

High-intensity Lasers for particle physics

5th Georgian - German School and Workshop in Basic Science

August 9th, 2012 |

Ilhan Engin - IKP

i.engin@fz-juelich.de

Working group

- · Jülich Supercomputing Centre (FZJ) → P. Gibbon *)
- · Zentralinstitut für Technologie ZAT (FZJ) -> H. Soltner
- Institute for Laser and Plasma Physics, Heinrich Heine University Düsseldorf (HHUD) -> Prof. O. Willi *)
- Institute for Nuclear Physics, University of Münster (WWUM) -> Prof. A. Khoukaz *)
- in cooperation with *RWTH* Aachen University, University of Cologne

*) group leaders

Outline

· Laser: New Generation of Particle Accelerators

· Polarized Beams

· Current Experiments at HHUD

Development of conventional accelerators and plasma driven particle sources

Development of Laser intensities

Current Laser intensities

i.engin@fz-juelich.de

Düsseldorf ARCturus Laser facility

Laser-induced particle acceleration

Laser-induced acceleration mechanisms

Wake fields / bubbles

· lower intensities: wake fields

• high intensities: wake fields & bubble regime

A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B 74, 355–361 (2002)

acceleration of electrons

Target Normal Sheath Acceleration TNSA

proton acceleration from surface of thin foils (solid targets)

Conventional vs. Laser-induced acceleration

1 m 1 MV/m }1 MeV

Outline

Laser: New Generation of Particle Accelerators

· Polarized Beams

Current Experiments at HHUD

Spin-polarization (spin ≠ 0, e.g. protons)

- 1 particle --> spin
- Ensemble of particles

random spin-orientation here: disordered spins P = 0% = 0**no polarization**

all spins ordered in same direction here: *P* = 100% = 1 *polarized particle beam*

Strong electro-magnetic fields (simulation)

B - field distribution 140 fs after laser hits target

field strength / gradient: ~ 10^4 T / 10^{10} T/m

i.engin@fz-juelich.de

Polarized beams from Laser plasmas

2 possible scenarios for creating **polarized particle beams**

Polarization is generated

Laser-acceleration process polarizes particles from unpolarized targets (plasmas) due to large magnetic fields and / or gradients

foil targets
gases / gas mixtures
(H ₂ He ³ He)
cluster jets

Polarization is <u>conserved</u>

Spin direction is invariant in strong laser & plasma fields

Scattering of a polarized particle beam

simplest case: particle (spin-1/2) on unpolarized particle

$$\frac{d\sigma}{d\Omega_{pol}}(E, \vartheta, \varphi) = \frac{d\sigma}{d\Omega_{unpol}}(E, \vartheta) \left[1 + A \cdot P \cdot \cos(\varphi)\right]$$

Outline

Laser: New Generation of Particle Accelerators

Polarized Beams

• Current Experiments at HHUD

Polarization measurement: setup

Scattering-angle distribution

ARCturus Laser

beam time ~ 100 fs $^{*)}$

*) average over 10 shots

Angular distribution of the proton polarization

Laser incidence angle: $\phi = 90^\circ, \vartheta = 45^\circ$

Proton emission angle: $\varphi = 180^\circ, \vartheta = 8^\circ$

Relative to production target normal

 $\vartheta = 37.5^{\circ} - 57.5^{\circ}$

Gas target experiments: $H_2 {}^{4}He {}^{3}He_{pol-unpol} H_2$ clusters

August 9th, 2012

H₂ cluster source

A. Täschner, http://arxiv.org/abs/1108.2653

Outlook

- fundamental research
 - comprehension of Laser-acceleration mechanisms
 - · advantages of Laser-accelerated high-energy particles
- possible applicability, *e.g.* in future accelerator physics, synchrotron radiaton, etc.
- integration in existing or planned infrastructure, *e.g.* the planned
 Ju-SPARC *) at FZJ

