

Complex Ordering Phenomena in Multifunctional Oxides

Manuel Angst

Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich GmbH

GGSWBS'14, Tbilisi, July 8, 2014

HELMHOLTZ | GEMEINSCHAFT

Complex ordering phenomena in multi-functional oxides

Young-Investigators-Group funded by Helmholtz association, part of the institute of scattering methods JCNS-2 & PGI-4 (director Th. Brückel)

Joost de Groot (former member, PhD RWTH 2012)

Giorgi Khazaradze Pankaj Thakuria Thomas Müller Shilpa Adiga Hailey Williamson Manuel Angst (PhD advisor Alexander Shengelaya)

Technical Approach

Exploratory synthesis and crystal growth.

In-house characterization

 (Diffraction, Macroscopic Properties).

 Discern detailed electronic ordering and excitations at remote neutron/synchrotron facilities

Supernova

Image funace

Flux grow

Feedback

Substantial ionicity and correlation-effects provide a tendency towards localization of the electrons, which acquire <u>atomic-like</u> properties.

Electrons can hop between sites, providing interaction and facilitating

Jülich Aachen

Substantial ionicity and correlation-effects provide a tendency towards localization of the electrons, which acquire <u>atomic-like</u> properties.

Electrons can hop between sites, providing interaction and facilitating

ülich Aachen

Substantial ionicity and correlation-effects provide a tendency towards localization of the electrons, which acquire "atomic-like" properties.

Electrons can hop between sites, providing interaction and facilitating

Functionalities :

Magnetism, ferroelectricity, superconductivity, resistive switching, magnetoresistance...

Applications :

Memory devices, signal switching, spintronics, ...

Transition metal oxides

Functionalities :

Magnetism, ferroelectricity,

Multiferroics

Magnetism: Spins

Ferroelectricity: Charge (Dipoles)

Multiferroicity: Spins and Dipoles

MRAM

Write : requires remagnetization – high currents (slow, high power consumption)

[M. Bibes and A. Barthélémy, Nat. Mater. 7, 425 (2008)]

Jülich Aachen **MF : only few materials**

Research Alliance

[N.A. Hill (now Spaldin), Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000)]

Different routes to MF

Jülich Aachen

Research Alliance

RA Jülich Aachen Research Alliance Multiferroicity from charge order

Ferroelectricity: Charge (Dipoles)

Any charge order breaking inversion-symmetry is polar.

- Can in principle lead to very large polarizations
- Spins are for free !
- same sites involved in charge and spin order
 - → sizeable magnetoelectric coupling possible

Ikeda et al., Nature 436, 1136 (2005)

CO Bilayers: charged rather than polar

Jülich Aachen Research Alliance

MF from charge order: LuFe₂O₄ is a non-example

Jülich Aachen

Research Alliance

Tuning ferrites

Magnetite

Ancient "*lodestone*": oldest known magnetic material

Compass (circa 4th Century BC)

Classical example of charge order [Verwey, Nature 144, 327 (1939)]: Vervey transition in Magnetite Fe₃O₄

Complex charge order only recently solved [Senn *et al.*, Nature **418**, 173 (**2012**)]: It is **polar**

[Yamauchi et al., PRB 79, 212404 (2009) - DFT calc.]

e,O

-20

513 Hz

0 E (kV/cm)

5.6K

15K

30 K

20

40

P(µC/cm²)

0

-1

-40

Magnetite

time-resolved X-ray diffraction

P09@PETRAIII. DESY

Different routes to MF

Charge-order-based

Jülich Aachen

Research Alliance

Hexaferrites: high-T MF

Hexagonal ferrites: based on spinel-structure, but rich variation of structures by interspersing of "**R**-blocks" and "**T**-blocks"

Jülich Aachen Research Alliance

 $Ba_2Zn_2Fe_{12}O_{22}$

Ba_{0.5}Sr_{1.5}Zn₂Fe₁₂O₂₂ [Kimura *et al.*, PRL **94**, 137201 (2005)]

Block-Spin model

Hexaferrites: high-T MF

Jülich Aachen

Research Alliance

Hexaferrites: high-T MF

In addition, direct determination of magnetoelectric coupling in this compound is pursued by ESR/EPR/FMR techniques with electric-field modulation, at TSU

→ See <u>talk</u> of **Giorgi Khazaradze**, FZJ & TSU Parallel Session 9 (<u>Thu afternoon, Aud. 401</u>)

Conclusions / Outlook

Rare earth ferrites

- Contrary to expectation, LuFe₂O₄, is a non-example for CO-driven multiferroicity likely same for YbFe₂O₄
- What drives spin- & charge order (which does not minimize electron-electron repulstion)? → INS: TOF to be complemented by TAS, in progress
- Further explore ion-size effects, intercalation.

Other potential charge-order-driven multiferroics

 Magnetite is an example, as demonstrated on a microscopic level • Further examples ? (possibly including organics)

High-temperature multiferroic phases in hexaferrites

"Classical" Y-type hexaferrite has spin-structure compatible with "Dzyaloshinskii-Moriya"driven ferroelectricity

Other projects in multiferroicity resarch

- Fine-tune properties by substitutions and explore other hexaferrite structure types
- E.g. other spin-based mecha-nisms such as ferrotoroidicity are being studied

Plenty of research opportunites ...

Selected external collaborations on results presented

Jülich Aachen

Research Alliance

Groups of:

JARA

Prof. A. Shengelaya

Prof. J. Hemberger

Dr. S. Gorfman

Dr. J. Strempfer

Dr U Staub

Dr. S. Haskel

Dr F Schierle

Dr. S. Nagler

Universität zu Köln

UNIVERSITÄT

PAUL SCHERRER INSTITUT

Thanks to my students, and collaborators in Jülich !

Joost de Groot (former member, PhD 2012)

Giorgi Khazaradze Pankaj Thakuria Thomas Müller Shilpa Adiga Hailey Williamson Manuel Manuel Angst

Thanks for funding

Helmholtz-University Young Investigators Group VH-NG 510

"Joint Research and Education programme", call for proposals 2012