Electronics Outline

- Some Problems from my Diploma Thesis
- Understanding Transfer Functions
- Why does P/Z-Cancellation Work ?
-Why gives a „Bell-Shaped" Signal the best S/N-Ratio ?
- Summary
- Questions
- Appendices

Electronics
 The Amplifier Chain

Electronics

The Main Amplifier

Electronics
 The Main Amplifier Input Stage

That is, what it does

That is, what it means

How does it work ?

Electronics

NMR Control of a Bending Magnet to 3•10-6

Difficult to interpret
Is there a more compact way to display the dynamics of a system ?

Electronics

Understanding Transfer Functions

- The water tank is filled from a reservoir of unlimited capacity;
- The water level approaches exponetially h_{0}.

The temperature of a piece of metal approaches exponetially $100^{\circ} \mathrm{C}$.

The voltage at the capacitor approaches exponetially U_{0}

Electronics

Understanding Transfer Functions

How can the dynamics of a linear system be described most efficiently ?

Refinery
Aeroplane
Musical instrument
Electrical Circuit
Nucleus

Electronics

Understanding Transfer Functions

- Is a "generalized" Fourier Transform $f(t) \rightarrow F(s)$ with $s=\rho+i \omega$
- Is an integral transform, and therefore linear
- „Algebraizes" linear differential equations
- A convolution in the time domain corresponds to a multiplication of the corresponding Laplace transforms

Scheme:

Electronics

Understanding Transfer Functions

F(s)	$\mathbf{f}(\mathbf{t})$	Remark
a $\mathrm{F}_{1}(\mathrm{~s})+\mathrm{b} \mathrm{F}_{2}(\mathrm{~s})$	$a f_{1}(t)+b f_{2}(t)$	Linearity
$s \mathrm{~F}(\mathrm{~s})-\mathrm{f}(0)$	$\mathrm{f}^{\prime}(\mathrm{t})$	Derivative
$\begin{gathered} s^{n} \mathrm{~F}(\mathrm{~s})-\mathrm{s}^{(\mathrm{n}-1)} \mathrm{f}(0)- \\ -\mathrm{s}^{(\mathrm{n}-2)} \mathrm{f}^{6}(0) \ldots .-\mathrm{f}^{(\mathrm{n}-1)}(0) \end{gathered}$	$\mathrm{f}^{(\mathrm{n})}(\mathrm{t})$	$\mathrm{n}^{\text {th }}$ derivative
$\frac{F(s)}{s}$	$\int_{0}^{t} f(u) d u$	Integral
$\frac{F(s)}{s^{n}}$	$\int_{0}^{t} \ldots \int_{0}^{t} f(u) d u^{n}=\int_{0}^{t} \frac{(t-u)^{n-1}}{(n-1)!} f(u) d u$	n -fold integral
$F(s) \cdot G(s)$	$\int_{0}^{t} f(u) g(t-u) d u$	Convolution in the time domain

Electronics

Understanding Transfer Functions

F(s)	$\mathbf{f}(\mathbf{t})$
$\frac{1}{s}$	1
$\frac{1}{s^{2}}$	t
$\frac{1}{s^{n}} \quad n=1,2,3, \ldots$	$\frac{t^{n-1}}{(n-1)!}, \quad 0!=1$
$\frac{1}{s-a}$	$\mathrm{e}^{\text {at }}$
$\frac{1}{s^{2}+a^{2}}$	$\frac{\sin a t}{a}$
$\frac{s}{s^{2}+a^{2}}$	$\cos (\mathrm{at})$
$\frac{1}{s^{2}-a^{2}}$	$\frac{\sinh a t}{a}$
$\frac{\mathrm{P}(\mathrm{s})}{\mathrm{Q}(\mathrm{s})} ; \mathrm{Q}(\mathrm{s})=\left(\mathrm{s}-\alpha_{1}\right) \ldots\left(\mathrm{s}-\alpha_{\mathrm{n}}\right)$	$\sum_{\mathrm{k}=l}^{\mathrm{n}} \frac{\mathrm{P}\left(\alpha_{\mathrm{k}}\right)}{\mathrm{Q}^{\prime}\left(\alpha_{\mathrm{k}}\right)} \mathrm{e}^{\alpha_{\mathrm{k}} \mathrm{t}} ; \mathrm{Q}^{\prime}\left(\alpha_{\mathrm{k}}\right)=\frac{\mathrm{dQ}\left(\alpha_{\mathrm{k}}\right)}{\mathrm{d}\left(\mathrm{~s}-\alpha_{\mathrm{k}}\right)}$

Electronics

Understanding Transfer Functions

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{C} \mathrm{U} ; \dot{\mathrm{Q}=\mathrm{I}=\mathrm{CU}} \quad \mathrm{I}(\mathrm{~s})=\mathrm{sCU}(\mathrm{~s}) \xrightarrow[R_{C}=\frac{\mathrm{U}(\mathrm{~s})}{\mathrm{I}(\mathrm{~s})}=\frac{1}{\mathrm{sC}}]{ } \quad \text { Recall: } \mathrm{s}=\mathrm{Q}+\mathrm{i} \omega
\end{aligned}
$$

Feedback (especially: negative feedback)

$$
\left.\begin{array}{l}
Y(s)=F_{1}(\mathrm{~s}) \cdot \Delta(\mathrm{s}) \\
\Delta(\mathrm{s})=X(\mathrm{~s})^{\mp} \mathrm{R}(\mathrm{~s}) \\
\mathrm{R}(\mathrm{~s})=\mathrm{F}_{2}(\mathrm{~s}) \cdot \mathrm{Y}(\mathrm{~s})
\end{array}\right\} \rightarrow Y(\mathrm{~s})=\mathrm{F}_{1}(\mathrm{~s}) \cdot\left\{X(\mathrm{~s}) \mp\left(\mathrm{F}_{2}(\mathrm{~s}) \cdot \mathrm{Y}(\mathrm{~s})\right)\right\}
$$

$$
T(s)=\frac{Y(s)}{X(s)}=\frac{F_{1}(s)}{1 \pm F_{1}(s) \cdot F_{2}(s)}
$$

Trick: $F_{1}(s) \rightarrow \infty \Rightarrow T(s)= \pm \frac{1}{F_{2}(s)}= \pm F_{2}^{-1}(s)$

Electronics

Understanding Transfer Functions

$T(s)=F_{0}(s) \cdot \frac{F_{1}(s)}{1-F_{1}(s) \cdot F_{2}(s)} \xrightarrow{F_{1}(s) \rightarrow \infty} \frac{F_{0}(s)}{-F_{2}(s)}=-\frac{Z_{2}}{Z_{1}}$
with: $\mathrm{F}_{0}(\mathrm{~s})=\mathrm{I}_{\text {in }} / \mathrm{U}_{\text {in }}=1 / \mathrm{Z}_{1}$
$F_{1}(s)=-R \cdot V \quad ; R$ can be considered to convert the
$F_{2}(s)=I_{R} / U_{\text {out }}=1 / Z_{2} \quad$ Input Current ΔI to the internal Input Voltage $U_{\text {int }}^{-}$.

Electronics

Understanding Transfer Functions

Integrator $\left(U_{\text {off }}=0\right)$

Differentiator

The „s" in the denominator and nominator determine the dynamics of a system

Electronics

Understanding Transfer Functions

$$
\mathrm{T}(\mathrm{~s})=\frac{\mathrm{U}_{\mathrm{out}}(\mathrm{~s})}{\mathrm{U}_{\mathrm{in}}(\mathrm{~s})}=\frac{\mathrm{R}_{1}}{\frac{1}{\mathrm{sC}}+\mathrm{R}_{1}}
$$

$$
\mathrm{U}_{\text {out }}(\mathrm{s})=\mathrm{T}(\mathrm{~s}) \cdot \mathrm{U}_{\text {in }}(\mathrm{s})=\mathrm{U}_{0} \frac{\mathrm{~s}}{\left(\mathrm{~s}+1 / \mathrm{CR}_{1}\right)\left(\mathrm{s}+1 / \mathrm{T}_{0}\right)}
$$

$$
\mathrm{U}_{\text {out }}(\mathrm{t})=\mathrm{U}_{0} \frac{1}{\left(\mathrm{CR}_{1}-\mathrm{T}_{0}\right)}\left(\mathrm{CR}_{1} \mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{~T}_{0}}}-\mathrm{T}_{0} \mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{CR}_{1}}}\right)
$$

Undershoot

Electronics

The Principle of Pole-Zero Cancellation

$$
\mathrm{R}_{\mathrm{P}}=\mathrm{R}_{1} \| \mathrm{R}_{2}=\frac{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

$$
\mathrm{T}(\mathrm{~s})=\frac{\mathrm{s}+\frac{\mathrm{k}}{\mathrm{R}_{2} \mathrm{C}}}{\mathrm{~s}+\frac{1}{\mathrm{R}_{\mathrm{P}} \mathrm{C}}}
$$

That is, how it works

Electronics

Understanding Transfer Functions

Stable Systems have Poles only in the negative half plane (imaginary axis included), since otherwise $\rho>0$

Allpasses stand out due to the symmetric position of Poles and Zeros with respect to the imaginary axis. $|\mathrm{T}(\mathrm{s})|=$ const.; but the phase changes.

Phase minimum systems do not have any Zeros in the right half-plane.

Inferences:

All stable linear systems can be set up by allpasses and phase minimum systems.

Electronics

PZ-Scheme of an $3^{\text {rd }}$ Order Allpass

Electronics

Pulse Shaping

Electronics

The Idea Behind an Optimum S/N-Ratio

Electronics

 Pulse Shaping

Electronics Pulse Shaping

Electronics
 Pulse Shaping

Semi-Gaussian pulse shaping has the fewest harmonics and allows to amplify these pulses with the comparatively smallest bandwidth. Therefore, all noise outside this bandwidth can be suppressed.

Electronics Summary

Transfer Functions:

Have a wide field of applications- Are an universal tool to handle even aperiodic signals
- Give a very basic understanding of systems
- Allow to evaluate or predict the dynamical behavior of a system

Electronics

You can find further informations (and much more):

www.hiskp.uni-bonn.de

Archive \rightarrow my lectures

User: student PW: SSXX WSXX

Electronics Questions

- Give two reasons why the P/Z circuit is termed "principal".

- Convince yourself „graphically" that the amplitude of an Allpass does not depend on frequency.

—Does the „trick" of linearizing (in negative feedback systems) apply only to operational amplifiers?

Electronics

The Preamplifier

$\mathrm{Q}=\mathrm{C} \mathrm{U}$

Q/U Converter

The output voltage is changed, until the charge via C compensates \mathbf{Q}_{in} from the input

Electronics
 Appendix A1 (Backtransform)

$$
\mathrm{U}_{\text {out }}(\mathrm{s})=\mathrm{T}(\mathrm{~s}) \cdot \mathrm{U}_{\text {in }}(\mathrm{s})=\mathrm{U}_{0} \frac{\mathrm{~s}}{\left(\mathrm{~s}+1 / \mathrm{CR}_{1}\right)\left(\mathrm{s}+1 / \mathrm{T}_{0}\right)}
$$

$$
\mathrm{U}_{\mathrm{out}}(\mathrm{t})=\mathrm{U} 0 \cdot\left\{\frac{-1 / \mathrm{CR}_{1}}{-1 / \mathrm{CR}_{1}+1 / \mathrm{T}_{0}} e^{-1 / \mathrm{CR}_{1}}+\frac{-1 / \mathrm{T}_{0}}{-1 / \mathrm{T}_{0}+1 / \mathrm{CR}_{1}} e^{-1 / \mathrm{T}_{0}}\right\}
$$

$$
\mathrm{U}_{\text {out }}(\mathrm{t})=\mathrm{U} 0 \cdot\left\{\frac{-\mathrm{T}_{0}}{-\mathrm{T}_{0}+\mathrm{CR}_{1}} e^{-1 / \mathrm{CR}_{1}}+\frac{-\mathrm{CR}_{1}}{-\mathrm{CR}_{1}+\mathrm{T}_{0}} e^{-1 / \mathrm{T}_{0}}\right\}
$$

$$
\mathrm{U}_{\mathrm{out}}(\mathrm{t})=\mathrm{U} 0 \cdot \frac{1}{\mathrm{CR}_{1}-\mathrm{T}_{0}}\left\{\mathrm{CR}_{1} e^{-1 / \mathrm{T0}}+\mathrm{T}_{0} e^{-1 / \mathrm{CR} 1}\right\} \quad \text { q.e.d. }
$$

Electronics

Appendix A2 (P/Z Calculation)

Start with: $\mathrm{I}_{1}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{2}$

Recall: $\mathrm{U}_{\text {out }}=\mathrm{R}_{1} \cdot \mathrm{I}_{1}=\mathrm{R}_{1}\left(\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{2}\right)$
$\mathrm{U}_{\text {out }}(\mathrm{s})=\mathrm{R}_{1}\left\{\frac{1}{\mathrm{R}_{2}}\left[\mathrm{k} \cdot \mathrm{U}_{\text {in }}(\mathrm{s})-\mathrm{U}_{\text {out }}(\mathrm{s})\right]+\mathrm{C}\left[\mathrm{sU}_{\text {in }}(\mathrm{s})-\mathrm{sU}_{\text {out }}(\mathrm{s})\right]\right\}$
$\mathrm{U}_{\text {out }}(\mathrm{s})\left[1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}+\mathrm{sCR} R_{1}\right]=\mathrm{U}_{\text {in }}(\mathrm{s})\left[\mathrm{k} \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}+\mathrm{sCR} R_{1}\right]$
$\mathrm{T}(\mathrm{s})=\frac{\mathrm{U}_{\mathrm{out}}(\mathrm{s})}{\mathrm{U}_{\mathrm{in}}(\mathrm{s})}=\frac{\mathrm{k} \frac{\mathrm{R}_{1}}{\mathrm{R}_{5}}+\mathrm{sCR}_{1}}{1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{7}}+\mathrm{sCR} R_{1}}=\frac{\frac{\mathrm{k}}{\mathrm{R}_{2} \mathrm{C}}+\mathrm{s}}{\left(\frac{1}{\mathrm{R}}+\frac{1}{\mathrm{R}}\right) \frac{1}{\mathrm{C}}+\mathrm{s}}=\frac{\mathrm{s}+\frac{\mathrm{k}}{\mathrm{R}_{2} \mathrm{C}}}{\mathrm{s}+\frac{1}{\mathrm{R}_{\mathrm{n}} \mathrm{C}}} \quad$ q.e.d.

Electronics

 Appendix A3 (P/Z Circuit Considerations - Reality)

 Appendix A3 (P/Z Circuit Considerations - Reality)}
$T(s)=\frac{s+\frac{k}{R_{2} C}}{s+\frac{1}{R_{P} C}}$
In order to have: $\frac{\mathrm{k}}{\mathrm{R}_{2}}=\frac{1}{\mathrm{R}_{\mathrm{p}}}$
recall that $\mathbf{R}_{\mathrm{p}} \leq \mathbf{R}_{2}$
Therefore: $\frac{\mathrm{k}}{\mathrm{R}_{2}} \geq \frac{1}{\mathrm{R}_{2}}$ or: $\mathrm{k} \geq 1$
But since k is always a fraction of 1 this constitutes a contradiction.

Solution:

But what is with C_{2} ?

One can always find for any given ω a C , so that $R_{C}=\frac{1}{s C} \xrightarrow{\rho=0} \frac{1}{i \omega C} \ll R_{2}$

Electronics

Appendix B (Scheme of an $1^{\text {st }}$ Order Allpass)

$$
\begin{aligned}
& \mathrm{U}_{\text {out }}=\mathrm{U}_{\mathrm{R}_{1}}-\mathrm{U}_{\mathrm{C}}=\frac{1}{2} \mathrm{U}_{\text {in }}-\frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{R}+\mathrm{R}_{\mathrm{C}}} \mathrm{U}_{\text {in }} \\
& \mathrm{T}_{\mathrm{C}}(\mathrm{~s})=\frac{\mathrm{U}_{\text {out }}}{\mathrm{U}_{\text {in }}}=\frac{1}{2} \frac{\mathrm{R}+\mathrm{R}_{\mathrm{C}}-2 \mathrm{R}_{\mathrm{C}}}{\mathrm{R}+\mathrm{R}_{\mathrm{C}}}=\frac{1}{2} \cdot \frac{\mathrm{R}-1 / \mathrm{sC}}{\mathrm{R}+1 / \mathrm{sC}}=\frac{1}{2} \cdot \frac{\mathrm{sRC}-1}{\mathrm{sRC}+1}
\end{aligned}
$$

Electronics
 Appendix C (Sallen-Key Amplifier)

$$
\begin{aligned}
& \mathrm{U}_{\Sigma} \cdot \frac{\mathrm{sC}}{\mathrm{sRC}+1}=\mathrm{I}_{\Sigma}=\frac{\mathrm{U}_{\text {in }}-\mathrm{U}_{\Sigma}}{\mathrm{R}}+\left(\mathrm{U}_{\text {out }}-\mathrm{U}_{\Sigma}\right) \cdot \mathrm{sC} \\
& =\frac{\mathrm{U}_{\text {in }}-\mathrm{U}^{+}(1+\mathrm{sRC})}{\mathrm{R}}+\left(\mathrm{U}_{\text {out }}-\mathrm{U}^{+}(1+\mathrm{sRC})\right) \cdot \mathrm{sC} \\
& \mathrm{U}^{+}\left[(1+\mathrm{sRC}) \cdot \frac{\mathrm{sC}}{\mathrm{sRC}+1}+\frac{1+\mathrm{sRC}}{\mathrm{R}}+(1+\mathrm{sRC}) \cdot \mathrm{sC}\right]=\frac{\mathrm{U}_{\text {in }}}{\mathrm{R}}+\mathrm{U}_{\text {out }} \cdot \mathrm{sC} \\
& \mathrm{U}_{\text {out }}=\mathrm{V} \cdot \frac{\mathrm{U}_{\text {in }} / \mathrm{R}+\mathrm{U}_{\text {out }} \cdot \mathrm{sC}}{\mathrm{sC}+\frac{1+\mathrm{sRC}}{\mathrm{R}}+(1+\mathrm{sRC}) \cdot \mathrm{sC}} \stackrel{\text { def }}{ } \frac{\mathrm{U}_{\text {in }} / \mathrm{R}+\mathrm{U}_{\text {out }} \cdot \mathrm{sC}}{\text { Nenner }} \\
& \mathrm{U}_{\text {out }}\left(1-\frac{\mathrm{VsC}}{\text { Nenner }}\right)=\frac{\mathrm{V}}{\mathrm{R}} \cdot \frac{\mathrm{U}_{\text {in }}}{\text { Nenner }} \\
& \mathrm{T}(\mathrm{~s})=\frac{\mathrm{V}}{\mathrm{R}} \cdot \frac{1}{\text { Nenner }} \cdot\left(\frac{\text { Nenner }-\mathrm{VsC}}{\text { Nenner }}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{T}(\mathrm{~s}) & =\frac{\mathrm{V}}{\mathrm{R}} \cdot \frac{1}{\mathrm{Nenner}-\mathrm{VsC}}=\frac{\mathrm{V}}{\mathrm{sRC}+1+\mathrm{sRC}+(1+\mathrm{sRC}) \cdot \mathrm{sRC}-\mathrm{VsRC}} \\
& =\frac{\mathrm{V}}{1+3 \mathrm{sRC}-\mathrm{VsRC}+(\mathrm{sRC})^{2}}=\frac{\mathrm{V}}{1+\mathrm{sRC} \cdot(3-\mathrm{V})+(\mathrm{sRC})^{2}}
\end{aligned}
$$

Electronics Appendix D (Nonlinear Systems)

Given:

Set of m non-linear differential equations:
$\overrightarrow{\mathrm{y}}=\mathrm{f}(\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{u}}) \quad$ with: $\overrightarrow{\mathrm{x}}-\mathrm{n} V$ ariables
$\overrightarrow{\mathrm{u}}-\ell$ Parameters
Expand for the (operating) point A:

$$
\begin{aligned}
\overrightarrow{\mathrm{y}} & \approx \mathrm{f}\left(\overrightarrow{\mathrm{x}}_{\mathrm{A}}, \overrightarrow{\mathrm{u}}_{\mathrm{A}}\right)+\underset{\substack{\mathrm{mxn} \operatorname{matrix} \mathrm{~F}}}{\frac{\partial \mathrm{f}}{\partial \overrightarrow{\mathrm{x}}_{\mathrm{A}}} \cdot \delta \overrightarrow{\mathrm{x}}}+\underset{\substack{\partial \times \ell \operatorname{matrix~}^{\mathrm{G}}}}{\mathrm{~m}_{\mathrm{A}}} \cdot \delta \mathrm{f}+\text { Higher order terms; } \mathrm{m} \leq \mathrm{n} \\
& =\mathbf{f}\left(\overrightarrow{\mathbf{x}}_{\mathrm{A}}, \overrightarrow{\mathrm{u}}_{\mathrm{A}}\right)+\mathbf{F} \cdot \delta \overrightarrow{\mathbf{x}}+\mathbf{G} \cdot \delta \overrightarrow{\mathbf{u}}
\end{aligned}
$$

This is a system of coupled linear differential equations, which can be algebraized by means of the Laplace transform.

Electronics

Example Ia (Principle of a Log-Antilog Multiplier)

Log-Amp

Electronics

Example Ib (Principle of a Log-Antilog Multiplier)

Log Amp as a negative feedback element results in a Anti-Log-Amplifier:

$$
\begin{aligned}
\mathrm{T}(\mathrm{~s}) & =\frac{\mathrm{F}(\mathrm{~s})}{1+\mathrm{F}(\mathrm{~s}) \mathrm{G}(\mathrm{~s})} \\
& =\frac{1}{1 / \mathrm{F}(\mathrm{~s})+\mathrm{G}(\mathrm{~s})} \xrightarrow{\mathrm{F}(\mathrm{~s}) \rightarrow \infty} \mathbb{1} / \mathrm{G}(\mathrm{~s})=\mathrm{G}^{-1}(\mathrm{~s})
\end{aligned}
$$

Example of an analog multiplier: Amplitude modulation
Carrier frequency: $\mathbf{v}_{\mathbf{x}}$ JNWNNNWNNON
Modulated signal: $\quad \mathbf{V}_{\mathrm{y}}$

Output (Modulated carrier):
$\mathbf{V}_{\mathrm{x}} \mathbf{V}_{\mathrm{y}}$
ADHADMANADADAS

Electronics

Example IIa (Principle of a Sonar)

Electronics
 Example IIb (Chirped Pulse Amplification (CPA))

Principle of the CPA: High peak intensities within the amplifier optics are avoided by timewise and spatial dilatation of the pulses.

Electronics

Example III (Linearizing Systems)

\rightarrow the dynamics of $\mathrm{T}(\mathrm{s})$ can be determined by the position of the Pole/Zero-distribution of $\mathrm{R}(\mathrm{s})$.

