## Beam Instrumentation

## Detailed Analysis of Noise Measurement for Orbit Response Matrix Data

JEDI collaboration meeting @ Tbilisi State University September 1, 2016 | Fabian Hinder (IKP - 4)


## Why Orbit Response Matrix Analysis?

- Orbit Response Matrix (ORM) describing the response of the beam position to corrector magnet changes
- $\binom{\vec{x}}{\vec{y}}=M\binom{\overrightarrow{\theta_{x}}}{\overrightarrow{\theta_{y}}}$
- $M_{i, j}$ with its corresponding error $\sigma_{i, j}$ for BPM $i$ and magnet $j$
- Why?
- Orbit correction
- Analysis of ORM to estimate COSY optics (LOCO)
- Understand long-term stability of COSY


## What do we need?

- Estimation of noise of BPMs
- Estimation of stability of COSY
- Measured beam positions for different corrector kick angles
- Combination of everything to calculate ORM including realistic errors
- Now: Interesting details of ONE ORM data set
- (Protons, 2.6 GeV/c)


## Noise Measurement (vertical)



## Noise Measurement (horizontal)

$$
\sigma_{N o i s e}=\frac{1}{\sqrt{N-1}} \sum\left(x_{i}-\bar{x}\right)^{2}
$$

bpmx25


BPMx25:
$\sigma=0.39 \mathrm{~mm}$
But:
systematic movement of beam

## Global Noise Fit

The horizontal beam positions can be described by:

$$
x_{i}(t)=x_{0, i}+A_{i} e^{-\frac{t}{\tau}}
$$

Fit parameters:

- for each BPM: $x_{0, i}$ and $A_{i}$
- Common time constant $\tau$
- Results:
- $\chi^{2} /_{N D F}=2077 / 1528$
- $\tau=6.53 \pm 0.06 \mathrm{~s}$
- Amplitudes $\rightarrow$ following slides


## Noise Measurement (horizontal)

$$
\sigma_{N o i s e}=\frac{1}{\sqrt{N-1}} \sum\left(x_{i}-x_{f i t}\left(t_{i}\right)\right)^{2}
$$




BPMx25:

$$
\sigma=0.14 \mathrm{~mm}
$$

Resolution of other horizontal BPMs is better

## Resulting estimated Errors

 \#

(Including stability of COSY)

## Distribution of Amplitudes



Amplitudes are proportional to dispersion
$\rightarrow$ Exponential movement caused by main dipoles

## Distribution of Amplitudes



Amplitudes are proportional to dispersion
$\rightarrow$ Exponential movement caused by main dipoles
Explanation for spin tune drift within one cycle??

## Simple Explanation?

$$
\begin{gathered}
B(t) \propto I(t) \\
I(t)=\frac{U_{0}}{R} *\left(1-e^{-\frac{t}{\tau}}\right)
\end{gathered}
$$

With $\tau=L / R$
Dipoles:

$$
\begin{aligned}
& L=15 \mathrm{mH}, R=3 \mathrm{~m} \Omega \\
& \qquad \tau=\frac{15 H}{3 \Omega}=5 \mathrm{~s}
\end{aligned}
$$

Measured with beam:

$$
\tau=6.5 s
$$

Other effects in addition + discussion with power-supply group is ongoing...

## Small Estimation on Momentum

## Variation

$$
x(t)=x_{0}-A e^{-t / \tau}
$$

Definition of dispersion:

$$
\begin{gathered}
\Delta x=D \frac{\Delta p}{p_{0}} \\
\Leftrightarrow \frac{\Delta p}{p}=\frac{A}{D} e^{-t_{1} / \tau} \\
\frac{\Delta p}{p}=0.3 \cdot 10^{-3} \mathrm{e}^{-10 s / 6.5 s}=6 \cdot 10^{-5}
\end{gathered}
$$

Theoretical relation to spin tune:

$$
\frac{\Delta v_{s}}{v_{s}}=\beta^{2} \frac{\Delta p}{p}
$$

(need to be confirmed with Deuterons @ 970MeV/c)

## ORM calculation



- ORM entry is biased by exponential dipole drift
- $10 \%$ higher than true value:

$$
M_{\text {unCor }}=1.10 \cdot M_{\text {Cor }}
$$

- After correction:
- $\frac{\chi^{2}}{n d f}=1$
> Error on ORM entry is correct
- $\frac{\sigma_{M}}{M} \approx 1 \%$
- Important for
- LOCO analysis
- optics calculation
- orbit correction


## ORM calculation



## ORM measured at COSY



Matrix has the form (decoupled): $M=\left(\begin{array}{cc}M_{x x} & \approx 0 \\ \approx 0 & M_{y y}\end{array}\right)$

## Summary \& Outlook

Detailed analysis of BPM data shows interesting effects:

- Hint for dipole drift
- $\tau=6 s$
- $A \propto D$


- Further Questions:
- Correct for dipole drift?
- Consequence for orbit correction, if ORM is distorted by systematic effects?
- Consider in spin tune measurements, EDM measurement?

