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Lagrangian of QCD

H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B 47 (1973) 365

Locp = Ly + L,
1 a auv
F8, = 0,A% — 0,A% + gf ™AV AS, a=N2—1, N,=3
Log = i@ Dapqh + Tomigs, o, f=1,2,3, j=1,23,..N;

Dagqh = (0apdu — ig(1/2)Nes A%)vuqh  (cov. der.)
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The \%s are generators of SU (3) color gauge group
P\a) )\b] _ Qifabc)\c

¢* — Ul@)g*(z), U(z)=exp(i®(x)A*/2)

Au(z) = AL(2)X/2 — U(x)Au(x)U™Hz) + ;U(x)ﬁuUl(x)

SU(N;) x SUN;) x Us(1) x Ua(1), qrs — %(1 17
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Properties of the QCD Lagrangian

QCD without quarks is Yang-Mills (YM)

1). Universal coupling constant g ~ 1.
2). g < 1 only in the AF regime, where the PT works.

3). Current quark mass m after the renormalization program is
performed remains un-physical since the quark is a colored object.

4). The massive gluon term m; A, A, explicitly violates
SU (3) color gauge invariance of QCD.

No mass scale parameter to which can be assigned
a physical meaning even after the renormalization
program is performed.

For some reasons | will call it as a mass gap.
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H has no spectrum in the interval (0, A), 0 < A < o0

QED.m. — (—me) =2m. >0, ¢, > (2m.)?, A =m,

QcD.0— (-A)=A>0, #>A? 0<% <1
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Gluon SD equation

— 0, ¢q; — 0andwviceversa (FEuclidean signature)
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DMV(Q) = DgV(Q) + Dgp(Q)ina(q; ‘D)DO'I/(Q)

o (q; D) = 1%, (q) + 119%(q) + I (D) + 1) (¢; D?)

+11%)(q; DY) + 112 (¢; D?)
0 : 1
D () = t{Tw(q) + L ()} e

TIH/(Q) — 6,LW - (QMQV/QQ) — 5,LW — LW(Q)

I1,,(q; D) = 1,6(q; A, @, D)
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The transversality of the full gluon self-energy
0 (q; D) =11%,(q) + 115, (q; D) +11,,,(D)
) - h 1 2 2 4 2/ 3
19, (q; D) = 9% (q) + 115 (q; D?) + 1) (¢; D*) + 11 (¢; D)

1, (D) ~ [ d*kDas(k)Thhis = 0,0 AF(D)

P

o110 (q; D) = q,11%,(q) + q,11%,(q; D) + ¢ 1T (D)

= q,11%,(q) + q,11%,(q; D) + q- A7 (D)
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The quark contribution

The color currents conservation condition implies

4112, (q) = q-11%,(q) = 0
9 (q) = 114, (q) — 119, (0) = 114, (q) — 6, A2, T195°)(0) =
¢ =—1°—=0
119 (q) = Tpo ()" (¢%) + qo49-117 (¢°)

19 (q) = Tho (0)g*T1 (¢) + 4,0, 11 (¢°)
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The gluon contribution

119, (q; D) =
0o 1125 (0) + T2 D*) + T2 (q: DY) + 12)(q: DY) = 0

There is no transversality without Faddeev-Popov ghost term Hgf;(q)

119 (¢q; D) = 119, (¢; D) — I%_(0; D) = 1% _(g; D) — 6,,A2(D)

AZ(D) = 119(0; D) ZH (0; D) =) AZ(D), a=gh, (1), (2)(2)

[19)(0; D) = 0
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1Y (¢% D) = I} (¢*; D) + =42 =0
q
; AZ(D)
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The tadpole term contribution

M (g; D) = 113, (q) + 115, (q; D) + 0,5 A7 (D)
= Tpo(q) |4°"11°(¢*; D) + A}(D)|+Lye (9) A7 (D)

I°(¢% D) = 1] (¢*) + 1" (¢*; D)

2
QpHpa(q; D) — qut (D) # Y
Hence the ghosts cannot make the full gluon self-energy or, equivalently,
the full propagator transversal, unless the constant skeleton tadpole term HfOJ(D) =

0,0 A7 (D) is discarded from the very beginning. Also, AF(D) = A*(D).
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ST identity

C]uq’/DW(C]) = 1§

Dul) = H{Tula)dla®) + ELuula)} -

Dy (q) = Dy (q) + D, (0)iT)e(¢)[¢°T1°(¢%; D) + A*(D)] Doy (q)
+D9 (q)iL,s(q)A%(D) Dy, (q)

1

A =15 [T*(¢* D) + (A*(D)/¢?)
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qMQVl)My<q;Z&2([)X)::i§’<1.+_€lx2(l))>

q2

D, (¢; A*(D)) = D,/ (q), at A*(D) =0

Dyt (@) = i{Tu(@)d"™ (@) + €L (a) } qlz

Dy () = Dy () + Dy, (@)iTpo(0)a"T1* (¢ D7) Dy, ()

v

1
1+ 1I3(¢% DPT)

0.q0.D,,) (q) =i&, d"(¢*) =
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Preliminary discussion

To identically put A?(D) = 0 everywhere is a way (but not unique, see dis-
cussion below) how to preserve the color gauge invaraince/symmetry in QCD.
Then why does A%( D) (which is nothing but the tadpole term, explicitly
present in the gluon SD eqution) exist in this theory at all? There is no
doubt that this symmetry should be maintained at non-zero A%(D) as well.

A. The first problem is how to satisfy the ST identity but without going to
A?%*(D) = 0 limit everywhere.

B. The second problem is how to make the relevant gluon propagator purely
transversal, since the ghosts will fail to do this when A? (D) is not disregarded.
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A. Gauge invariance for the equation of motion.
The spurious mechanism

Dy(q) = D, (q) + D, (q)iT,0(q)[¢°T1(¢%; D) + A*(D)] Dy (q)
+D,,(0)iL s (¢)A*(D) Doy (q)

DBV(Q) — DBV(Q) + ZgL,ul/(Q)dO(QQ)qlg
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QCD

D,.(q) = D;,(q) + D, (0)iT,.(q)[¢°II*(¢*; D) + A*(D)] Dy, (q)

. 1
d(q°) = 1+ 115(¢2; D) + (A2(D)/¢?)

PT QCD
D, (q) = D, (q) + D, (0)iT,(¢)¢’11*(¢*; D" D (q)

1

dPT 2\ _
@) 1 +1I*(¢% DPT)

Formal PT limit: A*(D) = 0 or, equivalently, ¢° — oo
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The Mass Gap

A*(d)

d(q*) =1 — |II*(¢*; d) + p d(¢®), D—d

A%2>0, c(d)=c\act, g

A% =7 x A?
The mass gap is generated by the point-like four-gluon vertex
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B. Intrinsically non-perturbative (INP) gluon propagator
D,y (¢;A%) = Dy (q; A%) =Dy (g A* = 0) = Dy (g3 A*) =D,/ (q)
Dy (q; A%) = i{ T (9)d(q%; A%) + €Ly (9) } (1/4°)

DI (q) = i { Tu(@)d™ (¢*) + €L (@) } (1/q%)
DIP(58%) = T, (! (58
Dy (q; A%) = D,y " (q; A%) + D, (q)
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The exact separation between
the INP and PT dynamics

Dy (3; A?) = i { T(q)d(q% A?) + £L,(q) } (1/ )
~iT (0)d" () (1/¢*) + i T, (9)d"" (¢*)(1/¢°)
= D/ (q; A%) + D) (q)

A" (¢% A%) = d(¢% A%) — ™ ()
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The SDE for the INP gluon propagator
Dy (q; A%) = D, (0)iT,0(q)[¢°T1° (¢%; D) —¢*T1°(¢*; D) +A%] D, (q)

+D0,(0)iT,0(q) |¢°T1°(¢%; D) + A?| DI (¢; A?)
D, (q) = D;,(q) + D, (0)iT,0(q)[¢°II*(¢*; D) + A*(D)] Dy, (q)

D,y (q) = Dy, (@) + Dy, (0)iT,0 (9)g° 1 (¢%; D™) Dy (q)
No free gluons in INP QCD
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Singular solution

1 A?
d(q*) = d(q¢%; 2) = 0 = — <1
(@) =dla’:2) L+ (% d) + ze(d) @

1
1+ II5(q?; dFT)

d(q*;z=0) =d""(¢%)

fi(@®) = (=1)"d"(¢*)[d"" (q*)e(d™)]"
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d'NP (% 2 —ZZZ ce(0) + 2 27" (0)
k=

k=0
— Z f lgTv)nH(O
m=0

Z f k—l—m)
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INP 2 - . A?
D (Q7 A ) ZT,LW( )dINP(q27 AQ)? ZTMV( ) (qg)g L(q2)
00 A2
L(qQ):Z )@k()\ozfg) O<—2<1
k=—o0 q q

1 + 115 (g?; dPT)
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Massive solution

1 1

_Qd(q2) 2 2T1s( A2 2

q ¢? + ¢*11* (g% €) + A%c(§)
If the denominator has a zero at point ¢° = —m?

g
(Eucl. sign.), where m;, = mg(f) is an effective gluon mass

—m; —m II°(—=m.; &) + A%c¢(§) = 0
¢+ I (¢ &) + A%c(§) = ¢° +m] + ¢TI (¢% &) + m AT (—m2; €)

1°(¢%; €) = I (=m; €) + (¢ +m)) I (=m;€) + O((d* +mj)?)
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¢* + m. + @I (¢*; &) + m2I1° (—m2; €)

= (¢" +my)[1 + II*(=my; §) — myIT"* (—=mg; O][1 + I1*%(q*; &)]

I1%%(¢* &) = 0 at > = —m. and regular at small ¢*.
Zg(mQ) 1
Dy (q;m3) = iTp(q / + i€ L, (q)—
AL = ) f Iy o e 0
1
Zs(m?) =
) = T (i) — R (i
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An effective gluon mass is the NP effect. It cannot be interpreted as the
"physical” gluon mass, since it remains explicitly gauge-dependent quantity.
We were unable to renormalize it along with the gluon propagator. In the formal
PT A% = m?(§) = 0 limit the gluon renormalization constant becomes the
standard one

1

SRR

The existence of the massive solution shows the general possibility
for a massless vector particles to acquire masses dynamically, i.e., with-
out so-called Higgs mechanism.

~AZ(e)

9
mg

1+ 11°(—m; €) 1+11°(—m2; &) =0 ?

0-30



0-31




Preliminary conclusions

The mass gap is generated in the gluon sector of QCD
due to the self-interaction of massless gluon modes.
The role of the point-like four-gluon vertex is to be emphasized.

It is explicitly present in I1(g; D) in the form of of the
tadpole term A%(D) = A?(D), so it is not introduced by hand.

No any truncations/approximations/asumptions, no
special gauge choice, only algebraic (i.e., exact) derivations.

The common belief (of PT) that mass gap contradicts
the color gauge invariance/symmetry of QCD is false.

This fundamental symmetry is maintained/preserved
at non-zero mass gap as well at the level of equation of motion.
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The correct SDE for the full gluon propagator in the
presence of the mass gap is derived.

We distinguish between INP and PT QCD by the
explicit presence of A%(D), and not by the strength of ¢.

The INP gluon propagator exactly reproduces the NP
context of the full gluon propagator, and it is purely
transversal in a gauge-invariant way.

The PT gluon propagator exactly reproduces the non-trivial
PT context of the full gluon propagator. It is of the
arbitrary gauge, but becomes transversal by means of ghosts.

Two formal exact solutions for the full gluon propagator
in the explicit presence of the mass gap:

Singular solution and Massive solution
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INP QCD

DINP (g A%) = z’TW<q>(qu)2L<q2>, 7 € (0,50)
L(¢°) = _Z (?2) (X, €, g7), 0<§22<1

A. Transversal and depending on A?

B. No PT infrared (IR) singularity ~ (¢%)~!

C. NP (severe) IR singularities only ~ (¢*)™>7% £k =0,1,2,3, ...

D. ¢ — oo is also essential singularity like ¢° — 0
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Theory of functions of complex variable

Two theorems which describe the behavior of the meromorphic func-
tions near their essential singularities

Picard theorem: If z is an essential singularity of the function f(z), then
for any complex/real number Z # oo, excepting, may be, one value Z = Z,
every neighborhood of zy contains infinite set of points z, such that

flz) =2, z— 2z

or, equivalently,
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Weierstrass-Sokhatsky-Casorati (WSC) theorem:

If zo is an essential singularity of the function f(z), then for any com-
plex/real number Z (including Z = 00) there exists the sequence of points
21 — 2o, such that

lim f(z) =2, Z=Z(z)

k— 00

So both theorems (Picard/WSC) tell us that the function f(z) in the
close neighborhood of its essential singularity can be replaced by the
constant /, which value depends only on how precisely 2. — 2.

0-36



Classical example | (Picard)

n+2

f(z) =sin(1/z) = Z

n:O

1 2n-+1
ZH () S 0<|d <00, (2£0)

1
2 = »0, k=0,1,2,3....
T 4k +1)(n/2) + a

lim Sm(l/zk) = hm sm[(4k + 1)(7/2) + a] =

sin|(4k 4+ 1)(7/2)| cosa + cos|(4k + 1)(7w/2)] sina = cosa = Z

So the last equation for any given real number Z # oo has solutions
without exceptional point, for example

\/§ T T
Z=1,—(v3+1),0,.... = U, —.—.....
9 4 (\/__|_ )7 9 9 a’ 07 127 27
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Classical example Il (WSC)
fe)=er =3 =2 0<l <o,
i)z =(1/k) =0, k=1,2,3,..
fim f(z) = i ¢ = oc
(ii). 2z, = —(1/k) =0, k=1,2,3,...

. IR T —k
i ) = e =0

(iii). zx = (1/In A+ 2kmi) - 0, k£=0,1,2,3,...

lim f(z,) = lim "4T28™ = A £ ()
k—o0 k—ro0

0-38
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TWO PHASES IN QCD

A2
> L(q?)

(4%)
AQ o0 A2

= iT,,(q) ror k_zoo((f)kcbku, &, 9°).

D,y (;A%) = iT,(q)

¢° € (0, 00)

A2
O<—2<1
q
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AQ

DINP(Q, AQ) = ZT‘W/(Q)W X Z, q2 — 0
q
INP 2 A2 2
ua /
D,ul/ (Q7 A ) ,LLV(Q) (q2)2 X Z? q — OO

The two different renormalized constants

A*x 7 =A% and A? x 7' = A’Z—A

appear in the two different regimes ¢°> — O and q°> — 00,
respectively. But the mass gap A? itself comes from the IR.

Suppression of all the severe IR singularities (¢*) 2%, k = 1,2.3, ...

apart from (¢*)“ due to the Picard/WSC theorem.
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Q 4 — —
N
QY

Existence of the effective scale separating the two different phases in QCD.
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QcD: D, (q; A?) = DIV (q; A?) + DT (q)

a) ¢11,,(¢; D) = ¢, A*(D) # 0

b) free gluons at large distances

INP QCD: Dijjp(q; A?) =D, (q; A%) — D,Ijz/T(@

PTQcCD: D/T(q) = D, (q; A?) — DI (q; A?)

General prescription: All the PT/INP contributions (’contaminations™)
should be always omitted/subtracted in order to get to INP QCD/PT QCD,
respectively, making thus the separation between them exact and unique.
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RENORMALIZATION OF INP QCD

A%
(¢?)*

Dy (q; A%) = Ty (q) ¢* € [0,00)

l. Distribution Theory (DT)
PlQ)=g@+a+aG+.+a1=4q" Plg>0

(P )= | dqPq)e(q)

P>0

Re)X > 0, integral is convergent and analytic function of A
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Re) < 0, integral has a simple poles at points

A= -2k k=0,1,23..

2
\ 20 o .
Pq) = (¢°)" = T (42 + finite terms
n/2
¢ 226K ((n/2) + k) (9)
0? ok 0?
L= —4+—+..

o " ag T ok,
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Il. Dimensional Regularization Method (DRM)

d=n—25, 60", UV

d=n-+2 €—0", IR

1
()~ 2=k = —C'(_kl) + finite terms, € — 07
€

Gy ---q
ddq M1 Hp
/ (¢*)™

d4+p—2m <0 IRD; d+p—2m >0 UVD
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n=4: ¢ =q+q¢ +¢G+4
(@) =~ [aB) (@) + 0u(0)] . k=01,23., €= 0°
a(k) = 72 /22 kIT(2 + k)
54 @)Y = [(0°/063) + (0*/0¢2) + (9%/0a3) + (6°/0a3)] 6*(a)
k=0: (@)% = [#6) + 0], e 0"
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lIl. IRMP renormalization

I
D, (q; AF) = - {zTW(q)A%WQ(SLL(q) + O(e)}, e — 0F
A% = X(e)A% = cA[l + O(e)]A% = eA- A% =A%y, €— 0T
X (€) is IRMP renormalization constant for the mass gap A%.

D> (q; ASw) = 1T (q) AZy 6 (q) + O(e), € — 07

However, this expression is valid only when q2 Is an independent loop vari-
able. Also, in order to avoid the multiplications of at least two 0-functions at the
same point (which is not defined in the DT) it is necessary to go to the general
formula, which leads to the correct result for the multi-loop skeleton diagrams.
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The general criterion of gluon confinement

2
AJVV

(¢%)*

DINP(g; A%y) = € X 1Ty (q) =

1). q2 IS Independent skeleton loop variable
D" (@ Ady) = T, () Ay *6* () + O(e), €= 0%

2). ¢* is not a loop variable

Adw

(¢°)?

3). No massless free gluons in this theory (¢* # 0)

Dijyvp(q; A%y =€ xiT,,(q) ~e €— 07"

INP QCD confines transversal gluons in the gauge-invariant way.
Color gluons can never be isolated. Infrared slavery (IRS).
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Renormalized running effective charge
and (3 function
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Relation between the string tension
and the mass gap

’q  ara(q* Ay)

€

V(r) = —4nCo(R) [ o) E
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Vo =0.420 GeV, o =0.1764 GeV?
A% = 0.2646 GeV?,  Ayw = 0.5144 GeV
Gerber, Leutwyler — FY = 88.30 MeV

A%y = 0.2996 GeV?, Ay = 0.5474 GeV
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The strong character of the delta-function potential
with the mass gap

D(Q3 A3W) — A3W77254(Q)

2
. 1 _qu/ .
6(q;) A}1Wm_>0 AJWﬁe w, 1=20,1,23.
1 -z
D(q; A%y) = lim e 2w
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10

The delta-function potential with the mass gap squared
as the sequences of zero-centered normal distributions
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The short-range behavior of the delta-function potential
with the mass gap

D(q; AJw) ~ AJwo (@) ~ AJw o' (Agwa) ~ oMx), q=Asww

D(TSAgw) ~ /dgqeiqu(QS A%W)
R_l(r;AQJW) ~ /da:oeiqo‘”OD(r;AQJW)

R (r; A%y) ~ AJW/d4xeixT54(:z:) ~ Ay ~ 0.5 GeV
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R(r; A%y) ~ 0.4fm ~ 0.4 x 10" em

Ly ~0.7fm ~ 0.7 x 10" %em

nucl. forse ~a few fm~cx 107 %em, ¢ >1

L, ~10"%¢cm
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Asymptotic freedom and the mass gap

- 1

UG = T T (A2 )
AQ ?é O, q2 — OO

dPT(C]2) !

1+ bocrs(A) In(g?/A?)

A" (q%) = as(q*; %) fas (M)

Oés()‘)

Oés(q25 AQ) 1 + boars(A) In(g?/A?)
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A* = fNA" = f(NZ7 Ay

2

2 g q
S — 9 Z ]-
alq”) = 17 bos In(q2/A2,,)  AZ,,

o s ()
14 boas(N)In(f/2")

A— 00, a(A)—=0

1 2

Asymptotic Freedom (AF): Khriplovich, t’ Hooft, Parisi,
Gross, Wilczek, Politzer.
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N 0 — ag(A) . 1
In(f/2") = o boo () /boozs()\)’ A— oo, ald) —0

1
: 2 _ A2 — AR
(A21,1\I)Ii>ooA erp [ boOés()\)] Ay =A% ald) =0

1

— 0, ¢* — o0
bo In(q2/A% ) !

O‘S(QQ)

Mystery of AF (scale violation at high energies) is resolved.
Ay = Adep(Ny = 0) = Appsurvives at ¢° — 00, since it is nothing
else but the renormalized mass gap squared in the weak coupling regime.
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Preliminary conclusions

1. It cannot be disregarded on general grounds (beyond PT).

. It is compatible with the SU(3) color gauge
invariance/symmetry of QCD.

. It accumulates/summarizes all the severe
IR singularities of QCD into the full gluon propagator.

. All other vertices thus become regular at zero gluon momenta involved.

5. It survives the renormalization program due to P/WSC.

6. The existence of the two phase transitions

in the strong and weak coupling limits due to P/WSC:

. The mass gap exhibits confinement of gluons
(finite result+zero (no free gluons) at ¢> — 0).

. The mass gap explains AF (zero result at g — 00).
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QCD

Do) = i {Tu(@)ale®) + ELula)} = = DIVF(q) + DFT (g

e
INP QCD PT QCD
INP : @INP(QQ) PT : PT [ 2 1
D"W (q) ~ EXZT”V(Q) q> D,uv (C]) — 1 {TMV(Q)O‘ (C] ) + ‘SL,LW(Q)} ?
o' (q) = Ay /q° o (q?) = o /[1 + 11 (¢%; ADyp)]
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Enerqgy

INP QCD

Coupling
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QCD

a(q?) = o' (¢%) + " (¢?)

INP QCD PT QCD

Qs

INP(\ _ A2 2 PT( 2\ _
a " (q) Tw/ld " (q7) 1 + boas In(q2 /A% )

a'"NU(A) = A%y i = A o, = 0.1184, by = 11/4m

N 1+ [)004311/1)\27

() N = qgff/A%/M > 1
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05—
[ \
\
I \ ]
I \ |
04? \\ i
f N 0.3
L \ i
0.3+ N ,
r \\ i
0.2
0.1 ~—— e i
0.07 ‘ : : : : ‘ ‘ ‘ ! ‘ ‘ L L ‘ \ ! w | ! | | ! ! |
0 1 2 3 4 5

a1 (g?) and a! N ¥ (¢?) as functions of g2 (GeV? units); solid and dashed lines,
respectively, with A%y, = 0.3 GeV? and A, = 0.09 GeV>.
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INP QCD
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The Jaffe-Witten (JW) theorem (2000)

Yang-Mills Existence and Mass Gap: Prove that for any compact sim-
ple gauge group (&, quantum Yang-Mills theory on R* exists and has a
mass gap A > (.

(i). It must have a "mass gap”. Every excitation of the vacuum has energy
at least A (the nuclear force is strong but short-range).

(ii). It must have "quark confinement” (the phys. part. are SU (3)-invariant).

(il). It must have “chiral symmetry breaking” (to account for
the "current algebra” theory of soft pions).

We understand the Mass Gap as the scale determining the dynamical
structure of the QCD ground state (vacuum) at large distances (IR region).
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General conclusions

Mass Gap Existence and Asymptotic Freedom: If quantum YM theory
with compact simple gauge group SU(S) exists on R?, then it has a mass gap
and undergoing the phase transition in the weak coupling regime it becomes
PT QCD, which has a physical mass gap and asymptotic freedom.

INPQUCD <<= QCD = PT QCD

2 —oa(\ 2 A)—0 2
Ainp %&f\“( A ()\704()‘))3(—><)>o — Apy
Mass Gap Existence and Gluon Confinement: If quantum YM theory
with compact simple gauge group SU (3) exists on R, then it has a mass gap
and undergoing the phase transition in the strong coupling regime it becomes
INP QCD, which has a physical mass gap and confines gluons.
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The Existence of YM theory includes establishing axiomatic properties of
Euclidean Gauge Green’s Function. Being the distribution (generalized func-
tion) with the singularity of the o-function type, apparently it will violet none
of the axioms for them (Streater, Strocchi, Osterwalder, Schrader) as well as
properties (cluster one, for example) of the Wightman functions (observables)?
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QED vs QCD

QED. The interaction between constituents in the vacuum
and in the real word is the same. No mass gap described here.

QCD. The interaction between constituents in the vacuum

and in the real word is different. Mass gap exists.

Without mass gap QCD behaviors like QED at zero gluon/photon
momenta transfer.

The mass gap described here coincides with the JW mass gap by
the properties and not by the definition (// has no spectrum

in the interval (0, A)). It determines the large-scale structure of
the QCD ground state. Being generated by the self-interaction

of massless gluon modes, it explains the origin of mass in QCD.
The mass gap is a unique mass scale parameter in QCD
compatible with its SU (3) color gauge symmetry .
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Structure of QCD ground state

INP QCD effectively becomes an Abelian gauge theory at the funda-
mental quark-gluon level by incorporating non-Abelian degrees of free-
dom into the full gluon propagator with the help of the mass gap. Be-
ing such a theory, it requires the dominance of flux tube configurations
of gluon fields in the QCD ground-state (vacuum) not only between any
massive (light or heavy) objects there (quarks, chromo-magnetic monopoles
(if any), etc.). Such string-type configuration of gluon fields will dominate
the Yang—Mills (YM) vacuum as well. It happens because of the survival
of the simplest NP IR singularity (qQ)_2 only due to the Picard/WSC the-
orem and the multiplicative renormalization program for the mass gap.

Such a dominance of purely transversal virtual gluon field configura-
tions with low-frequency components (or, equivalently, large scale ampli-
tudes) is a gauge invariant, i.e., it needs no special gauge construction.
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The general criterion of quark confinement

(I). The first necessary condition is

S(p) # —22

]9'_'77th

The quark always remains an off-mass-shell object. This is also equiv-
alent to the absence of the imaginary part in the quark propagator unlike to the
electron propagator in QED.

(). The second sufficient condition is the existence of the discrete

spectrum only (no continuum) in bound-states. It comes apparently from
the 't Hooft’s model for two-dimensional QCD with large V.. limit.
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This definition of quark confinement in the momentum space is gauge-
invariant and flavor independent, and thus it is a general one. Color confine-
ment is absolute and permanent.

No mass-shell for quarks p # m,,;, and gluons ¢* # 0.

In QGP the most of the bound-states will be dissolved. However, by in-
creasing temperature or density there is no way to put such liberated quarks
and gluons on the mass-shell. The colored gluons can indeed propagate from
one hadron to the next in the thermal state with many overlapping hadrons, but
they are not free, i.e., q2 7é 0. So what is called as de-confinement phase
transition in QGP is, in fact, de-hadronization phase transition.

De-confinement at the fundamental quark-gluon level is about the lib-
eration of any colored objects (quarks, gluons, etc.) from the vacuum
(which never happens) and not from the bound-states. So De-confinement
phase transition does not exist, at all (temperature zero or finite).
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The general criterion of dynamical/spontaneous
breakdown of chiral symmetry

S~ (p) = Sy ' (p) + / id*qLu(p, ¢)S (@)1 Dy (p — q)

S7Hp) = i[pA(p*) + B(p*)], Sy (p) = i[p + mo]
SH0) = iB(0) = imesr, Sy (0) = imyg

Meff = Mo + My

(a). chiral symmetry violating solution: mess = mgqg # 0, mo =0

(b). chiral symmetry preserving solution: Mesr = mg =0, Mo =10
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(I). The first necessary (dynamical) condition

Meff = Mg ~ /d4qFM(q)S(q)%DW(q) #0, mg=0

{S7Hp), 15} = 17152B(p?)p2—o = i752mq # 0, mg =0
(). The second sufficient (phenomenological) condition

_ 4 4 B(pQ)
(0]qq| 0)y ~ /d pTrS(p) ~ —/d PR & B # 0

The dynamically generated mass m depends on the running quark mass
B(p?) in the much more complicated way than the chiral quark condensate
(0]gq|0),. So if the temperature-dependent chiral quark condensate
drops it value at some 7, this does not mean that dynamical quark mass
will also automatically drop its value at 7. in the chiral limit m, = 0.
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Suppression of the NP IR singularities
(¢*)~*7%, k=1,2,3, ... apart from (¢*) "% in 4D QCD

in agreement with the Picard/WSC theorem

d'VE(2) = 2Ly(2) + 2L, (2), 2= — =ec— = €Z

Z ~ 1§T7)n+1

m=—
= = (k = k 1
LT(Z) _ Zz—k m—lj—le Z’Z—k 1 Z + +m
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2Ly(2) =€z )y €"Z° > €™ _,ET,,),,Hl(O)
k=0 m=0
2L(z)=ed 2 F Y € fliT(0)
k=0 m=0
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2
DINP(Q; AQ ): € X [AJW 4+ —
m (¢*)* ¢
| A2
DIP (5 M) = € iTyla) 2%
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