

Status of pEDM polarimeter detector development at CAPP/IBS

Seongtae Park

Center for Axion and Precision Physics(CAPP) Institute for Basic Science, South Korea

> JEDI collaboration meeting Tbilisi, Georgia Sep. 1, 2016

- 1. MC simulation on p-C scattering
- 2. GEM-based polarimeter detector
- 3. About DAQ (CERN SRS)
- 4. GEM detector construction and lab test results
- 5. COSY beam test plans
- 6. Summary and plans

Geant4 simulation on p-C scattering

Fig: from Proton EDM proposal

- Simulation tool: Geant4 v4.10.p02
- Physics list used for simulation: QGSP_BERT
- Input particle: protons, 1,000,000 POTs
 - ✓ P=701 MeV/c, Δp/p=4.6x10⁻⁴, β=0.6, K=233 MeV
- Target length: 60mm
- Target dia.: 10 mm
- Target material: Graphite(C:N:O=99:0.7:0.3, 1.7 g/cm³)
- Distance between target and detector: 900 mm

Proton interaction in Carbon target

Hits by primary protons only **Detector acceptance : 2.5 %**

All hits including secondaries **Detector acceptance: 6.6 %**

Particles on the detector plane

Kinetic energy of particles on detector plane

Signals overlap with background. The major BG is secondary protons.

Particle Energy on GEM detector

Trigger telescope

Coincidence triggers/improving signal to BG

Plastic scintillator(polyvinyltoluene)

Excitation energy: 64.7 eV Density =1.032 g/cm³

Protons

Electrons

- Low energy electrons can be removed easily in the first scintillator T1(t=1 cm).
- Gamma still survive through T1 and reach the detector. Ex> 13 MeV γ: 60% absorption in 40 mm Iron.
- Low energy e,γ are well separated in thick scintillation detectors from the high energy protons as shown below.
- The final triggers are obtained from the two/three scintillation detectors.

GEM-based prototype polarimeter detector concept

e for Basin

GEM-based prototype polarimeter detector concept

About detector counting rate

Beam parameters:

- 1. 701 MeV/c protons ($E_k=233$ MeV, $\beta=0.6 \rightarrow v=1.8 \times 10^8$ m/s)
- 2. Ring circumference 500 m.
- 3. Revolution frequency is about 0.36 MHz.
- 4. About 100 bunches
 - ✓ 5 m between bunches
 - ✓ 28 ns bunch spacing
 - ✓ 0.36MHz x 100=3.6x10⁷ bunches/s
- 5. 5x10¹⁰ particles/storage
 - ✓ 5x10⁸ particles/bunch
- 6. 4 polarimeters on the ring for CW/CCW beams

✓ Beam extraction for 1000s

- \checkmark Assuming full extraction at the constant extraction rate for the entire extraction
 - 5x10⁷ interactions/s
- ✓ $5x10^7/3.6x10^7=1.4$ interactions/bunch
- ✓ Assume 6.5 % of detector acceptance(including BG, from simulation)
 - 3.25x10⁶ hits on detector/s
 - 4 detectors(1024x4=4096 channels)
 - \rightarrow 800 hits/ch/s (including BG)
- ✓ For signal(2.4 % acceptance)
 - 1.2x10⁶ hits on detector/s
 - →300 hits/ch/s (signal)

Radial distribution of particle hits on the detector plane

All particle hit map on GEM detectors

Primary proton hit map on GEM detectors

Seongtae Park/Center for Axion and Precision Physics

10

Equal rate anode pad design for handling high rate

> 800 Hz/ch(with BG)

Inner most pad area=89 mm² Outer most pad area=440 mm²

Counting rate on the inner most pad=899 Hz/cm² Counting rate on the outer most pad=182 Hz/cm²

279.36

DAQ system for GEM test

RD51 SRS

- ✤ SRS: Scalable Readout System
- $\checkmark\,$ Developed and distributed by the RD51 collaboration
- ✓ FE Hybrid+ adapter card+FEC+DAQ PC
 - Hybrid: APV25, VMM, GEMROC, Beetle, etc
 - APV: analog chip
 - VMM: digital chip with peak detection and time information

Hybrid chip/APV25

- The APV25 is a 128 channel analogue pipeline chip for readout of silicon microstrip detectors in the CMS tracker at the LHC.
- Each channel comprises a low noise amplifier, a 192 cell analogue pipeline and a deconvolution readout circuit.
- Output data are transmitted on a single differential output via an analogue multiplexer.
- The chip is fabricated in a 0.25 micron CMOS process to take advantage of the radiation tolerance, lower noise and power, and high circuit density which can be achieved.
- Spark protection circuits in the input channels

Seongtae Park/Center for Axion and Precision Physics

ADC/FEC card

- ADC card. The ADC card is the first C card adapter for analogue frontend chips like the APV25 and Beetle. It integrates 16 ADCs of 12 bit, sampling at 40 MHz (Texas Instruments ADS 5281).
- Digital data from the ADC's get read out via 480 MHz high speed links to the FPGA on the FEC card. The ADC Frontpanel provides 8 HDMI connector slots for A-type HDMI cables up to 25 meter. Two hybrids per HDMI cables can get powered via the ADC card.

- > OS: SL v5.8 on VirtualBox
 - ✓ Ethernet connection for data acquisition
 - Activate Intel virtual technology in bios setup
 - Enable jumbo frame in the network setup, 9KB MTU
- > DAQ program: DATE(ALICE experiment)
- Online monitoring and analysis: AMORE(ALICE experiment)
- Asic: APV25(128ch/chip)
 - ✓ Two ASICs(256 ch) for calibration and pedestal test
 - Without detector
 - $\checkmark\,$ Four ASICs for GEM detector with Fe55 source
 - 10x10cm² GEM chamber
 - Triple GEM with ArCO₂=70:30
 - 3-2-2-2 gaps
 - With x-y strip anode board with 512ch
 - Strip pitch=400μm
 - Trigger signal from the bottom electrode of the last GEM

Mini crate

15

New polarimeter lab is ready

Seongtae Park/Center for Axion and Precision Physics

10x10 cm² test detector

10x10 GEM foil

Under assembling. Will be tested soon and go beam test with APV25.

Test results/Source run(Fe55)

Test at CERN GDD lab.

- ✤ 10x10 cm² GEM chamber
- Triple GEMs
- **♦** Ar:CO₂=70:30
- ✤ HV=3900,3800V
- ♦ P=400 μ m strip→R~115 μ m

x-y strip anode board

- 1. DAQ (CERN SRS) test with 10x10 GEM detector
- Trigger study (plastic scintillation counter: 10x10 cm², t=1, 2, 3 cm)
 - ✓ Proton beams with E_k =230, 200, 170, 140, 110 MeV etc.
- 3. GEM detector efficiency measurement
- 4. Counting rate measurement at various scattering angles
 - ✓ Use 2x2cm² scintillation counters
 - \checkmark 1 m away from the target
 - ✓ $5\sim 20^{\circ}$ angle scan
- 5. Etc.

Summary

- Continuing Geant4 simulation for p-C scattering
 - ✓ Including asymmetry realization (Ed Stephenson)
- ✤ A new polarimeter detector lab is ready at CAPP
- Test GEM detectors are constructed and being tested with CERN SRS DAQ
 - ✓ Detector chacterization
 - \checkmark Analysis tool development
- Plans for COSY beam test in 2017

