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Lagrangian of QCD

LQCD = LY M + Lqg

LY M = −1

4
F a

µνF
aµν + Lg.f. + Lgh.

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , a = N2

c − 1, Nc = 3

Lqg = iq̄j
αDαβqj

β + q̄j
αmj

0q
j
β, α, β = 1, 2, 3, j = 1, 2, 3, ...Nf

Dαβqj
β = (δαβ∂µ − ig(1/2)λa

αβAa
µ)γµq

j
β (cov. der.)
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Properties of the QCD Lagrangian

QCD or, equivalently Quantum ChromoDynamics

1). Unit coupling constant g

2). g ∼ 1 while in QED (Quantum ElecroDynmics) it is
g ¿ 1.

3). No mass scale parameter to which can be assigned
a physical meaning.

Current quark mass m0 cannot be used,
since the quark is a colored object

QCD without quarks is called Yang-Mills, YM
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The Jaffe-Witten (JW) theorem:

Yang-Mills Existence And Mass Gap: Prove that
for any compact simple gauge group G, quantum Yang-
Mills theory on R4 exists and has a mass gap ∆ > 0.

(i). It must have a ”mass gap”. Every excitation of the
vacuum has energy at least ∆ (to explain why the nuclear
force is strong but short-range).

(ii). It must have ”quark confinement” (why the physical
particles are SU(3)-invariant).

(iii). It must have ”chiral symmetry breaking” (to account
for the ”current algebra” theory of soft pions).

We need Mass Gap responsible for the NP dynamics
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Gluon SD equation

Dµν(q) = D0
µν(q) + D0

µρ(q)iΠρσ(q; D)Dσν(q)

Dµν(q) = i
{
Tµν(q)d(q2) + ξLµν(q)

} 1

q2

D0
µν(q) = i {Tµν(q) + ξLµν(q)} 1

q2

Tµν(q) = δµν − (qµqν/q
2) = δµν − Lµν(q)
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Πρσ(q; D) = Πq
ρσ(q) + Πgh

ρσ(q) + Πt
ρσ(D) + Π(1)

ρσ (q; D2)

+Π(2)
ρσ (q; D4) + Π(2′)

ρσ (q; D3).
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The Mass Gap

Πs
ρσ(q; D) = Πρσ(q; D)− Πρσ(0; D) = Πρσ(q; D)− δρσ∆2(D)

∆2(D) ≡ ∆2(λ, α; D)

Problems

A. The first problem is how to satisfy the ST identity
qµqνDµν(q) = iξ but without going to ∆2(D) = 0 limit.

B. The second problem is how to make the relevant gluon
propagator purely transversal, since the ghosts will fail to do
this when ∆2(D) will be explicitly present.
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Methods

Theory of matrices
Subtractions at the gluon propagator level

Theory of generalized functions (distributions)

Dimensional regularization method

Theory of functions of complex variable

The Weierstrass-Sokhotsky-Casorati theorem

which describes the behavior of the Laurent expansions
near their essential (zero) singularities

in order to get finite results (Renormalization program)

λ →∞, α → 0
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Solution

Dµν(q; ∆
2) = DINP

µν (q; ∆2
R) + DPT

µν (q)

DINP
µν (q; ∆2

R) = iTµν(q)d
INP (q2; ∆2

R)
1

q2
, dINP (q2; ∆2

R) =
∆2

R

q2

DPT
µν (q) = i

{
Tµν(q)d

PT (q2) + ξLµν(q)
}

(1/q2)

dPT (q2) =
αs

1 + αsb ln(q2/Λ2
QCD)

=
1

b ln(q2/Λ2
QCD)

, q2 →∞, AF

αs(mZ) = 0.1184, Λ2
QCD = 0.09 GeV 2, b = (11/4π) for Y M
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Some remarks

Λ2
INP ←−∞←αs(λ)

∞←λ ∆2(λ, αs(λ))
αs(λ)→0
λ→∞ −→ Λ2

PT ,

Λ2
INP ≡ ∆2

R, Λ2
PT ≡ Λ2

QCD

INP QCD ⇐= QCD =⇒ PT QCD,

Intrinsically non-perturbative QCD (INP QCD) con-
fines gluons (no free gluons, dressed gluons are sup-
pressed in incoming and outgoing states)

Perturbative QCD (PT QCD) is asymptotically free
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VACUUM ENERGY DENSITY (VED)

IN THE QUANTUM YM THEORY

The vacuum of QCD is a very complicated con-
fining medium. Its dynamical and topological com-
plexity means that its structure can be organized at
various levels: classical and quantum, dynamical and
topological. It is mainly NP by origin, character and
magnitude, since the corresponding coupling constant
is large. However, the virtual gluon field configura-
tions and excitations of the PT origin, character and
magnitude, due to AF, are also present there.
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The bag constant I

B = V EDPT − V ED

B = V EDPT−V ED = V EDPT−[V ED−V EDPT +V EDPT ] =

V EDPT − [V EDINP + V EDPT ] = −V EDINP > 0

The formalism which makes it possible to calculate
the VED from first principles is the effective potential
approach for composite operators

J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev.
D, 10 (1974) 2428.
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The VED

D

D

S

S

S

+ + + T3T3 D

D

D

DD T4+ + ...

=

D

+ + + ...

V (D) =
i

2

∫ d4q

(2π)4
Tr

{
ln(D−1

0 D)− (D−1
0 D) + 1

}
, V (D0) = 0
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The bag constant II

BY M = −εY M

=
1

π2

∫ q2
eff

0
dq2 q2

[
ln[1 + 3αINP (q2)]− 3

4
αINP (q2)

]
,

dINP (q2) ≡ αINP (z) =
zc

z
, z =

q2

q2
eff

zc =
∆2

R

q2
eff

BY M = q4
eff × ΩY M ,

ΩY M =
1

π2

∫ 1

0
dz z

[
ln[1 + 3αINP

s (z)]− 3

4
αINP

s (z)
]
.

0-13



-0.04

-0.02

 0

 0.02

 0.04

 0  0.5  1  1.5  2  2.5

B
Y

M
(z

c)
 / 

q4 ef
f

zc

zc
max=0.45

zc
0=1.3786

Physical Region Non-Physical Region

Figure 1: The BY M/q4
eff effective potential vs. zc. The non-physical

region is zc ≥ z0
c , since BY M should be always positive. At zc = 0 the

effective potential is also zero.
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eff effective potential vs. zc. The non-physical
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c , since εY M should be always negative. At zc = 0 the

effective potential is also zero.
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ΩY M(zc)/∂zc = 0

q2
eff = (zmax

c )−1∆2
R = 2.2∆4

R

BY M = −εY M = 0.1273×∆4
R = 0.0263 GeV 4

General properties of the bag constant being:

• colorless (color-singlet);

• electrically neutral;

• transversal, i.e., depending only on ”physical” de-
grees of freedom of gauge bosons;
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• the explicit gauge invariance;

• uniqueness, i.e., it is free of all the types of the
PT contributions now;

• finiteness;

• positiveness;

• no imaginary part (stable vacuum);

• existence of the stationary state for the corre-
sponding YM energy density (negative pressure);

• the final dependence on the mass gap only;

• a good numerical agreement with

phenomenology (gluon condensate).
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Contribution of BY M to the dark energy
problem

Bag constant may also contribute to the so-called
dark energy density. At least, from the qualitative
point of view it satisfies almost all the criteria neces-
sary for the dark energy/matter candidate.

From the quantitative numerical point of view it is
also much better than the estimate from the Higgs
field’s contribution to the VED

by S. Weinberg, arXiv:astroph/9610044

%H ∼ 108 GeV 4.

%our ∼ 10−2 GeV 4
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%exp
vac ∼ 10−46 GeV 4

WMAP Collaboration, E. Komatsu et al., Astro-
phys. J. Suppl. 180 (2009) 330

So relatively to the value inferred from the cosm.
const. (experimental value

%H/%exp
vac ∼ 1054,

%our/%
exp
vac ∼ 1044
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Numerical value in different units

BY M = 0.0263 GeV 4

= 3.4 GeV/fm3

= 3.4× 1039 GeV/cm3.

1 GeV = 1.6× 1010J = 4.45× 10−23GWh,

1W = 10−3kW = 10−6MW = 10−9GW

BY M ∼ 1017 GWh/cm3
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EY M = BY M cm3 ∼ 1017 GWh

Total production of primary energy of the 25 EU
countries in 2004 was

Et ∼ 107 GWh.

The number is taken from ”Energy FOR THE FU-
TURE”, a position paper of the EPS, www.eps.org

Approximately 1/3 of this energy was produced by
nuclear power plants
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Energy from the QCD vacuum

The bag constant is the energy density of the purely
transversal severely infrared singular virtual gluon field
configurations which are not only stable (no imagi-
nary part), but are being in the stationary state as
well, i.e., in the state with the minimum of energy.
That is why it makes sense to discuss the ”releasing”
of the bag energy EY M from the vacuum.

Evac = −BY M V = −EY M
V

cm3
∼ −λ3, λ →∞

Let us imagine now that we can release the finite
portion EY M from the vacuum in k different places
(different ”vacuum energy releasing facilities” (VERF)).
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It can be done by nm times in each place, where m =
1, 2, 3...k. Then the releasing energy Er becomes

Er = EY M

k∑

m=1

nm = EY M(n1 + n2 + n3 + ... + nk)

Er = EY M × lim
(k,nm)→∞

k∑

m=1

nm ∼ λ2, λ →∞

ER = Evac − Er = Evac[1 + O(1/λ)], λ →∞,

i.e., the QCD vacuum is infinite and permanent
reservoir of energy. The only problem is how to re-
lease the finite portion – the bag energy, and whether
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it will be profitable or not by introducing some type
of cyclic process.

”Perpetuum mobile” does not exist, but ”perpetuum
source” of energy does exist, and it is the QCD ground
state.

V. Gogokhia, G.G. Barnafoldi, ”The Mass Gap and
its Application” (Word Scientific, 2012)

Scientific problem what amount of energy can be
released is resolved

Technological problem how to release is not re-
solved?

Engineering roblem how to built VERF is not re-
solved ?
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Transversality of the full gluon self-energy

Πρσ(q; D) = Πq
ρσ(q) + Πg

ρσ(q; D) + Πt
ρσ(D)

Πg
ρσ(q; D) = Πgh

ρσ(q) + Π(1)
ρσ (q; D2) + Π(2)

ρσ (q; D4) + Π(2′)
ρσ (q; D3).

qρΠρσ(q; D) = qρΠ
q
ρσ(q) + qρΠ

g
ρσ(q; D) + qρΠ

t
ρσ(D)

0-25



The quark contribution

The color currents conservation condition implies

qρΠ
q
ρσ(q) = qσΠq

ρσ(q) = 0

Πq(s)
ρσ (q) = Πq

ρσ(q)− Πq
ρσ(0) = Πq

ρσ(q)− δρσ∆2
q

Πq
ρσ(q) = Tρσ(q)q2Πq

t (q
2) + qρqσΠq

l (q
2),

Πq(s)
ρσ (q) = Tρσ(q)q2Π

q(s)
t (q2) + qρqσΠ

q(s)
l (q2).
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Πq
l (q

2) = Π
q(s)
l (q2) +

∆2
q

q2
,

Πq
t (q

2) = Π
q(s)
t (q2) +

∆2
q

q2

Πq
l (q

2) = Π
q(s)
l (q2) +

∆2
q

q2
= 0

Π
q(s)
l (q2) = −∆2

q

q2

∆2
q = 0, Πq

l (q
2) = Π

q(s)
l (q2) = 0, Πq

t (q
2) = Π

q(s)
t (q2)

Πq
ρσ(q) = Πq(s)

ρσ (q) = Tρσ(q)q2Π
q(s)
t (q2).
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QED

qµqνDµν(q) = iξ, qρΠρσ(q) = qσΠρσ(q) = 0

j1
µ(q)Dµν(q)j

2
ν , j1

µ(q)qµ = j1
ν(q)qν = 0

D(q) = D0(q) + D0(q)iΠ
s(q)D(q), Π(q) → Πs(q) ∼ O(q2)

D(q) =
D0(q)

1− iΠs(q)D0(q)
=

D0(q)+D0(q)iΠ
s(q)D0(q)+D0(q)iΠ

s(q)D0(q)iΠ
s(q)D0(q)+...

0-28



The gluon contribution

qρΠ
g
ρσ(q; D) =

qρ

[
Πgh

ρσ(q) + Π(1)
ρσ (q; D2) + Π(2)

ρσ (q; D4) + Π(2′)
ρσ (q; D3)

]
= 0,

Πg(s)
ρσ (q; D) = Πg

ρσ(q; D)− Πg
ρσ(0; D) = Πg

ρσ(q; D)− δρσ∆2
g(D)

∆2
g(D) ≡ Πg(0; D) =

∑
a

Πa(0; D) =
∑
a

∆2
a(D), a = gh, (1), (2), (2′)

∆2
g(D) ≡ ∆2

g(λ, α; D)
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Πg
ρσ(q; D) = Tρσ(q)q2Πg

t (q
2; D) + qρqσΠg

l (q
2; D)

Πg(s)
ρσ (q; D) = Tρσ(q)q2Π

g(s)
t (q2; D) + qρqσΠ

g(s)
t (q2; D)

Πg
t (q

2; D) = Π
g(s)
t (q2; D) +

∆2
g(D)

q2
.

Πg
l (q

2; D) = Π
g(s)
l (q2; D) +

∆2
g(D)

q2
.
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Πg
l (q

2; D) = Π
g(s)
l (q2; D) +

∆2
g(D)

q2
= 0

Π
g(s)
l (q2; D) = −∆2

g(D)

q2

∆2
g(D) = 0, Πg

l (q
2; D) = Π

g(s)
l (q2; D) = 0, Πg

t (q
2; D) = Π

g(s)
t (q2; D)

Πg
ρσ(q; D) = Πg(s)

ρσ (q; D) = Tρσ(q)q2Π
g(s)
t (q2; D).
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The tadpole term contribution

qρΠ
g
ρσ(q; D) = qρΠ

t
ρσ(D) = qρδρσ∆2

t (D) = qσ∆2
t (D) 6= 0

Πρσ(q; D) = Tρσ(q)q2Πf
t (q

2; D) + qρqσΠf
l (q

2; D)

Πf
l (q

2; D) =
∆2

t (D)

q2

Πρσ(q; D) = Tρσ(q)q2Πf
t (q

2; D) + Lρσ∆2
t (D)

0-32



Πρσ(q; D) = Πq
ρσ(q) + Πg

ρσ(q; D) + δρσ∆2
t (D)

q2Πf
t (q

2; D) = q2[Π
q(s)
t (q2) + Π

g(s)
t (q2; D)] + ∆2

t (D)

Πρσ(q; D) = Tρσ(q)[q2Π(q2; D) + ∆2
t (D)] + Lρσ∆2

t (D)

Π(q2; D) = [Π
q(s)
t (q2) + Π

g(s)
t (q2; D)].

∆2
t (D) = ∆2(D)
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ST identity

qµqνDµν(q) = iξ

Dµν(q) = i
{
Tµν(q)d(q2) + ξLµν(q)

} 1

q2

Dµν(q) = D0
µν(q) + D0

µρ(q)iΠρσ(q; D)Dσν(q) =

D0
µν(q) + D0

µρ(q)iTρσ(q)[q2Π(q2; D) + ∆2(D)]Dσν(q)

+D0
µρ(q)iLρσ(q)∆2(D)Dσν(q)
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qµqνDµν(q) = iξ − iξ2 ∆2(D)

q2

∆2(D) = 0

∆2(D) = 0, −→ D = DPT

Πρσ(q; DPT ) = Tρσ(q)q2Π(q2; DPT )

qρΠρσ(q; DPT ) = 0
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qµqνD
PT
µν (q) = iξ,

DPT
µν (q) = i

{
Tµν(q)d

PT (q2) + ξLµν(q)
} 1

q2

DPT
µν (q) = D0

µν(q) + D0
µρ(q)iTρσ(q)q2Π(q2; DPT )DPT

σν (q)

dPT (q2) =
1

1 + Π(q2; DPT )
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On the other hand

Dµν(q) = i
{
Tµν(q)d(q2) + ξLµν(q)

} 1

q2

Dµν(q) = D0
µν(q)+D0

µρ(q)iTρσ(q)[q2Πs(q2; D)+∆2(D)]Dσν(q)

+D0
µρ(q)iLρσ(q)q2Π̃(q2; D)Dσν(q)

d(q2) =
1

1 + Πs(q2; D) + (∆2(D)/q2)

Π̃(q2; D) = 0, → ∆2(D) = 0
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Preliminary discussion

The formal ∆2(D) = 0 limit is a real way how to pre-
serve the color gauge invaraince/symmetry in QCD.
Why does ∆2(D) (which is nothing but the tadpole
term) exist in this theory at all? There is no doubt
that this symmetry should be maintained at non-zero
∆2(D) as well.

A. The first problem is how to satisfy the ST iden-
tity but without going to ∆2(D) = 0 limit.

B. The second problem is how to make the rel-
evant gluon propagator purely transversal, since the
ghosts will fail to do this when ∆2(D) will be explicitly
present.
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The spurious mechanism

Dµν(q) = D0
µν(q) + D0

µρ(q)iTρσ(q)[q2Π(q2; D) + ∆2(D)]Dσν(q)

+D0
µρ(q)iLρσ(q)∆2(D)Dσν(q)

D0
µν(q) → D0

µν(q; ∆
2(D)) = D0

µν(q)+iξLµν(q)d0(q
2; ∆2(D))

1

q2

Dµν(q) = D0
µν(q) + D0

µρ(q)iTρσ(q)[q2Π(q2; D) + ∆2(D)]Dσν(q)

+Iµν(q
2; ∆2(D))
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Iµν(q
2; ∆2(D)) = Iµν(q

2)

Iµν(q
2) = iξLµν(q)

[
d0(q

2; ∆2(D))− ξ[1 + d0(q
2; ∆2(D)]

∆2(D)

q2

]
1

q2

d0(q
2; ∆2(D)) = ξ[1 + d0(q

2; ∆2(D))]
∆2(D)

q2

Iµν(q; ∆
2(D)) = 0
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NP QCD

Dµν(q) = Dµν(q; ∆
2(D)) =

D0
µν(q) + D0

µρ(q)iTρσ(q)[q2Π(q2; D) + ∆2(D)]Dσν(q; ∆
2(D))

Dµν(q; ∆
2(D)) = i{Tµν(q)d(q2; ∆2(D) + ξLµν(q)} 1

q2

d(q2; ∆2(D)) =
1

1 + Π(q2; D) + (∆2(D)/q2)
.
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PT QCD

formal PT ∆2(D) = 0 limit

DPT
µν (q) = D0

µν(q) + D0
µρ(q)iTρσ(q)q2Π(q2; DPT )DPT

σν (q)

DPT
µν (q) = i{Tµν(q)d

PT (q2) + ξLµν(q)} 1

q2

dPT (q2) =
1

1 + Π(q2; DPT )
.
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The Jaffe-Witten mass gap

d(q2) = 1−
[
Π(q2; d) +

∆2(d)

q2

]
d(q2)

∆2(d) = ∆2c(d)

∆2 ≡ ∆2(λ, α, ξ, g2)

∆2
R = Z(λ, α, ξ, g2)∆2(λ, α, ξ, g2).
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B. Restoration of transversality of the gluon
propagator

DTNP
µν (q; ∆2) = Dµν(q; ∆

2)−Dµν(q; ∆
2 = 0) = Dµν(q; ∆

2)−DPT
µν (q)

DTNP
µν (q; ∆2) = iTµν(q)d

TNP (q2; ∆2)
1

q2

DPT
µν (q) = i

{
Tµν(q)d

PT (q2) + ξLµν(q)
}

(1/q2)

Dµν(q) = i
{
Tµν(q)d(q2) + ξLµν(q)

}
(1/q2)
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d(q2; ∆2) =
1

1 + Πs(q2; D) + (∆2/q2)

dTNP (q2; ∆2) =
[q2Πs(q2; DPT )− q2Πs(q2; D)−∆2]

[q2 + q2Πs(q2; D) + ∆2][1 + Πs(q2; DPT )]

dPT (q2) =
1

1 + Πs(q2; DPT )

Dµν(q; ∆
2) = i

{
Tµν(q)d(q2; ∆2) + ξLµν(q)

}
(1/q2)

= −iTµν(q)d
PT (q2)(1/q2) + iTµν(q)d

PT (q2)(1/q2)

= DTNP
µν (q; ∆2) + DPT

µν (q)
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Prescription

Dµν(q; ∆
2) = DTNP

µν (q; ∆2) + DPT
µν (q)

———————————————————————
——

Dµν(q; ∆
2) → DTNP

µν (q; ∆2) = Dµν(q; ∆
2)−DPT

µν (q)

d(q2; ∆2) → dTNP (q2; ∆2) = d(q2; ∆2)− dPT (q2).

———————————————————————
——-

Dµν(q; ∆
2) → DPT

µν (q) = Dµν(q; ∆
2)−DTNP

µν (q; ∆2)
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d(q2; ∆2) → dPT (q2) = d(q2; ∆2)− dTNP (q2; ∆2).
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The Bag constant

One of the important characteristics of the QCD
ground state is the Bag constant.

B = V EDPT − V ED,

V ED is the NP but ”contaminated” by the PT con-
tributions (i.e., it is a full V ED like the full gluon
propagator).

B = V EDPT−V ED = V EDPT−[V ED−V EDPT +V EDPT ] =

V EDPT − [V EDTNP + V EDPT ] = −V EDTNP > 0,

Thus the Bag constant is completely free of the PT
”contaminations”.
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The SDE for the TNP gluon propagator

DTNP
µν (q; ∆2) = D0

µρ(q)iTρσ(q)[q2Πs(q2; D)−q2Πs(q2; DPT )+∆2]DPT
σν (q)

+D0
µρ(q)iTρσ(q)

[
q2Πs(q2; D) + ∆2

]
DTNP

σν (q; ∆2)

Dµν(q) = D0
µν(q)+D0

µρ(q)iTρσ(q)[q2Πs(q2; D)+∆2(D)]Dσν(q)

DPT
µν (q) = D0

µν(q) + D0
µρ(q)iTρσ(q)q2Πs(q2; DPT )DPT

σν (q),

No free gluons in TNP QCD
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The necessity of the proposed subtractions

The first subtraction at the level of the full gluon
self-energy makes it possible to introduce the mass
gap

The second subtraction at the level of the full gluon
propagator makes it possible:

Dµν(q; ∆
2) = DTNP

µν (q; ∆2) + DPT
µν (q)

A. To achieve transversality in a gauge invariant
way

B. Do not affect its true NP structure
Exact separation between the NP and PT dynamics
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C. Exclude the free gluons from the theory
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Conclusions

The mass gap is generated in the gluon sector of
QCD mainly due to the self-interaction of massless
gluon modes.

It is defined as the difference between the full gluon
self-energy and its value at some point, so it is not
introduced by hand.

No any truncations/approximations/asumptions, no
special gauge choice, only algebraic (i.e., exact) deriva-
tions have been done.

The common belief (coming from PT) that mass
gap contradicts the color gauge invariance/symmetry
of QCD is false.
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This fundamental symmetry is maintained/preserved
at non-zero mass gap as well.
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We distinguish between NP and PT QCD by the
explicit presence of the mass gap, and not by the
strength of the coupling constant. It plays no role
when the mass gap is kept ”alive”.

Proposed subtraction makes it possible to make the
relevant gluon propagator to become purely transver-
sal in a gauge invariant way and to remove free gluons
from the theory at the same time.

So unitarity of the S-matrix in TNP QCD is main-
tained.

No free gluons in TNP QCD.

Emission and absorbtion of ”dressed” gluons will be
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suppressed by the renormalization of the mass gap.
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QED vs QCD

QED. We cannot release the mass gap from the
QED vacuum, while we can release the photons and
the electron-positron pars from it.

QCD. We can release the mass gap from the QCD
vacuum, as it has been described in this talk. But we
cannot release the gluons and the quarks/antiquarks
from its vacuum because of the color confinement phe-
nomenon.

The next step is to find a formal solution(s) for the
full gluon propagator as a function of the regularized
mass gap and its renormalization.
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Renormalization of the mass gap

1. The two independent types of general solutions

(a). Smooth (Massive)

(b). Singular (NL iteration)

2. Renormalization of the relevant gluon propaga-
tor

3. Gluon and Quark confinement criteria

4. Asymptotic Freedom from the mass gap

5. The JW theorem is not completely correctly
formulated

6. INP QCD ⇐= QCD =⇒ PT QCD
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