

Applying LOCO analysis to COSY

JEDI collaboration meeting @ Tbilisi State University September 1, 2016 | Christian Weidemann

Status of COSY model

Working point

- Significant difference between calculated and measured tune
- Model adjustment to measured working points required

$$Q_x = 3.608; Q_y = 3.615$$

Status of COSY model

Dispersion

- Measure orbit for different rf-frequencies

$$x(s) = x_0(s) + D(s)\frac{\Delta p}{p}$$

$$\Delta \mathbf{x}(\mathbf{s}) = \mathbf{D}(\mathbf{s})\frac{\Delta E}{E} = \frac{D(s)}{\eta}\frac{\Delta C}{C} = -\frac{D(s)}{\eta}\frac{\Delta f_{rf}}{f}$$

D...dispersion, η ... phase slip factor, C ...length of accelerator

Orbits for QU6_0

Status of COSY model

$$- \frac{\Delta\beta}{\beta} \approx 30 - 50\%$$
 [1]

- High demands on beam control and beam based measurements, e.g. $\Delta x_{rms} < 0.1$ mm [2]
 - Improvement of COSY model required!

1. September 2016

Orbit response matrix

 ORM entries contain the response of the beam position at the BPMs(i) to changes of corrector magnets (j)

•
$$\begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix} = \boldsymbol{M} \begin{pmatrix} \overrightarrow{\theta_{\chi}} \\ \overrightarrow{\theta_{y}} \end{pmatrix}$$

•
$$M_{ij} = \frac{\sqrt{\beta_i \cdot \beta_j}}{2\sin(\pi\nu)} \cdot \cos(|\varphi_i - \varphi_j| - \pi\nu)$$

- ORM can be used for orbit correction
- ... and to calibrate and correct linear optics

Introduction

Loco (linear optics from closed orbit) [3]

- LOCO was succesfully applied at several electron storage rings
 Idea:
- Calculate orbit response matrix using the existing COSY model (MAD-X)
- Vary parameters of the lattice model to minimize difference between M^{mod} and M^{meas}

$$\chi^{2} = \sum_{i,j} \frac{(M_{i,j}^{mod} - M_{i,j}^{meas})^{2}}{\sigma_{M_{meas},i,j}^{2}} = \sum_{k=i,j} E_{k}^{2}$$

 $\sigma_{M_{\text{meas},ij}}$: errors of linear fit to the beam displacment at each BPM(*i*) as function of the current in each steerer magnet(*j*)

Goal:

- Determination of correct lattice parameter settings to improve model
- Correct unacceptable misalignments or calibration factors

Loco - Theory

Possible fit parameters @ COSY

Parameter	No.	Parameter
BPM calibration	60	Dipole rotation
BPM roll (ψ), shift (s)	2 · 60	(x, y, s)
Steerer calibration	40	K2 of dipole m
Steerer roll (ψ), shift (s)	2 · 40	Deflection and
Gradient of quadrupoles	56	K2 of sextupole
Gradient of quad families	14	
Quadrupole rotations (φ, θ, ψ) ,	6 · 56	Sum
simus (x, y, s)		Sum

Parameter	No.
Dipole rotations (φ, θ, ψ) , shifts (x, y, s)	6 · 24
K1 of dipole magnets	24
K2 of dipole magnets	24
Deflection angle (offset)	40
K2 of sextupoles	14

- Typical COSY ORM contains BPM \cdot Steerer = 2400 data points
- Not all can be fitted simultaneously
- ORM is not sensitive to all parameters

952

Loco - Theory

Algorithm

$$\chi^{2} = \sum_{i,j} \frac{(M_{i,j}^{mod} - M_{i,j}^{meas})^{2}}{\sigma_{i,j}^{2}} = \sum_{k=i,j} E_{k}^{2}$$

- Determine dE_k / dK_l by varying model parameters (number of entries = 2400 · parameter)

$$-E_k = \frac{dE_k}{dK_l} \cdot \Delta K_l$$

- Invert dE_k / dK_l using SVD analysis

$$\frac{dE_k}{dK_l} = USV^T = \sum \vec{u}_l w_l \vec{v}_l^T$$

Calculate parameter settings

$$\Delta K = -\sum \vec{v}_l \frac{1}{w_l} \vec{u}_l^T \cdot E_k$$

20

15 10

Benchmarking

- Simulation of ORM measurement with randomly generated parameter settings (Gaussian distributed)
- Evaluation of results by reconstruction of
 - Orbit response matrix
 - Beam optics $(\Delta \beta / \beta)$
 - Parameter settings

$$(\Delta k = k_{\rm meas} - k_{\rm mod})$$

Benchmarking (good reconstruction):

Longitudinal position of quadrupoles

Benchmarking (only optics improvement):

Transverse position of quadrupoles

Benchmarking

- Different combinations of parameter settings yield the same beam response (degeneracy)
- No unique result detectable
- Fixing parameters helps to overcome the degeneracy problem
- Requires calibration of fixed parameters

Benchmarking

- Sensitivity to different parameters (e.g. quadrupole gradients)
- Influence of error of beam position measurement
- Sensitivity to truncated rank of matrix in SVD analysis
- Sequence of parameter adjustment
- Effect of step size of parameter variation

Benchmarking – some results

- Performance of parameter reconstruction and optics determination depends significantly on BPM errors
- Sensitivity to step size depends on linearity of ORM to parameter change
- BPM and steerer gains work perfect (degeneracy problem when fitting both simultaneously can be avoided by fixing one component)
- Good reconstruction: BPM and steerer (ds, dψ), Quad (ds, dψ, K1),
 Dipole (K1, K2, ds, dψ), Sextupoles (K2)
- Only optics improvement: Quad (dx, dy, d θ)
- Not sensitive: BPM and steerer (dx, dy, d ϕ , d θ), Quad (d ϕ)
- Fitting combinations of parameters has to be studied

Beam optics studies

Machine parameters

- Proton beam of 2.6 GeV/c momentum
- Regular COSY optics $(D \neq 0)$
- ORM measured for different settings of quadrupole families

Quadrupole	Δk	date
familie	∞	
MQU 6	0	$2015 - 11 - 11_{-}19 - 38 - 07$
MQU 6	+20	$2015 - 11 - 11_{20} - 24 - 38$
MQU 6	-20	$2015 - 11 - 11_21 - 11 - 18$
MQT 3	+20	$2015 - 11 - 12_08 - 54 - 56$
MQT 3	-20	$2015 - 11 - 12_09 - 31 - 24$
MQU 2, MQU 6	+10	
MQU 4, MQU 5	+20	$2015 - 11 - 12_{-}11 - 49 - 47$
MQU 4, MQU 5	-20	$2015 - 11 - 12_{-}13 - 19 - 31$

Applying LOCO to measured data

Steerer and BPM calibration

- Detection of wrongly oriented BPMs
- Detection of wrongly oriented steerer magnets
- Variation of vertical steerer calibration factors larger than horizontal

Applying LOCO to measured data

Quadrupole strength

- Determination of individual gradients factors
- Absolute values are difficult to judge at this point
- Detection of changed gradient factors between individual measurements
- 4 % change was applied to quadrupole family MQT3 (number 2)

Summary

- Loco program was succesfully developed
- Benchmarking almost finished
- First test with measured data

Future plans:

- Determine magnet displacements and compare with recent survey measurement
- Constrain with dispersion measurement
- Improved ORM measurement (more data points)
- Outlier data rejection
- Automatic step size finder
- Implementation of additional minimization algorithm
- Multi-core processing

Literature

- [1] D. Ji, "First experience of applying LOCO for Optics measurement at COSY", IPAC 16, Busan, South Korea, 2016.
- [2] M. Rosenthal, "Experimental Benchmarking of Spin Tracking Algorithms for Electric Dipole Moment Searches at the Cooler Synchrotron COSY", PhD thesis, 2016.
- [3] J. Safranek, Nucl. Instrum. Meth. A 388, 27 (1997).