shell structure of the interactions involving the delta by
adopting g2 = −g3 = 0 and z1 = z̃ = 0.

The covariant derivatives are defined as follows:

DµΨN/R = (∂µ + Γµ) ΨN/R ,

(DµΨ)ν,i = ∂µΨν,i − 2 i εijk Γµ,k Ψν,j + ΓµΨν,i ,

Γµ =
1
2

[
u†∂µu + u∂µu†

]
= τk Γµ,k .



The width of the Roper resonance

The dressed propagator of the Roper resonance can be written as

i SR(p) =
i

p/ −mR0 − ΣR(p/)
,

where −i ΣR(p/) is the self-energy.

The pole of the dressed propagator SR is obtained by solving

S−1
R (z) ≡ z −mR0 − ΣR(z) = 0 .

We define the physical mass and the width of the Roper resonance
by parameterizing the pole as

z = mR − i
ΓR

2
.



Topologies of the one- and two-loop Roper self-energy diagrams
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Figure: One and two-loop self-energy diagrams of the Roper resonance.
The dashed and thick solid lines represent the pions and the Roper
resonances, respectively. The thin solid lines in the loops stand for either
nucleons, Roper or delta resonances.



We parameterize the pole as

z = m2 + ~δz1 + ~2δz2 +O(~3),

where m2 = m0
R + 4cR

1 M2, with m0
R the Roper mass in the chiral limit

and write the self-energy as an expansion in the number of loops

ΣR = ~Σ1 + ~2Σ2 +O(~3) .

By expanding the equation for z in powers of ~, we get

~δz1 + ~2δz2 − ~Σ1(m2)− ~2δz1Σ′1(m2)− ~2Σ2(m2) +O(~3) = 0 .

Solving order by order we obtain

δz1 = Σ1(m2),

δz2 = Σ1(m2) Σ′1(m2) + Σ2(m2).



The width takes the form

ΓR = ~ 2i Im [Σ1(m2)]

+ ~2 2i
{

Im [Σ1(m2)] Re
[
Σ′1(m2)

]
+ Re [Σ1(m2)] Im

[
Σ′1(m2)

]}
+ ~2 2i Im [Σ2(m2)] +O(~3).

It turns out that the contribution of the second term is of an order
higher than the accuracy of our calculation, which is δ5.

To calculate the contributions to the width of the Roper resonance,
we use the Cutkosky cutting rules.

Only contributions obtained by cutting the lines, corresponding to
stable particles, are needed.



The width of the Roper resonance obtained from the
decay amplitudes

By applying the cutting rules to the self-energy diagrams we obtain
the Feynman graphs contributing in the decay amplitudes of the
Roper resonance into πN and ππN systems.
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Figure: Diagrams contribution to the decay R → Nπ up to leading one-loop
order. Dashed, solid, double and thick solid lines correspond to pions,
nucleons, deltas and Roper resonances, respectively. The numbers in the
circles give the chiral orders of the vertices.



The decay amplitude of R(p)→ N(p′)πa(q) can be written as

Aa = ūN(p′)
{

A /qγ5τ
a}uR(p) ,

where a is an isospin index of the pion, and the ū,u are spinors.

The corresponding decay width reads

ΓR→πN =
λ1/2(m2

R,m
2
N ,M

2)

16πm3
R

|M1|2 ,

with λ(x , y , z) = (x − y − z)2 − 4yz and

|M1|2 = 3(mN + mR)2
[
(mN −mR)2 −M2

π

]
A∗A .



The leading order tree diagrams contributing to the R → ππN decay
are shown below.
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Figure: Tree diagrams contributing to the R → ππN decay. Crossed
diagrams are not shown. Dashed, solid, double and thick solid lines
correspond to pions, nucleons, deltas and Roper resonances, respectively.
The numbers in the circles give the chiral orders of the vertices.

The delta propagators in these diagrams are dressed. The non-pole
parts are of higher orders and therefore can be dropped.

The contributions of the loop diagrams are suppressed by additional
powers of δ so that they do not contribute at order δ5.



Kinematical variables for the decay R(p)→ N(p′)πa(q1)πb(q2) via

s1 = (q1 + q2)2 , s2 = (p′ + q1)2 , s3 = (p′ + q2)2 ,

subject to the contraint

s1 + s2 + s3 = m2
R + m2

N + 2M2
π .

The isospin and the Lorentz decomposition of the decay amplitude:

Aab = χ†N

{
δabF+ + iεabcτ cF−

}
χR ,

F± = ūN(p′)
{

F (1)
± −

1
2(mN + mR)

[
/q1, /q2

]
F (2)
±

}
uR(p) ,

with the χ being isospinors, a and b are isospin indices of the pions.



The unpolarized squared invariant amplitude is given by

|M|2 =
2∑

i,j=1

Yij

[
3
2

F (i)
+

∗
F (j)

+ + 3 F (i)
−
∗
F (j)
−

]
,

Y11 = 2
[
(mN + mR)2 − s1

]
,

Y12 = Y21 = −s1ν ,

Y22 =
1
2

[
(4M2

π − s1)(s1 − (mR −mN)2)− s1ν
2
]
,

with ν given by

ν =
s2 − s3

mN + mR
.



The decay width corresponding to the ππN final state is obtained by
substituting |M|2 in the following formula

ΓR→ππN =
1

32m3
R(2π)3

∫ (mR−mN )2

4M2
π

ds1

∫ s2+

s2−

ds2 |M|2 ,

where the integration limits over s2 are given by

s2± =
m2

R + m2
N + 2M2

π − s1

2
± 1

2s1
λ1/2(s1,m2

R,m
2
N)λ1/2(s1,M2

π ,M
2
π) .



We consider mR −mN ∼ 400 MeV as a small parameter of the order
δ1 and count Mπ ∼ δ2.

The kinematical variable ν for the R → ππN decay varies from
mN −mR to mR −mN (for Mπ = 0) within the range of integration
and therefore we count ν ∼ δ.

As s1 varies from 4M2
π to (mR −mN)2, we assign the order δ2 to it.

We also count mR −m∆ ∼ δ2.



The R → πN width is of order δ3 × order of A∗A.

The R → ππN width is of order δ3 × order of |M|2.

Thus, the contributions of the one- and two-loop self-energy
diagrams in the width of the Roper resonance sum up to

ΓR = ΓR→πN + ΓR→ππN .



Numerical results
To calculate the full decay width of the Roper resonance we use the
following standard values of the parameters from PDG

Mπ = 139 MeV, mN = 939 MeV, m∆ = 1210± 1 MeV,

Γ∆ = 100± 2 MeV, mR = 1365± 15 MeV,Fπ = 92.2 MeV,

and obtain

ΓR→πN = 550(57.7) g2
πNR MeV,

ΓR→ππN =

[
1.49(0.58) g2

A g2
πNR − 2.76(1.07) gA g2

πNR gR

+ 1.48(0.59) g2
πNR g2

R + 2.96(0.94) gA gπNR hhR

− 3.79(1.37) gπNR gR hhR + 9.93(5.45) h2h2
R

]
MeV.

Further, we substitute gA = 1.27 and h = 1.42± 0.02.
The latter value is taken from

D. L. Yao, et.al. JHEP 1605, 038 (2016).



We pin down gπNR by reproducing

ΓR→πN = (123.5± 19.0) MeV

from PDG, which yields

gπNR = ±(0.47± 0.11).

Following
S. R. Beane and U. van Kolck, J. Phys. G 31, 921 (2005)
we assume gR = gA and hR = h and obtain:

ΓR→ππN =
[
0.53(32)− 0.98(60) + 0.53(32)± 3.57(1.41)

∓ 4.57(1.97) + 40.4(22.2)
]

MeV = 40.5(22.3) MeV.

The largest contribution comes from the decay diagram with
intermediate ∆ state.



Further, using the approach of
E. Epelbaum, H. Krebs and U.-G. Meißner, Eur. Phys. J. A 51, no. 5,
53 (2015)
we estimate the theoretical error due to the omitting the higher order
contributions and obtain

ΓR→ππN = (40.5± 22.3± 16.8) MeV,

which is consistent with

ΓππN = (66.5± 9.5) MeV

quoted by PDG.



Summary

I The width of the Roper resonance calculated up NLO of BChPT
has been presented.

I The NLO calculation of the width requires obtaining the
imaginary parts of one- and two-loop self-energy diagrams.

I We employed the Cutkosky cutting rules and obtained the width
by squaring the decay amplitudes.

I One of the three unknown couplings we fix by reproducing the
PDG value for ΓR→πN .

I Assuming that the remaining two couplings of the Roper
interaction take values equal to those of the nucleon, we obtain
the result for ΓR→ππN consistent with the PDG value.

I To improve the accuracy of our calculation, three-loop
self-energy diagrams need to be calculated.
Moreover, an infinite number of diagrams, corresponding to the
scalar-isoscalar pion-pion scattering need to be re-summed.


	Effective Lagrangian

