Oxygen Isotope Effects in Novel Superconductors

Alexander Shengelaya

Tbilisi State University, Georgia

5th Georgian-German Workshop in Basic Science

August 2012

Discovery of the isotope effect in mercury

 $T_c \propto M^{-\alpha} \implies \alpha = 0.43(6)$

"for their jointly developed theory of superconductivity, usually called the BCS-theory"

Leon Neil Cooper

John Robert Schrieffer

ზეგამტაროპის მექანიზმი : ელექტრონების დაწყვილება კუპერის წყვილები

Isotope effect

BCS theory (1957)

$$T_c \propto \omega_D \exp(-1/\lambda)$$

$$T_c \propto M^{-\alpha} \qquad \qquad \alpha = -d \ln T_c / d \ln M$$
$$\alpha_{BCS} = 1/2$$

 ω_D : typical phonon frequency (Debye frequency) λ : electron-phonon coupling constant

Isotope effect

Experimental results for "simple" metals

Material	Symbol	Т _с	α
Cadmium	Cd	0.5	0.5
Carbon (fullerene)		30	0.25
Lead	Pb	7.2	0.48
Mercury	Hg	4.1	0.5
Molybdenum	Мо	0.9	0.37
Osmium	Os	0.7	0.20
Rhenium	Re	1.7	0.23
Ruthenium	Ru	0.5	0±0.05
Thallium	TI	2.4	0.50
Tin	Sn	3.7	0.47
Zinc	Zn	0.9	0.45
Zirconium	Zr	0.6	0±0.05

Theoretical models

exchange of virtual bosons in a polarizeable medium

pairing \Leftrightarrow attractive interaction between electrons

kB T_c \approx E₀ exp(-1/ λ)

 E_0 : energy scale of the interaction λ : coupling constant (weak coupling)

Theoretical models of superconductivity

polarizeable medium	excitation (virtual boson)	type of carrier	
crys tal lattice	phonon phonon	electron/ defect electron polaron (electron + lattice deformation)	
electron sys tem	plasmon	electron	
	exziton	electron	
spin system	spin fluctuations (magnon)	electron	

VOLUME 58, NUMBER 22 PHYSICAL REVIEW LETTERS 1 JUNE 1987

Isotope Effect in the High-T_c Superconductors Ba₂YCu₃O₇ and Ba₂EuCu₃O₇

B.Batlogg, R.J.Cava, A.Jayaraman, R.B.van Dover, G.A.Kourouklis, ^(a)S.Sunshine, D.W.Murphy, L.W.Rupp, H.S.Chen, A.White, K.T.Short, A.M.Mujsce, and E.A.Rietman *AT&T Bell Laboratories, Murray Hill, New Jersey 07974* (Received 24 April 1987)

Oxygen-isotope effect on T_C in $YBa_2Cu_3O_7$: Early results

System	T _C (K)	¹⁸ O (%)	$\Delta T_{C}(K)$	$\alpha_{\rm O}$	Reference
YBa2Cu3O7	92.1	75	< 0.1	0 ± 0.02	Batlogg et al. (1987)
EuBa ₂ Cu ₃ O ₇	92.15	75	< 0.1	0 ± 0.02	Batlogg et al. (1987)
YBa ₂ Cu ₃ O ₇	90.0	(90)	<0.3	0 ± 0.027	Bourne et al. (1987)
YBa2Cu3O7	92.1	90	0.5	0.05	Leary et al. (1987)
	91.4	75	0.3	0.04	
	91.5	73	0.4	0.05	

Is this correct?

- Isotope effect is small ⇒ electron-phonon interaction is not important
- Isotope effect is large ⇒ electron-phonon interaction is very important
- Need reliable experiments and adequate theory to answer this question!

Isotope effect exponent α

$$\alpha = \frac{1}{2} \left(1 - \frac{(1+\lambda) (1+0.62\lambda) {\mu^*}^2}{[\lambda - \mu^* (1+0.62\lambda)]^2} \right)$$

Mc Millan, Phys. Rev. 167, 331 (1968)

Experimental set-up for the preparation of ${}^{16}\text{O}/{}^{18}\text{O}$ samples

K. Conder, Materials Science and Engineering R32, 41 (2001)

Experimental set-up for the preparation of ${}^{16}\text{O}/{}^{18}\text{O}$ samples

Thermogravimetric curves during isothermal oxyen exchange in Y123 substituted with ¹⁸O

K. Conder, Materials Science and Engineering R32, 41 (2001)

Schematic structure of cuprate superconductors

 $Y_{1-x}Pr_{x}Ba_{2}Cu_{3}O_{7-\delta}$

Normalized magnetization curves: 1 mT, field cooled

Khasanov et al., cond-mat / 0201165

Oxygen-Isotope Effect on T_c

Franck et al., Phys.Rev. B 44, 5318 (1991)

OIE on T_c in La_{2-x}Sr_xCuO₄

Zhao *et al.*, Nature **385**, 236 (1997) Zhao *et al.*, J. Phys.: Condens. Matter **10**, 9055 (1998)

Precise volumetric analysis of the oxygen content in La_{2-x}Sr_xCuO_y

- Very accurate determination of the oxygen content usig a precise volumetric analysis
- Oxygen contents of sample pairs (¹⁶O/¹⁸O) with identical x are the same within +/- 0.0002 per Cu site
- ⇒ difference in hole densities of the ¹⁶O and ¹⁸O samples is negligible
- \Rightarrow large observed OIE are intrinsic

Zhao, Keller & Conder, J. Phys.: Condens. Matter **13**, R569 (2001)

Oxygen-isotope effect on T_c

Schneider and Keller, PRL. 69, 3374 (1992)

Site-selective oxygen-isotope effect experiment ?

Structure of YBa₂Cu₃O_x

Structure of YBa₂Cu₃O_x

Structure of YBa₂Cu₃O_x

Raman spectra of YBa₂Cu₃O_x

Zech et al., Nature 371, 681 (1994)

Site-selective oxygen isotope effect in optimally doped YBa₂Cu₃O_{6+x}

Zech et al., Nature 371, 681 (1994)

Site-selective oxygen isotope effect in optimally doped YBa₂Cu₃O_{6+x}

⇒ planar oxygen atoms mainly (> 80 %) contribute to the total OIS

Zech et al., Nature 371, 681 (1994)

Oxygen-Isotope Effect on T_c

Zhao, Keller & Conder, J. Phys.: Condens. Matter 13, R569 (2001)

Boron isotope effect in superconducting MgB₂

MgB₂ is a phonon-mediated layered high-temperature superconductor

Bud'ko et al., PRL 86, 1877 (2001)

Mg and B isotope effect in superconducting MgB₂

Hinks, Claus & Jorgensen, Nature 411, 457 (2001)

Question 1

What is the isotope effect in superconductors ? How isotope exponent is defined ?

Question 2

Why by heating the sample in ${}^{18}O_2$ atmosphere isotope exchange can be made ?

Question 3

How oxygen isotope effect exponent depends on doping in cuprate high- T_c superconductors ?