5th Georgian-German School and Workshop in Basic Science

GGBSWBS '12

"EDM studies at COSY: Spin Coherence Time"

<u>Greta Guidoboni</u>

University and INFN of Ferrara

Tbilisi, August 6-10, 2012

How to measure the Electric Dipole Moment

Definition: permanent **charge displacement** within the particle volume which must **lie** along the **spin** axis

d 📥 µ

Neutral systems:

1951: <u>First experiment.</u> Purcell and Ramsey searched for **neutron edm.**

Basic idea: apply E and look for the energy shift $-\vec{d}\cdot\vec{E}$

- measurement of the precession frequency in the presence B and E $h\nu = 2\mu \vec{B} + 2d \vec{E}$ (¹/₂ spin case)
- 2 cases, E parallel and antiparallel to B
- Subtracting the measured frequency cancels out the magnetic term

$$d = \frac{h \Delta v}{4 E}$$

Charged particles

Basic idea doesn't work: charged particles would be lost in E

How to measure the EDM of a charged particle

Vertical B field
In laboratory frame

Radial E field In particle frame

EDM signal = spin precession in the vertical plane How to measure the EDM of a charged particle

Vertical B field _____ Radial E field in laboratory frame

In particle frame

EDM signal = spin precession in the vertical plane

Injection with spin aligned along the velocity

Keep spin aligned with velocity

Any particle with an anomalous magnetic moment in a normal magnetic ring

How to measure the EDM of a charged particle

Vertical B field _____ Radial E field in laboratory frame

In particle frame

EDM signal = spin precession in the vertical plane

Injection with spin aligned along the velocity

Keep spin aligned with velocity

En state

Any particle with an anomalous magnetic moment in a normal magnetic ring

Technical issue: vertical axis = the stable spin direction

1) Spin tune

At injection: vertically polarized **RF** solenoid rotates the polarization into the horizontal (ring) plane

Technical issue: vertical axis = the stable spin direction

1) Spin tune

At injection: vertically polarized TRF solenoid rotates the polarization into the horizontal (ring) plane

2) Spin Coherence Time

At injection:

all the spins are aligned

After some time:

Particles have different velocities

Spins out of phase in the horizontal plane

ring

Horizontal polarization vanishes!

Spins out of phase in the horizontal plane

Horizontal polarization vanishes!

Experimental example

• Minimal detectable precession $\theta \approx 10^{-6} rad$

• Assuming $d \approx 10^{-29} e \cdot cm$ and $E = 17 \, MV/m$

$$\theta_{EDM} = \frac{2dE}{\hbar} t = 5 \left(10^{-9} \frac{rad}{s} \right) t$$

$$\theta_{EDM} \approx \left(\frac{10^{-15} rad}{turn} \right)$$

$$1 turn \approx 10^{-6} s$$

• 10⁹ turns needed to detect θ_{EDM}

Spin coherence time t>1000 s

Experimental example

• Minimal detectable precession $\theta \approx 10^{-6} rad$

• Assuming $d \approx 10^{-29} e \cdot cm$ and $E = 17 \, MV/m$

• 10⁹ turns needed to detect θ_{EDM}

Spin coherence time t>1000 s

A storage ring for the deuteron EDM experiment does not exist yet

> Feasibility studies @ COSY

EDM ring properties

- Momentum: 1.0 GeV/c (deuteron)
- Circumference: >50 m (deuteron)

COSY ring

- Momentum: <3.7 GeV/c
- Circumference: 183 m
- Polarized proton and deuteron
- EDDA detector polarimeter
- Instrumentation available for manipulation of polarization and emittance

EDDA detector

ASYMMETRY

EDDA detector

- EDDA scintillators stop elastic deuterons from the target

Spin coherence time study

dEDM experiments needs a spin coherence time >1000s

Run of May 2012

- Deuteron beam
- Polarized in the horizontal (ring) plane
- p=0.97 GeV/c

1) How can we measure the spin coherence time? Horizontal polarization as a function of time

Spin coherence time study

dEDM experiments needs a spin coherence time >1000s

Run of May 2012

- Deuteron beam
- Polarized in the horizontal (ring) plane
- p=0.97 GeV/c

1) How can we measure the spin coherence time? Horizontal polarization as a function of time

2) How does the emittance affect the spin coherence time?

- Ideal case: point like beam
- Reality: finite size = emittance

Spin coherence time study

dEDM experiments needs a spin coherence time >1000s

Run of May 2012

- Deuteron beam
- Polarized in the horizontal (ring) plane
- p=0.97 GeV/c

1) How can we measure the spin coherence time? Horizontal polarization as a function of time

2) How does the emittance affect the spin coherence time?

- Ideal case: point like beam
- Reality: finite size = emittance

3) Can we do corrections to increase the spin coherence time?

Sextupole magnets

Horizontal polarization as a function of time

Time-stamp system

- Count the turn number (1 turn≈ 1/(0.75 MHz)=1.33 µs)
- Compute the total spin precession $(2\pi v_s \approx 60^\circ)$
- Bin by phase around the cycle (9 bins)
- Compute asymmetry in each bin

 $\epsilon = \frac{U - D}{U + D} \propto p_h$

Spin direction circle Filled for ≈ 2s

Horizontal polarization as a function of time

 $\epsilon = \frac{U - D}{U + D} \propto p_h$

Time-stamp system

- Count the turn number (1 turn≈ 1/(0.75 MHz)=1.33 µs)
- Compute the total spin precession $(2\pi\nu_s \approx 60^\circ)$
- Bin by phase around the cycle (9 bins)
- Compute asymmetry in each bin

Spin direction circle Filled for ≈ 2s

Horizontal polarization as a function of time

 $\epsilon = \frac{U - D}{U + D} \propto p_h$

......

Time-stamp system

- Count the turn number (1 turn≈ 1/(0.75 MHz)=1.33 µs)
- Compute the total spin precession $(2\pi\nu_s \approx 60^\circ)$
- Bin by phase around the cycle (9 bins)
- Compute asymmetry in each bin

Spin direction circle Filled for ≈ 2s

Precision requirements:

phase of total spin precession an<u>gle</u>

- Conversion of turn number into precession angle: 10⁻⁸ rad/turn
- Spin tune: 10⁻⁷

smooth curves through phase bin asymmetries

Emittance effects on the spin coherence time

Particles undergo "betatron oscillations" = oscillations in the horizontal and vertical planes.

Longer path than the "reference particle"

Spin tune spread contribution

Expectation: $\frac{1}{\tau_{sc}} \approx A \cdot \sigma_x^2 + B \cdot \sigma_y^2$

Where σ is the Gaussian width

Emittance effects on the spin coherence time

Particles undergo "**betatron oscillations**" = oscillations in the horizontal and vertical planes.

Longer path than the "reference particle"

Spin tune spread contribution

Expectation:

 $B \cdot \sigma_y^2$ Where σ is the Gaussian width Because of machine acceptance problems.

τ_{sc} measurement for several <u>horizontal</u> profile widths

 τ_{sc} = time required for the beam to lose 1/3 of its initial polarization

- Cooling on to reduce the phase space size
- Cooling off and heating to increase the horizontal profile
- Cooling off, heating off, data taking

Typically horizontal width > 4mm

Sextupole field $\propto r^2$

Remove spin tune spread

Sextupole operating where β_x is large

.....

 τ_{sc} measurement for several sextupole strengths

SETUP:

<u>Sextupoles:</u> MXS family where the horizontal beam size is large

Normalized slope:

- linear fit to the horizontal polarization.

- values for MXS<28% changed to positive

- slope normalized to the initial pol. value

Long lifetime≈ zero slope

If pol. dependence were exponential 1/(norm. slope) = exponential lifetime

Zero crossing: MXS=28%

Sextupole field $\propto r^2$

Remove spin tune spread

 $\frac{1}{\tau_{SC}} = (A + a \beta) \sigma_x^2$ Sextupole operating where β is large

 τ_{sc} measurement for several sextupole strengths

Linear fit

Best fit: MXS > 0%

- Lack of distortions near zero slope
- Lack of contributions shortening the pol. lifetime (e.g. vertical emittance, coupling to momentum spread)

Stray points

Longer lifetime... to be understood

Remove spin tune spread

.....

 τ_{sc} measurement for several sextupole strengths

Comparison with:

smaller beam profile

- Different slope
- Nearly the same zero crossing

continuously cooled beam

- Longest polarization lifetime = (318 ± 40) s
- Weak dependence on the sextupole strength

..... Remove spin tune spread

 $\frac{1}{\tau_{SC}} = (A + a \beta) \sigma_x^2$ Sextupole operating where β_x is large

 τ_{sc} measurement for several sextupole strengths

Comparison with:

smaller beam profile

- Different slope
- Nearly the same zero crossing

continuously cooled beam

- Longest polarization lifetime = (318 ± 40) s
- Weak dependence on the sextupole strength

Sextupole fields can be used to increase the spin coherence time up to 1000 s

CONCLUSIONS

Feasibility study at COSY for the measurement of an EDM of a charged particle with a storage ring

Spin coherence time study

- Development of a spin tracking system to measure the horizontal polarization as a function of time
- Horizontal emittance influence on the spin coherence time
- Sextupole corrections on the horizontal phase space

CONCLUSIONS

Feasibility study at COSY for the measurement of an EDM of a charged particle with a storage ring

Spin coherence time study

- Development of a spin tracking system to measure the horizontal polarization as a function of time
- Horizontal emittance influence on the spin coherence time
- Sextupole corrections on the horizontal phase space

Next run (February 2013)

- Sextupole cancellation may be made in both X and Y (simultaneously)
- Better documentation of the beam profiles
- Better control of the emittance

Spin coherence time collaboration

Z. Bagdasarian¹, P. Benati², S. Bertelli², D. Chiladze^{1,3}, J. Dietrich³, S. Dimov^{3,4}, D. Eversmann⁵, G. Fanourakis⁶, M. Gaisser³, R. Gabel³, B. Gou³, G. Guidoboni², V. Hejny³, A. Kacharava³, V. Kamerdzhiev³, P. Kulessa⁷, A. Lehrach³, P. Lenisa², Be. Lorentz³, L. Magallanes⁸, R. Maier³, D. Michedlishvili^{1,3}, W. M. Morse⁹, A. Nass³, D. Öllers^{2,3}, A. Pesce², A. Polyanskiy^{3,10}, D. Prasun³, J. Pretz⁵, F. Rathmnann³, Y. K. Semertzidis⁹, V. Schmakova^{3,4}, E. J. Stephenson¹¹, H. Stockhorst³, H. Ströher³, R. Talman¹², Yu. Valdau^{3,13}, Ch. Weideman^{2,3}, P. Wüstner¹⁴.

¹Tbilisi State University, Georgia ²University and/or INFN of Ferrara, Italy ³IKP Forschungszentrum Jülich, Germany ⁴JINR, Dubna, Russia ⁵III. Physikalisches Institut RWTH Aachen, Germany ⁶Institute of Nuclear Physics NCSR Democritos, Athens, Greece ⁷Jagiellonian University, Krakow, Poland ⁸Bonn University, Germany ⁹Brookhaven National Laboratory, New York, USA ¹⁰Institute of Theoretical and Experimental Physics, Moscow, Russia ¹¹Center for Exploration of Energy and Matter, Indiana University, Bloomington, USA ¹²Cornell University, New York, USA ¹³Petersburg Nuclear Physics Institute, Gatchina, Russia ¹⁴ZEL Forschungszentrum Jülich, Germany S TOP VOUP attention