Muon Particle Physics Program at J-PARC

Satoshi MIHARA KEK/J-PARC

7th Georgian - German School and Workshop in Basic Science 28 August - 2 September, Tbilisi, Georgia

Background

 TSU and KEK/J-PARC have been collaborating in the muon particle physics program (mu-e conversion search, COMET) at J-PARC.

Outline

- · Background
- Muon particle physics
- · J-PARC & Muon particle physics experiments
- · Summary

Muon Particle Physics

Muon in the Standard Model

•

•

- Precise measurement of muon properties
- Establishment of SM
- Indication of BSM?
 - muon g-2, proton radius, B leptonic decay …

Role of low-energy charged lepton physics in LHC/ILC era

• Direct search

Indirect search

(Energy Frontier)

(Intensity Frontier) E_1 E_3 E_3 E_1 E_3 E_4 E_2 E_4 E_2 E_4

M~O(>>100GeV)

 $E_1 + E_2 = E_3 + E_4 < M$

- Charged LFV/g_μ-2
 - $L = L_{SM} + L_{BSM}$
 - "Slight" difference from SM prediction

• LHC, ILC

• Higher energy for heavier new particle

J-PARC

Japan Proton acceleration research complex

- Joint project between JAEA and KEK
- New and accelerator research facility, using MW-class high power proton beams at both 3 GeV and 30 GeV.
 - Various secondary particle beams
 - neutrons, muons, kaons, neutrinos, etc. produced in proton-nucleus reactions
 - Three major scientific goals using these secondary beams
 - Particle and Nuclear physics
 - Materials and life sciences
 - R&D for nuclear transformation (in Phase 2)

The anticipated goal is 1 MW

Rapid Cycle Synchrotron

LINAC

400 MeV

Energy : 3 GeV Repetition : 25 Hz Design Power : 1 MW

Main Ring Max Energy : 30 GeV Design Power for FX : 0.75 MW Expected Power for SX : > 0.1 MW

Material and Life Science Facility

Rapid Cycle Synchrotron

LINAC

400 MeV

Energy : 3 GeV Repetition : 25 Hz Design Power : 1 MW

Main Ring Max Energy : 30 GeV Design Power for FX : 0.75 MW Expected Power for SX : > 0.1 MW

Neutrino beam to Kamioka

Material and Life Science Facility

Rapid Cycle Synchrotron

LINAC

400 MeV

Energy : 3 GeV Repetition : 25 Hz Design Power : 1 MW

Main Ring Max Energy : 30 GeV Design Power for FX : 0.75 MW Expected Power for SX : > 0.1 MW

Neutrino beam to Kamioka

Material and Life Science Facility

Nuclear and Particle Physics Exp. Hall

Main Ring Max Energy : 30 GeV Design Power for FX : 0.75 MW Expected Power for SX : > 0.1 MW

Energy: 3 GeV

Repetition : 25 Hz

Design Power : 1 MW

LINAC

5400 MeV

Rapid Cycle Synchrotron

Muon Particle Physics Experiments at J-PARC

- Precise measurement of muon g-2/EDM
- Muon conversion search
 - · DeeMe & COMET
- · (Muonic atom hyper-fine spritting)

muon g-2/EDM

Magnetic Dipole Moment

- Spin precession in magnetic field
- · Lande's g factor is 2 in tree level
- Higher order corrections in quantum field theory: $g = 2(1 + a_{\mu})$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

 $\vec{\mu} = \mathbf{g}\left(\frac{q}{2m}\right)\vec{s}$

 $\mathcal{H} = -\vec{\mu} \cdot \vec{B}$

γ_{magic}=29.3 p_{magic}=3.094GeV/c

Magnetic Dipole Moment

- Spin precession in magnetic field
- · Lande's g factor is 2 in tree level
- Higher order corrections in quantum field theory: $g = 2(1 + a_{\mu})$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

 $\vec{\mu} = \mathbf{g}\left(\frac{q}{2m}\right)\vec{s}$

 $\mathcal{H} = -\vec{\mu} \cdot \vec{B}$

γ_{magic}=29.3 p_{magic}=3.094GeV/c

BNL E821

QED contribution	11 658 471.808 (0.015) ×10 ⁻¹⁰	Kinoshita & Nio, Aoyama et al
EW contribution	15.4 (0.2) ×10 ⁻¹⁰	Czarnecki et al
Hadronic contribution		
LO hadronic	694.9 (4.3) ×10 ⁻¹⁰	HLMNT11
NLO hadronic	-9.8 (0.1) ×10 ⁻¹⁰	HLMNT11
light-by-light	10.5 (2.6) ×10 ⁻¹⁰	Prades, de Rafael & Vainshtein
Theory TOTAL	11 659 182.8 (4.9) ×10 ⁻¹⁰	
Experiment	11 659 208.9 (6.3) ×10 ⁻¹⁰	world avg
Exp — Theory	26.1 (8.0) ×10 ⁻¹⁰	3.3 σ discrepancy

(Numbers taken from HLMNT11, arXiv:1105.3149)

D. Nomura (tau2012)

 \mathcal{B}

Fermilab E989

·Goal:

 $\cdot 1.8 \times 10^{11}$ detected high energy decays

beam in 2016

 \cdot systematic errors ω_{a} , ω_{p} ±0.07 ppm each

Anomalous magnetic moment (g-2)

$$a_{\mu} = (g-2)/2 = 11\ 659\ 208.9\ (6.3)\ x\ 10^{-10}\ (BNL\ E821\ exp)$$
 0.5 ppm
11\ 659\ 182.8\ (4.9)\ x\ 10^{-10}\ (standard\ model)
 $\Delta a_{\mu} = Exp - SM = 26.1\ (8.0)\ x\ 10^{-10}$ 30 anomaly

In uniform magnetic field, muon spin rotates ahead of momentum due to $g-2 \neq 0$

general form of spin precession vector:

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

3)

Anomalous magnetic moment (g-2)

$$a_{\mu} = (g-2)/2 = 11\ 659\ 208.9\ (6.3)\ x\ 10^{-10}\ (BNL\ E821\ exp)$$
 0.5 ppm
11\ 659\ 182.8\ (4.9)\ x\ 10^{-10}\ (standard\ model)
 $\Delta a_{\mu} = Exp\ -\ SM = 26.1\ (8.0)\ x\ 10^{-10}$ 30 anomaly

In uniform magnetic field, muon spin rotates ahead of momentum due to $g-2 \neq 0$

general form of spin precession vector:

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

BNL E821 approach
 $\gamma = 30 \ (P = 3 \ GeV/c)$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

Continuation at FNAL with 0.1ppm

EK 高エネルギー加速器研究機構

preci

Anomalous magnetic moment (g-2)

$$a_{\mu} = (g-2)/2 = 11\ 659\ 208.9\ (6.3)\ x\ 10^{-10}\ (BNL\ E821\ exp)$$
 0.5 ppm
11\ 659\ 182.8\ (4.9)\ x\ 10^{-10}\ (standard\ model)
 $\Delta a_{\mu} = Exp\ -SM = 26.1\ (8.0)\ x\ 10^{-10}$ 30 anomaly

In uniform magnetic field, muon spin rotates ahead of momentum due to $g-2 \neq 0$

general form of spin precession vector:

Continuation at FNAL with 0.1ppm

Precision ティー 高エネルギー加速器研究機構 Proposed at J-PARC with 0.1ppm precision

Expected time spectrum of $\mu \rightarrow e^+ \nu \nu$ decay

Muon spin precesses with time.

 \mathcal{B}

 \rightarrow number of high energy e⁺ changes with time by the frequency :

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

Expected time spectrum of $\mu \rightarrow e^+ v \overline{v}$ decay

EDM tilts the precession axis.

ightarrow This yields an up-down decay asymmetry in number of e+

(oscillates with the same frequency ω)

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

New Muon g-2/EDM Experiment at J-PARC with Ultra-Cold Muon Beam

Positron tracker measures e+ from $\mu^+ \rightarrow e^+ \nu \nu$ decay for the 3. period of $33\mu s$ (5 x lifetime)

Silicon

Tracker

Muon storage magnet and detector

New data with drilled aerogel

and Y. Oishi (RIKEN)

一加速器研究機構

High power Ly-α laser

Being developed by RIKEN group

Implication to statistical sensitivity

- * With drilled aerogel target, one expects
 - * Ultra-cold muon rate : 0.2E+6/sec (*)
 - * Running time

: 1E+7 sec (120 day)

polarization 100 % 50%

- * Statistical uncertainty on ω_a : 0.22ppm (0.44ppm)
- * Statistical uncertainty on d_{μ} : 4.4E-21 ecm (8.8E-21 ecm)

Good enough to test BNL E821 g-2 results

* factor of two more muons with SiC target is not included.

Mu-e conversion

高エネルギー加速器研究機

Experimental Techniques

. Process : μ^{-} +(A,Z) → e^{-} +(A,Z)

- A single mono-energetic electron
 - . $E_{\mu e} \sim m_{\mu} B_{\mu}$:105 MeV for Al
- Delayed : $\sim 1 \mu S$
- No accidental backgrounds
- Physics backgrounds
 - Muon Decay in Orbit (DIO)
 - $E_e > 102.5 \text{ MeV} (BR:10^{-14})$
 - E_e > 103.5 MeV (BR:10⁻¹⁶)
 - Beam Pion Capture

•
$$\pi^{-}$$
+(A,Z) \rightarrow (A,Z-1)* \rightarrow γ +(A,Z-1)
 $\gamma \rightarrow e^{+} e^{-} e^{+} e^{-} e^{+} e^{-} e^{+} e^{+} e^{-} e^{$

$$R_{ext} = \frac{\text{number of proton between pulse}}{\text{number of proton in a pulse}}$$

Electron Energy

ここの「「「「「「「」」」」という。

 \mathcal{B}

mu-e Conversion Searches at J-PARC

• DeeMe

- Intermediate sensitivity :
 < 10⁻¹³
- Pion production target as a muon stopping target
- Beam line as a spectrometer

• <u>COMET</u>

- Staged approach to reach < 10⁻¹⁶ sensitivity
- Phase I : < 10⁻¹⁴
- Phase II : < 10⁻¹⁶
- Large SC magnet for pion collection, muon transport & electron measurement

Principle of DeeMe

Principle of DeeMe

©KEI

高エネルギー加速器研究機構

DeeMe at J-PARC

mu-e conversion search at J-PARC with a S.E.S. of 10⁻¹⁴

- Primary proton beam from RCS
 - 3GeV, 1MW
- Pion production target as a muon stopping target
- Beam line as a spectrometer
 - Kicker magnets to remove prompt background
- Multi-purpose beam line for DeeMe, HFS, g-2/EDM is under construction
- Engineering run in JFY 2016

COMET at J-PARC

• Target S.E.S. 2.6×10⁻¹⁷

- Pulsed proton beam at J-PARC
 - Insert empty buckets for necessary pulsepulse width
 - bunched-slow extraction
- pion production target in a solenoid magnet
- Muon transport & electron momentum analysis using C-shape solenoids
 - smaller detector hit rate
 - need compensating vertical field
- Tracker and calorimeter to measure electrons
- Recently staging plan showed up. The collaboration is making an effort to start physics DAQ as early as possible under this.

COMET Phase I & II

· Phase I

- Beam background study, achieve an intermediate sensitivity of < 10⁻¹⁴
- · 8GeV, 3.2kW, 110 days of DAQ

· Phase II

 8GeV, 56kW, 1 year DAQ to achieve the COMET final goal of < 10^{-16} sensitivity

Phase I

2013-2018 Facility construction 2013-2019 Magnet construction & installation 2018-2020 Eng. run & Physics run Phase II Eng. run in 2022(?)

COMET Phase I

Status of COMET Experiment Facility

Beam line component installation in progress in SY since 2014

sin

Beam transport line in HD hall

Significant construction work 2016 Summer to connect SY and Hall along the B-Line He compressor used

for E36 will be reused for COMET

90 deg. Transport Solenoid installed in Spring 2015 SC magnets

Hall construction

COMET Hall ready in Spring 2015

COMET: Status of Detector Preparation

All geometry implemented in the full simulation: ICEDUST

Beam test @ PSI 2015 Trigger Hodoscope Counter Scintillator + Cerenkov

Detector for physics measurement in Phase I

Analysis algorithm development in progress using simulation data. ex) track finding in CyDET

CDC : the main detector of COMET Phase-I Physics

Total ~20,000 wire stringing completed in Nov. 2015 at KEK

CDC Read Out Electronics RECBE production at IHEP

COMET: Detector Preparation Cont'd

Detector for beam BG measurement in Phase I and physics measurement in Phase II

ECal (LYSO) R&D using prototypes

Crystal quality test bench at JINR

Ecal PID performance evaluation at PSI 2015

↑Wave form taken in the test
← Electron beam test at ELPH

加速器研究機構

Ecal Pile-up study using simulation data

Summary

- Muon as a tool to investigate physics beyond the Standard Model
- High power proton accelerator at J-PARC
 - High intensity muon beam
- Muon physics program at J-PARC
 - New measurement of muon g-2/EDM
 - mu-e conversion experiments

