Exotic Atoms

Detlev Gotta

Institut für Kernphysik, Forschungszentrum Jülich / Universität zu Köln

GGSWBS'12, Tbilisi, Georgia 5th Georgian – German School and Workshop in Basic Science August 9, 2012

- EXOTIC ATOM
- HISTORY
- EXPERIMENT

3 items

• PHYSICS POTENTIAL 5 examples

EXOTIC ATOM

Replace electrons by heavier negatively charged particles

HISTORY

Prediction

1947

 $\tau_{capture} << \tau_{meson}$

Fermi & Teller

• First X-ray experiment

1952	pion	π C	Nal
1953	muon	, μ^{-} Pb fine structure splitting ,	Nal
1965	kaon	K ⁻ He	prop. counter
1 969/7 0	sigma	Σ^{-} S, Σ^{-} K	Ge(Li)
1970	antiproto	n pTI	Ge(Li)

• FACILITIES

1974	pions, muons	Paul-Scherrer-Institut (PSI), TRIUMF, LAMPF
1983-1996	antiprotons	Low-Energy-Antiproton-Ring LEAR, AD
	kaons	no dedicated KAON facility yet @KEK, DA ØNE

		n
		ţ
1952	30%	njo
1985	2%	res
1985 π, 1994 <mark>p</mark>	10-4	rgy
1996	10-6	ene
	1952 1985 1985 π, 1994 <mark>ρ</mark> 1996	ΔΕ/Ε 1952 30% 1985 2% 1985 π, 1994 ρ 10 ⁻⁴ 1996 10 ⁻⁶

WARM UP:

any X-RAY SPECTRUM

ANTIPROTONIC HYDROGEN

Lyman and Balmer series

PS175: K. Heitlinger et al., Z. Phys. A 342 (1992) 359

EXPERIMENT I

How to produce a suitable amount of exotic atoms?

CYCLOTRON TRAP

concentrates particles

super-conducting split coil magnet

DEGRADERS and **CRYOGENIC TARGET**

inside CYCLOTRON TRAP II

super-conducting split coil magnet

EXPERIMENT II

How to achieve ultimate <i>energy determination and *resolution*?

together with

sufficient count rate?

BRAGG'S LAW $n\lambda = 2d \cdot sin\theta_B$

- n order of diffraction
- λ wave length
- d spacing of diffracting planes
- $\theta_{\rm B}$ Bragg angle

- τ_e extinction length *coherent reflection*
- τ_a absorption length *incoherent*

usually $\tau_e \ll \tau_a$

ω angular spread of reflection

calculated CRYSTAL RESPONSE

for real crystal mounting?

no <u>narrow</u> few keV γ lines

Johann-type SET-UP

L. Simons, Physica Scripta 90 (1988), Hyperfine Int. 81 (1993) 253

PIONIC HYDROGEN collaboration - SET-UP at PSI

PSI experiments R-98.01 and R-06.03

π pion stops in gas: few % of 10⁸/s *πH*(2-1), *πH*(3-1), *πH*(4-1) measurements π**D(3-1)** µH(3-1) cyclotron trap Si 111 BRAGG CRYSTAL crystal spherically bent R = 3m $\Phi = 10 \text{ cm}$ CCD FOCAL PLANE DETECTOR 3×2 CCD array pixel size 40 µm × 40 µm $\pi E5$ see talk by crystal spectrometer setup M. Jabua π H(4-1) and π D(3-1) $\Theta_{Bragg} \approx 40^{\circ}$ Fr 14:30

EXPERIMENT III

How to measure the resolution of the crystal spectrometer ?

CALIBRATION by fluorescence X-rays

large line width and satellites - resolution hardly measurable

RESPONSE FUNCTION from exotic atoms

SPECTROMETER RESPONSE

new approach (PSI) ECRIT

ECRIT = Electron Cyclotron Resonance Ion Trap

S. Biri, L. Simons, D. Hitz et al., Rev. Sci. Instr., 71 (2000) 1116 K. Stiebing, Frankfurt – design assistance

Superconducting coils

. cyclotron trap

permanent hexapole

- . AECR-U type
- . 1 Tesla at the hexapole wall
- . open structure

large mirror ratio = 4.3 B_{max} / B_{min} !

CRYSTAL SPECTROMETER and **PSI ECRIT**

Electron Cyclotron Resonance Ion Trap = cyclotron trap (4) + hexapole magnet (2)

SPECTROMETER RESPONSE at π H Lyman ENERGIES

30000 events in line (3 h) \leftrightarrow tails can be fixed with sufficient accuracy

to be compared with Monte-Carlo ray tracing folded with plane crystal response

D.F.Anagnostopoulos et al., Nucl. Instr. Meth. B 205 (2003) 9 D.F.Anagnostopoulos et al., Nucl. Instr. Meth. A 545 (2005) 217

CHLORINE SKY LINE

2757 ev

PHYSICS POTENTIAL

LEAR experiments	PS 175	cyclotron trap
-		L. Simons et al.
	PS 207	antiprotonic hydrogen
PSI experiments	R-97.02	pion mass
	R-98.01	pionic hydrogen
	R-06.03	pionic deuterium
	R-98.02	muonic hydrogen Lamb shift
		A. Antognioni, F. Kottman, R. Pohl et al.

LEVEL SCHEME and CASCADE

particle capture when slowed down to a few eV kinetic energy into high-lying atomic levels

CAPTURE and DE-EXCITATION

multi-particle systems

ATOMIC BINDING ENERGY

CAPTURE and UPPER PART of the ATOMIC CASCADE antiprotonic atom

competition between AUGER and RADIATIVE DE-EXCITATION electrons are peeled off like onion shells

ELECTRONIC & ANTIPROTONIC X-RAYS - XENON

OUTLOOK - high resolution spectroscopy - coincidence experiments X-rays / Auger electrons

CHARGED PION MASS

How to measure the mass of a short-lived particle?

life time $\tau_{\pi^{\pm}} = 26 \cdot 10^{-9} \, s$

⇒ use a hydrogen-like systems

ATOMIC BINDING ENERGY

no electron screening

•
$$E_{\mu O(5g-4f)} / E_{\pi N(5g-4f)} = m_{\mu} / m_{\pi}$$

PROTON CHARGE RADIUS

muonic hydrogen Lamb shift

MUONIC HYDROGEN LAMB SHIFT

very sensitive to proton charge radius

µH collaboration: see e.g. R. Pohl et al., Hyperf. Int. 193 (2009) 115;Nature, vol. 466, issue 7303, pp. 213-216 (2010)

MUONIC HYDROGEN LAMB SHIFT - EXPERIMENT

extraction channel

part of LASER system

- 1. Stop pions in cyclotron trap
- 2. extract decay muons to extraction channel
- 3. Form µH in dilute hydrogen
- 4. Pump 2s-2p resonance with laser
- 5. Identify 2s-2p energy difference by resonance condition

STRONG INTERACTION

PION-NUCLEON SCATTERING LENGTHS

"QCD Lamb shift"

ATOMIC BINDING ENERGY

HYDROGEN & DEUTERIUM - ORIGIN OF Γ_{1s}

PIONIC HYDROGEN 3p-1s transition

	scattering lengths	experiment	Trueman correction χPT *
πH	$\epsilon_{1s} \propto a_{\pi^-p \rightarrow \pi^-p} \propto a^+ + a^- + \dots$	± 0.2%	\approx 1% + (-9.0 ± 3.5)%
	$\Gamma_{1s} \propto (\mathbf{a}_{\pi\text{-}\mathbf{p} \rightarrow \pi^0 \mathbf{n}})^2 \propto (\mathbf{a}^-)^2 + \dots$	± 2.5%	$ \approx$ 1% + (+0.5 ± 1.0)%
π D	$\epsilon_{1s} \propto a_{\pi-d \rightarrow \pi-d} \propto 2 \cdot a^+ + \dots$	± 1.3%	…≈ 1% + ±4%

* J. Gasser et al., Phys. Rep. 456 (2008) 167 M. Hoferichter et al., Phys. Lett. B 678 (2009) 65 V. Baru et al., Phys. Lett. B 694 (2011) 473

PIONIC DEUTERIUM SHIFT

$$\pi H(np - 1s) \text{ energy shift } \varepsilon_{1s} \implies a_{\pi-p \to \pi-p}$$

$$\pi H(np - 1s) \text{ level width } \Gamma_{1s} \implies a_{\pi-p \to \pi^0 n}$$

$$\pi D(np - 1s) \text{ level shift } \varepsilon_{1s} \implies a_{\pi-p \to \pi-p} + a_{\pi-n \to \pi-n}$$

$$\text{two independent scattering length - all others linked by isospin}$$

 $!!! \quad \pi D(np - 1s) \text{ level width } \Gamma_{1s} \quad \Rightarrow \Im a_{\pi - d \to nn + nn\gamma}$

πN isospin scattering lengths a⁺ and a⁻

FIG. 2: Combined constraints in the $\tilde{a}^+ - a^-$ plane from data on the width and energy shift of πH , as well as the πD energy shift.

 χ PT: V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, and D. R. Phillips, Phys. Lett. B 694 (2011) 473 data: πH - R-98.01 : D. Gotta et al., Lect. Notes Phys. 745 (208) 165 (preliminary) π D - R-06.03 : Th. Strauch et al., Eur. Phys. J. A 47 (2011) 88 (final)

NUCLEON-ANTINUCLEON

SPIN-SPIN and SPIN-ORBIT INTERACTION

THEORETICAL DESCRIPTION

 ε, Γ <--> medium + long-range part of $\overline{N}N$ interaction

Buck, Dover, Richard, Ann. Phys. (NY) 121 (1979) 47

PROTONIUM - s & p state strong-interaction effects

 $\epsilon > 0$ (<0) = attractive (repulsive) interaction

PROTONIUM - EXPERIMENT

SUMMARY

PIONIC HYDROGEN STORY

ANTIPROTONIC HYDROGEN STORY s-wave

still a lot to do !

Folie 52