Institute of Neurosciences and Medicine: Medical Imaging Physics

F. Grinberg and N. Jon Shah Research Centre Juelich 52425 Juelich GERMANY

5 August 2012

Institute of Neuroscience and Medicine

Physics of MRI

Interdisciplinary team of physicists, engineers, technicians, psychologists, neurologists, biologists, and others

Hardware development

Pulse sequence development

Novel contrasts, biophysical background

fMRI (functionI MRI)

Combined MRI - PET (Positron Emission Tomography)

9.4T Whole-Body Scanner in Jülich

The 9.4 tesla hybrid device is a genuine technological giant—a 57 tonne magnet, whose magnetic field is shielded with the help of 900 tonnes of iron...

- 60 cm patient bore
- TQ-engine gradient coil
- 50 cm FoV
- Magnet weight: 57 tonnes
- 870 tonnes of iron shielding
- 3.70 m length
- Stored energy: 182.0 MJ
- Length of wire: 750 km

Complete with Hybrid PET Capability!

Institute of Neuroscience and Medicine

Institute of Neuroscience and Medicine

f.grinberg@fz-juelich.de

· my fin

Introduction

Ultra-high field MRI

Hybrid MR-PET

5 August 2012

Tissue contrast mechanisms

Proton density, T1 and T2 relaxation rates Apparent diffusivity Variation of magnetic susceptibility Variations and in-flow of blood plasma protons

Human brain as seen by MRI: anatomy JÜLICH

Data sources : Left - The Whole-brain Atlas, K. A. Johnson and J. A. Becker, Harvard; Right - SMIS UK Ltd. f.grinberg@fz-juelich.de Institute of Neuroscience and Medicine

5 August 2012

Diagnostics in clinical applications

Tumours

White matter plaques in MS multiple sclerosis

Institute of Neuroscience and Medicine

fMRI: "BOLD" effect in activated regions JÜLICH "blood oxygenation level dependent"

Diffusion measurements: axonal architecture ("fibre tracking")

different gradient directions

From image gallery www.neuroimaging.tau.ac.il f.grinberg@fz-juelich.de

Many challenges for theoretical and experimental physicists in developing new improved methods and algorithms

5 August 2012

Use in neurosurgery

http://groups.csail.mit.edu/vision/medical-vision/DTIGuidedSurgery/

5 August 2012

Institute of Neuroscience and Medicine

Ultra-High-Field MRI

Opportunities

... MRI

- \Rightarrow Higher spatial resolution (structural imaging)
- ⇒ Higher functional (BOLD) contrast
- ⇒ Better image quality (contrast)
- \Rightarrow Non-proton MRI and spectroscopy

... PET

- \Rightarrow Partial volume correction with MRI
- ⇒ Attenuation correction with MRI
- \Rightarrow Motion correction with MRI (navigator echoes)

... Hybrid MR-PET

- \Rightarrow Patient / volunteer compliance: 2 scans in 1 (at 3T and 9.4T)
- \Rightarrow Metabolic imaging (e.g. FDG + 17O + 31P + 23Na + MP-RAGE)
- ⇒ Accurate receptor density mapping
- \Rightarrow Novel paradigms for brain function

Multi-transmit, multi-recieve channels

Institute of Neuroscience and Medicine

5 August 2012

A major focus is the design of new coils and coil arrays for human as well as animal applications at high fields

Hardware

Pulse sequences

the design of new Magnetic Resonance Imaging (MRI) techniques tailored to neuroscientific applications

Spatial Resolution of EPIK

EPI

Institute of Neuroscience and Medicine

Structural imaging

Basal ganglia, 3T, axial

exterior globus pallidus putamen / interior globus pallidus

A.M. Oros-Peusquens

fornix anterior commissure

claustrum

600x600x600µm³

Institute of Neuroscience and Medicine

5 August 2012

Basal ganglia, 9.4T, axial

claustrum

A.M. Oros-Peusquens

fornix mamillary body 120x120x120μm³ 125 times smaller voxels

anterior commissure

5 August 2012

Institute of Neuroscience and Medicine

Quantitative imaging

Quantitative imaging of the brains a challenging perspective in the MRI community, aiming to extract physical parameters from native MRI images

(Fabian Keil)

Watermap

5 August 2012

Institute of Neuroscience and Medicine

Benefits for fMRI: more signal, higher resolution

... in progress

5 August 2012

Institute of Neuroscience and Medicine

Diffusion MRI is a unique modality of MRI

Diffusion "samples" the microstructure

• Tissue microstructure

(~ 1-10 µm)

• Global white matter organization

(~ 0.1 - 10 cm)

Cellular level

dMRI provides biomarkers of tissue integrity

Our aims are to establish advanced techniques and to develop new applications in the field of the neurological brain research and diagnostics.

- neurodegenerative pathologies (Alzheimer's and Parkinson's diseases, etc.)
- development and aging
- stroke
- tumours
- neurosurgical planning

Non-Gaussian: all DTI metrics + a rich variety of novel maps

Non-Gaussian metrics in stroke

BEDTA: benefits for fibre tracking

Pre-cortical fibres

more WM structures and more fibre tracks are visualised!

Grinberg F., et al., Neuroimage, 2011

Fibre tracks – Dr. I. Maximov, E. Farrher

5 August 2012

Institute of Neuroscience and Medicine

Crossing-fibre regions

MI - SDIFT (Microstructure Informed Slow Diffusion Fibre Tracking) improves visualization in crossing-fibre regions

Grinberg F., et al., JMRI, subm.

5 August 2012

Institute of Neuroscience and Medicine

Biophysical background

Random Walks in the Model Brain Tissue

Grinberg F, et al., AIP Conf Proc, 2011

Farrher E, et al., Magn Reson Imaging, 2012

Perspectives

- More efficient biomarkers of degenerative diseases, aging, etc.?
- Correlation of structural and functional connectivity?
- Dynamic features (neuroplasticity)?
- Combinations with other MRI and non-MRI modalities
- Novel 2D pulse sequences, new features (micro-anisotropy)

We are looking forward to interdisciplinary co-operations!

Opportunities – Metabolic Imaging

- ... Sodium
- \Rightarrow Na / K Pump
- \Rightarrow Disturbances of the pump often leads to cell death
- \Rightarrow Intra vs extracellular sodium with TQF
- ... Phosphorus
- \Rightarrow Energy metabolism of the cell
- \Rightarrow In vivo pH
- ... Oxygen
- \Rightarrow Intimately involved in metabolism!

⇒

- ... Glucose
- ⇒ Energy substrate of the brain
 ⇒ FDG PET

Examples: Metabolism (²³Na-Imaging)

Oligodendroglioma Grade II

Sodium is one of the most important ions for the physiology of the cell, essential for a variety of cellular functions. In healthy tissue, sodium is present in the intracellular and in the extracellular compartments at highly regulated concentrations.

5 August 2012

Sodium MRI: first *In vivo* 9.4 T results

Sodium – 9.4T TPI 2 mm isotropic 15 min acq. time

Sodium – 4T TPI 2 mm isotropic 15 min acq. time

Excitation of a region of interest

- High field enables high resolution imaging (MRI microscopy)
- However, high resolution spatial encoding needs long acquisition time
- Solution: reduce the acquisition to the region of interest by means of selective excitation

9.4T post mortem brain

Hybrid MR-PET

new scientific achievements by using the synergetic potential of the combined MR-PET imaging.

Magnetic Resonance Imaging

Positron Emission Tomography

Hybrid MR-PET

 \bigcirc

MR-PET

Institute of Neuroscience and Medicine

Clinical applications: presurgical imaging

T1 MPRAGE (6 min)

BOLD imaging: Finger tapping left hand

3T MR-BrainPET

Fusion

Acknowledgements

- Prof. N.Jon Shah (director)
- T. Stöcker
- K. Vahedipour
- Dr. J. Felder
- Dr. A.-M. Oros-Peusquens
- Dr. I.Maximov
- Dr. S. Romanzetti
- E. Farrher
- A. Celik
- Dr. I. Neuner
- D. Brenner
- C. Mirkes
- MR Group

- SIEMENS / BMBF
- Dr. J. Scheins Dr. E. Rota-Kops C. Weirich
- L. Tellmann
- PET Group
- Prof. K.-J. Langen Brain Tumour Group

END

... thank you for attention!

Institute of Neuroscience and Medicine

Deviations from the Gaussian model

...very promising in monitoring changes after stroke

Metabolism: other nuclei

170

31P - adenosine triphosphate (ATP)

In progress...

(Sandro Romanzetti)

Selective Excitation (Zoomed MRI)

→ High resolution ROI imaging in short scan times!

Vahedipour, Stöcker, Shah; FZ Jülich

Introduction to MRI

Introduction to MRI

Introduction to MRI

Our First MR-FDG-PET Images

20-50 min p.i. ¹⁸FDG-PET reconstructed with PRESTO

The PET data are normalized, attenuation corrected, not scatter corrected.

Simultaneous T1 MPRAGE

Fusion

Molecular level:

Neurotransmission

driven by neurotransmitters and receptors or modulated by drugs Domain of PET

Systemic level: Complex neural functions

Localization and analysis of complex neural mechanisms Domain of fMRI

Diffusion MRI: pulsed field gradients

Positron Emission and Annihilation Process Magnetic field = 0 T

 $E=mc^{2}$ (511 keV)

Positron Range (sub millimeter) Angular fluctuation due to thermal energy of surrounding electrons of approx. 0.025 eV (approx. +/- 0.5 degree)

E=mc² (511 keV)

Positron Emitter (eg ¹¹C, ¹³N, ¹⁵O, ¹⁸F, etc)

5 August 2012