Applying LOCO analysis to COSY

JEDI collaboration meeting @ Tbilisi State University
September 1, 2016 | Christian Weidemann

Status of COSY model

Working point

- Significant difference between calculated and measured tune
- Model adjustment to measured working points required

$$
Q_{x}=3.608 ; Q_{y}=3.615
$$

Status of COSY model

Dispersion

- Measure orbit for different rf-frequencies

$$
x(s)=x_{0}(s)+D(s) \frac{\Delta p}{p}
$$

$$
\Delta \mathrm{x}(\mathrm{~s})=\mathrm{D}(\mathrm{~s}) \frac{\Delta E}{E}=\frac{D(s)}{\eta} \frac{\Delta C}{C}=-\frac{D(s)}{\eta} \frac{\Delta f_{r f}}{f}
$$

D...dispersion,
η... phase slip factor,
C...length of accelerator

Orbits for QU6_0

Status of COSY model

Dispersion

$\Delta \mathrm{D} / \mathrm{D}_{\text {meas }} \approx 0.4$

$-\frac{\Delta \beta}{\beta} \approx 30-50 \%[1]$

- High demands on beam control and beam based measurements, e.g. $\Delta \mathrm{x}_{\mathrm{rms}}<0.1 \mathrm{~mm}$ [2]
> Improvement of COSY model required!

Introduction

Orbit response matrix

- ORM entries contain the response of the beam position at the BPMs(i) to changes of corrector magnets (j)

$$
\begin{aligned}
& \binom{\vec{x}}{\vec{y}}
\end{aligned}=\boldsymbol{M}\binom{\overrightarrow{\theta_{x}}}{\overrightarrow{\theta_{y}}} .
$$

- ORM can be used for orbit correction
- ... and to calibrate and correct linear optics

Introduction

Loco (linear optics from closed orbit) [3]

- LOCO was succesfully applied at several electron storage rings

Idea:

- Calculate orbit response matrix using the existing COSY model (MAD-X)
- Vary parameters of the lattice model to minimize difference between $M^{\text {mod }}$ and $M^{\text {meas }}$

$$
\chi^{2}=\sum_{i, j} \frac{\left(M_{i, j}^{\text {mod }}-M_{i, j}^{\text {meas }}\right)^{2}}{\sigma_{M_{\text {meas }, i, j}}}=\sum_{k=i, j} E_{k}^{2}
$$

$\sigma_{M_{\text {meas }, i j}}$: errors of linear fit to the beam displacment at each BPM (i) as function of the current in each steerer magnet (j)

Goal:

- Determination of correct lattice parameter settings to improve model
- Correct unacceptable misalignments or calibration factors

Loco - Theory

Possible fit parameters @ COSY

Parameter	No.
BPM calibration	60
BPM roll (ψ), shift (s)	$2 \cdot 60$
Steerer calibration	40
Steerer roll (ψ), shift (s)	$2 \cdot 40$
Gradient of quadrupoles	56
Gradient of quad families	14
Quadrupole rotations (φ, θ, ψ), shifts (x, y, s)	$6 \cdot 56$

Parameter	No.
Dipole rotations (φ, θ, ψ), shifts	$6 \cdot 24$
(x, y, s)	
K1 of dipole magnets	24
K2 of dipole magnets	24
Deflection angle (offset)	40
K2 of sextupoles	14
Sum	952

- Typical COSY ORM contains BPM . Steerer = 2400 data points
- Not all can be fitted simultaneously
- ORM is not sensitive to all parameters

Loco - Theory

Algorithm

$$
\chi^{2}=\sum_{i, j} \frac{\left(M_{i, j}^{\text {mod }}-M_{i, j}^{\text {meas }}\right)^{2}}{\sigma_{i, j}^{2}}=\sum_{k=i, j} E_{k}^{2}
$$

- Determine $d E_{k} / d K_{l}$ by varying model parameters (number of entries $=2400 \cdot$ parameter $)$

$$
-E_{k}=\frac{d E_{k}}{d K_{l}} \cdot \Delta K_{l}
$$

- Invert $d E_{k} / d K_{l}$ using SVD analysis

$$
\frac{d E_{k}}{d K_{l}}=U S V^{T}=\sum \vec{u}_{l} w_{l} \vec{v}_{l}^{T}
$$

- Calculate parameter settings

$$
\Delta K=-\sum \vec{v}_{l} \frac{1}{w_{l}} \vec{u}_{l}^{T} \cdot E_{k}
$$

Loco - Program

Loco - Program

Benchmarking

- Simulation of ORM measurement with randomly generated parameter settings (Gaussian distributed)
- Evaluation of results by reconstruction of
- Orbit response matrix
- Beam optics $(\Delta \beta / \beta)$
- Parameter settings ($\left.\Delta k=k_{\text {meas }}-k_{\text {mod }}\right)$

Loco - Program

Benchmarking (good reconstruction):

Longitudinal position of quadrupoles

Loco - Program

Benchmarking (only optics improvement):

Transverse position of quadrupoles

Loco - Program

Benchmarking

- Different combinations of parameter settings yield the same beam response (degeneracy)
- No unique result detectable
- Fixing parameters helps to overcome the degeneracy problem
- Requires calibration of fixed parameters

Loco - Program

Benchmarking

- Sensitivity to different parameters (e.g. quadrupole gradients)
- Influence of error of beam position measurement
- Sensitivity to truncated rank of matrix in SVD analysis
- Sequence of parameter adjustment
- Effect of step size of parameter variation

Loco - Program

Benchmarking - some results

- Performance of parameter reconstruction and optics determination depends significantly on BPM errors
- Sensitivity to step size depends on linearity of ORM to parameter change
- BPM and steerer gains work perfect (degeneracy problem when fitting both simultaneously can be avoided by fixing one component)
- Good reconstruction: BPM and steerer (ds, d ψ), Quad (ds, d $\psi, K 1$), Dipole (K1, K2, ds, d ψ), Sextupoles (K2)
- Only optics improvement: Quad (dx, dy, d θ)
- Not sensitive: BPM and steerer ($d x, d y, d \varphi, d \theta$), Quad ($d \varphi$)
- Fitting combinations of parameters has to be studied

Beam optics studies

Machine parameters

- Proton beam of $2.6 \mathrm{GeV} / \mathrm{c}$ momentum
- Regular COSY optics ($D \neq 0$)
- ORM measured for different settings of quadrupole families

Quadrupole familie	Δk $\%$	date
MQU 6	0	$2015-11-11 _19-38-07$
MQU 6	+20	$2015-11-11 _20-24-38$
MQU 6	-20	$2015-11-11 _21-11-18$
MQT 3	+20	$2015-11-12 _08-54-56$
MQT 3	-20	$2015-11-12 _09-31-24$
MQU 2, MQU 6	+10	
MQU 4, MQU 5	+20	$2015-11-12 _11-49-47$
MQU 4, MQU 5	-20	$2015-11-12 _13-19-31$

Applying LOCO to measured data

Steerer and BPM calibration

- Detection of wrongly oriented BPMs
- Detection of wrongly oriented steerer magnets
- Variation of vertical steerer calibration factors larger than horizontal

Steerergain_2015-11-12_09-31-24_averaged

Applying LOCO to measured data

Quadrupole strength

- Determination of individual gradients factors
- Absolute values are difficult to judge at this point
- Detection of changed gradient factors between individual measurements
- 4 \% change was applied to quadrupole family MQT3 (number 2)

Summary

- Loco program was succesfully developed
- Benchmarking almost finished
- First test with measured data

Future plans:

- Determine magnet displacements and compare with recent survey measurement
- Constrain with dispersion measurement
- Improved ORM measurement (more data points)
- Outlier data rejection
- Automatic step size finder
- Implementation of additional minimization algorithm
- Multi-core processing

Literature

[1] D. Ji, „First experience of applying LOCO for Optics measurement at COSY", IPAC 16, Busan, South Korea, 2016.
[2] M. Rosenthal, "Experimental Benchmarking of Spin Tracking Algorithms for Electric Dipole Moment Searches at the Cooler Synchrotron COSY", PhD thesis, 2016.
[3] J. Safranek, Nucl. Instrum. Meth. A 388, 27 (1997).

