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 Exploratory synthesis and crystal growth.  
 

 

 

 

 

 

 In-house characterization  

 (Diffraction, Macroscopic Properties). 
 

 

 

 

 

 Discern detailed electronic ordering  

 and excitations at remote 

 neutron/synchrotron facilities 
 

 

Feedback 

 

            Technical Approach 
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ordering processes of                     degrees of freedom: 

charge 

      Valence e.g. 2+/3+ 

Transition metal oxides 

Electrons delocalized 

Substantial ionicity and correlation-effects provide a tendency towards localization  

of the electrons, which acquire „atomic-like“ properties. 

Electrons can hop between sites, providing interaction and facilitating 

4 



ordering processes of                     degrees of freedom: 

charge 

spin 
orbital 

      Valence e.g. 2+/3+ 

Shape of electron cloud 

Magnetic moment 

Scattering methods 

Transition metal oxides 

Substantial ionicity and correlation-effects provide a tendency towards localization  
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Electrons can hop between sites, providing interaction and facilitating 

subtle 

interplay 
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 Functionalities : 

 Magnetism, ferroelectricity, superconductivity,  

 resistive switching, magnetoresistance… 

 Applications : 
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Multiferroics 
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Multiferroics : Cross-coupling 

N S + 

M P 

Magnetism: Spins Ferroelectricity: Charge (Dipoles) 

M P 

H E 

Multiferroicity: Spins and Dipoles 9 



Read 

with GMR 

MRAM 

Write : requires remagnetization – high currents 

        (slow, high power consumption) 

MF for non-volatile memories 
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Multiferroic 

Read 

with GMR 

Write with a 

Voltage 

MF-RAM : 

MRAM 

Write : requires remagnetization – high currents 

        (slow, high power consumption) 

MF for non-volatile memories 

[M. Bibes and A. Barthélémy, Nat. Mater. 7, 425 (2008)] 
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MF : only few materials 

N S 

M 

Magnetism: Spins 

+ 

P 

Ferroelectricity: Charge (Dipoles) 

M 

H 

P 

E 

M,P

H,E

M,P

H,E

Multiferroicity: Spins and Dipoles 

Very small overlap ! 

Ferroelectricity 

(traditional mechanism) 
Magnetism 

requires empty d-shell requires partially filled d-shell 

[N.A. Hill (now Spaldin), Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000)] 

Contra-indicated 
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    Different routes to MF 

Lone-pair FE 

independent subsystems 

Mn  NS NS

++

gen. weak electromagnetic coupling 

(symmetric) exchange striction P 

Charge-order-based 

P 

spin-spiral  

ferroelectricity 

q 
⊗ 

Dij , js 
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+ 

P 

Ferroelectricity: Charge (Dipoles) Any charge order breaking 

inversion-symmetry is polar. 

 Can in principle lead to very large polarizations 

 Spins are for free ! 

 same sites involved in charge and spin order 

  sizeable magnetoelectric coupling possible 

Examples ??? 

Multiferroicity from charge order 
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X-ray Magnetic Circular Dichroism 

de Groot et al., PRL 108, 187601 (2012) 

-rich 

-rich 

de Groot et al., PRL 108, 037206 (2012) 

100 keV X-ray diffraction (300 K) 

Intensity (cps) 

(spin-flip) 
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Polarized Neutron Diffraction (220 K) 

1 3  1 3  

CO Bilayers:  

charged rather than polar 
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MF from charge order:  

LuFe2O4 is a non-example 
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MF from charge order:  

LuFe2O4 is a non-example 

17  MA, PSS RRL  7, 383 (2013) 



    Tuning ferrites 
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    Magnetite 
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[Brabers et al., PRB 58, 14163 (98)] 

ln r (T ) 

Classical example of charge order [Verwey, Nature 144, 327 (1939)]: Vervey transition in Magnetite Fe3O4 

Ancient „lodestone“: 

oldest known 

magnetic material 
Fe

O

Fe

O

Complex charge order only recently solved 
[Senn et al., Nature 418, 173 (2012)]: 

It is polar 

[Yamauchi et al., PRB 79, 212404 (2009) – DFT calc.] 

Macroscopic indications of switching 
[Schrettle et al., PRB 83, 195109 (2011)] 



    Magnetite 

20 

0 200 400 600 800 1000

-0.1

0.0

0.1

 high voltage pulses

 low voltage pulses

In
te

g
ra

te
d
 i
n
te

n
s
it
y
 d

e
v
ia

ti
o
n
 (

%
)

time (s)

(2,-2,-10)

8.5 keV

200 400 600 800 1000

-1

0

1

 

V
o
lt
a
g
e
 (

k
V

)

~12 K 

Intensity modulation can be attributed to 

structural switching between inversion-twins: 

Microscopic proof of ferroelectricity! 

time-resolved X-ray diffraction 



    Different routes to MF 

Lone-pair FE 

independent subsystems 

Mn  NS NS

++

gen. weak electromagnetic coupling 

P 

Charge-order-based 

P 

spin-spiral  

ferroelectricity 

q 
⊗ 

Dij , js 
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small polarization 

usually low T only 

(symmetric) exchange striction 



Hexaferrites: high-T MF 

Hexagonal ferrites: based on spinel-structure, but rich variation of structures 

       by interspersing of „R-blocks“ and „T-blocks“ 
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Hexaferrites: high-T MF 

Ba0.5Sr1.5Zn2Fe12O22   [Kimura et al., PRL 94, 137201 (2005)] Ba2Zn2Fe12O22 
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Hexaferrites: high-T MF 

Ba2Zn2Fe12O22 Ba0.5Sr1.5Zn2Fe12O22 
Proposed structures, 

Yet to be solved! 
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Hexaferrites: high-T MF 
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Hexaferrites: high-T MF 
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 See talk of  

Giorgi Khazaradze, 

FZJ & TSU 

Parallel Session 9 

(Thu afternoon, Aud. 401) 

In addition, direct determination of magnetoelectric coupling 

in this compound is pursued by ESR/EPR/FMR techniques 

with electric-field modulation, at TSU 



Conclusions / Outlook 
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• Contrary to expectation, LuFe2O4, is a 
non-example for CO-driven 
multiferroicity 
likely same for YbFe2O4 

• What drives spin- & charge order 
(which does not minimize 
electron-electron repulstion)? 
→ INS: TOF to be complemented by 
TAS, in progress 

• Magnetite is an example, 
as demonstrated on a 
microscopic level 
 

• Further explore ion-size 
effects, intercalation. 

• Further examples ? 
(possibly including organics) 
 

• „Classical“ Y-type hexaferrite 
has spin-structure compatible 
with „Dzyaloshinskii-Moriya“- 
driven ferroelectricity 
 

• Fine-tune properties by 
substitutions and explore 
other hexaferrite structure 
types 
 

• E.g. other spin-based mecha-nisms 
such as ferrotoroidicity are being 
studied 

Rare earth ferrites 

Other potential charge-order-driven multiferroics 

High-temperature multiferroic phases in hexaferrites 

Other projects in multiferroicity 

resarch 
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