Smeared phase transitions in binary $A_x B_{1-x}$ alloys

David Nozadze

The Ohio State University Missouri University of Science and Technology USA

July 7, 2014

2 Disorder and phase transitions

3 Effect of rare regions

4 Smeared phase transitions in metallic alloys

In collaboration with:

Thomas Vojta Missouri

Fawaz Hrahsheh Jordan

Chris Svoboda Ohio

- 2 Disorder and phase transitions
- 3 Effect of rare regions
- 4 Smeared phase transitions in metallic alloys
- 5 Conclusions

- Phase transitions— singularities in free energy, requires macroscopic system. They occur by changing control parameters
- 1st order phase transition: phase coexistence, latent heat, finite correlation length

Phase diagram for water

• 2nd order phase transition: no phase coexistence, no latent heat correlation length diverges $\xi \sim |t|^{-\nu}$ critical behavior of observables: $\Delta \rho \sim |t|^{\beta}$, $\kappa \sim |t|^{-\gamma}$

Universal critical exponents

Quantum phase transitions

- QPTs occur at absolute zero temperature by changing external parameter such as pressure, magnetic field and chemical composition
- They are driven by quantum rather then thermal fluctuations

Transverse-field Ising model

$$H = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z - h \sum_i \sigma_i^x$$

- transverse magnetic field induces spin flip via $\sigma^x=\sigma^++\sigma^-$
- transverse field destroys magnetic order

Bitko and Rosenbaum (1996)

Quantum to classical mapping

Classical partition function: statics and dynamics decouple

$$Z = \int dp e^{-\beta H_{\rm kin}} \int dq e^{-\beta H_{\rm pot}} = Z_{\rm kin} Z_{\rm pot}$$

Quantum partition function: statics and dynamics coupled (Trotter decomposition)

$$Z = Tr \ e^{-\beta \hat{H}} = Tr \lim_{N \to \infty} (e^{-\beta \hat{T}/N} e^{-\beta \hat{U}/N})^N = \int D[q(\tau)] e^{S[q(\tau)]}$$

imaginary time au acts as additional dimension

At T = 0, the extension in this direction becomes infinite

quantum phase transition in d space dimensions is related to a classical transition in d+1 space dimensions

- 2 Disorder and phase transitions
 - 3 Effect of rare regions
 - 4 Smeared phase transitions in metallic alloys

5 Conclusions

Disorder and phase transitions

Many materials often feature considerable amounts of quenched disorder

- weak disorder: bulk phases are not changed qualitatively in the presence of disorder
- disorder: spatial variation of coupling constant

Will phase transition remain sharp?

Will order of transition change?

Will critical behavior change?

David Nozadze (OSU)

Harris criterion for stability of clean critical point

Harris criterion:

fluctuations δT_c between regions must be smaller than global distance $t=T-T_c$ from criticality, $\delta T_c < t$

- fluctuations: $\delta T_c \sim \xi^{-d/2}$
- global distance: $t \sim \xi^{-1/\nu}$

Harris criterion:

 $\delta T_c < t \Longrightarrow \frac{d\nu > 2}{d\nu > 2}$

	ξ	$T_c(2)$	
	$T_c(1)$		
	$T_c(3)$	$T_{c}(4)$	

2 Disorder and phase transitions

3 Effect of rare regions

4 Smeared phase transitions in metallic alloys

5 Conclusions

- dilution reduces critical temperature $T_c \ {\rm form} \ {\rm clean} \ {\rm value} \ T_c^0$
- Griffiths: rare regions leads to singularities in free energy in $T_c < T < T_c^0$ range which is known as Griffiths phase
- at classical phase transitions rare regions are finite object

Rare regions at quantum phase transitions (T = 0)

- imaginary time acts as an additional dimension
- rare regions at QPT are finite in space but infinite in imaginary time

- \implies Rare regions effects are enhanced at quantum phase transitions
 - if interaction in time direction is short-ranged, rare regions do not develop static order, but fluctuate very slowly

transition is still sharp

- 2 Disorder and phase transitions
- 3 Effect of rare regions
- 4 Smeared phase transitions in metallic alloys

5 Conclusions

Smeared phase transitions

Magnetic fluctuations are damped due to coupling to electrons

Example:

antiferromagnetic quantum phase transitions of itinerant electrons

Landau-Ginzburg-Wilson free energy functional

$$S = T \sum_{q,\omega_n} \phi(q,\omega_n) [r_0 + q^2 + |\omega_n|] \phi(-q,-\omega_n) + u \int d^d x d\tau \phi^4(x,\tau)$$

- in imaginary time: long-range power-law interaction $\sim 1/(\tau-\tau')^2$
- one-dimensional Ising model with $1/r^2 \,$ interaction is known to have an ordered phase

 \implies in a system with overdamped dynamics and Ising symmetry, an isolated rare region can develop a static magnetization

quantum phase transition is smeared by disorder

Smeared phase transition in binary alloy

Example: smeared phase transition in $Sr_{1-x}Ca_{x}RuO_{3}$

 $A_{1-x}B_x$ Binary alloy consisting of two substances

- A magnetic atoms $r_A < 0$
- B non-magnetic atoms $r_B > 0$

Demkó et al., Phys. Rev. Lett. **108**, 185701 (2012)

David Nozadze (OSU)

Optimal fluctuation theory

$$r_{\rm av} = xr_{\rm B} + (1-x)r_{\rm A}$$

- Mean-field critical concentration for a binary alloy $x_c^0 \sim -r_A/(r_B-r_A)$
- Critical concentration for rare-region $x_c(L_{RR}) \sim x_c^0 DL_{RR}^{-2}$
- Minimum size of rare-region $L_{\min} = (D/x_c^0)^{1/2}$

rare region of A atoms with size larger than L_{\min} shows static magnetization

The probability of finding $N_{\rm B} = N x_{\rm loc}$ occupied by B atoms in region with total of $N \sim L_{\rm BB}^d$ sites (binomial distribution)

$$P(N, x_{\text{loc}}) = \binom{N}{N_B} (1-x)^{N-N_B} x^{N_B}$$

Total ordered parameter

$$M \propto \int_{L_{\rm min}}^{\infty} dL_{RR} \int_{0}^{x_c(L_{RR})} dx_{loc} m(N, x_{\rm loc}) P(N, x_{\rm loc})$$

Observables in tail of smeared transition

• regime where $x \ge x_c^0$

 $M\propto \exp\left[-C\frac{(x-x_c^{\rm o})^{2-d/2}}{x(1-x)}\right]$ Exponential decay

 $\bullet\,$ the far tail of transition at $x\to 1$

 $M \propto (1-x)^{L_{\min}^d}$ Power-law

 \implies ordered phase is extended over the entire composition range x < 1

Transition is smeared

The composition dependence of the critical temperature

$$T_c \sim \exp\left[-C\frac{(x-x_c^0)^{2-d/\phi}}{x(1-x)}\right]$$

for compositions somewhat above \boldsymbol{x}^0_c and

$$T_c \sim (1-x)^{L_{\min}^d}$$

in the far tail of the smeared transition, $x \rightarrow 1.$

Rounding of the quantum phase transition in $Sr_{1-x}Ca_xRuO_3$

Effect of spatial disorder correlations on phase transitions

For positive disorder correlations, like atoms tend to cluster Critical point

uncorrelated disorder and short-range correlated disorder, as long as correlations decay faster than r^{-d} have same effect on stability of a critical point (Harris Criterion)

\implies short-range correlations are irrelevant

What is the influence of disorder correlations on smeared phase transitions?

Observables in tail of smeared transition

rare region of A atoms with size larger than L_{\min} shows static magnetization

 $\label{eq:constraint} \begin{array}{l} \bullet \quad \text{regime where } x > x_c^0 \\ M \propto \exp\left[-\frac{C}{1+a\xi_{\mathrm{dis}}^d}\frac{(x-x_c^0)^{2-d/2}}{x(1-x)}\right] \end{array}$

2 the far tail of transition at
$$x \to 1$$

 $M \propto (1-x)^{\beta}$ $\beta = (aL_{\min}^d + a\xi_{\dim}^d)/(1+a\xi_{\dim}^d)$

- \implies exponent β depends on ξ_{dis}
 - for small disorder correlation length $\xi_{\rm dis} \ll L_{\rm min}$

$$\beta \approx L_{\min}^d$$

• for large disorder correlation length $\xi_{\rm dis} \ge L_{\rm min}$

 $\beta \approx 1$

Disorder correlations qualitatively modify smeared phase transitions

unusually large variations in magnetization curves in $Sr_{1-x}Ca_xRuO_3$ compounds

- 2 Disorder and phase transitions
- 3 Effect of rare regions
- 4 Smeared phase transitions in metallic alloys

5 Conclusions

- disorder can destroy a sharp phase transition by smearing if static order forms on rare spatial regions
- ordered phase in the alloy $A_{1-x}B_x$ extends over the entire composition range x < 1, in the tail, magnetization vanishes as $(1-x)^{\beta}$
- experimentally observed in Sr_{1-x}Ca_xRuO₃
- short-range disorder correlations qualitatively modify behavior of smeared phase transitions
- positive correlations enhance tail of smeared phase transitions
- negatively correlations suppress smeared phase transitions

Thank you

