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Outline 

1. Optimisation: a universal scientific objective 

2. Problem: How can we control  a system with  high 

degrees of freedom? 

3. How can we optimally combine models with 

observations?  

1. a means to upgrade our knowledge basis 

2. test hypotheses 

 

Specifically in atmospheric sciences: 

1. for green house gas inversion 

2. for air quality and climate monitoring/reanalyses 

3. Extension: “detection and attribution” algorithm for  climate 

change  



13. August 2012 Folie 3 

NOx 

 

1.5 x 

 

 

 

  1 x 

 

 

 

 

 0.6 x 

 VOCs 

Ozone:  

NOx-VOC  

emissions  

variation 

ensemble  

(21.7.1998,  

15:00 UTC) 

Note: 

not 

C-orthogonal, 

not max. 

sensitivities 

aligned 

How can “good”simulations be identified? 
 

0.6 x                   1 x                          1.5 x 

0.6 x                  1 x                            1.5 x 
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How can “good”simulations be identified? 

Sequential Importance Resampling 

How to select weights wi?  
time 

extinct 

survivors 

obs. 

Other techniques: 

• Ensemble modelling 

• (Markov Chain) Monte Carlo methods (MCMC) 

• and many more versions ….. 
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Are there more focussed approaches? 

e.g. quadratic optimisation 

y 

a 

b { 
| 

1 

| 

0 x 

y=ax+b 
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Isopleths of the cost function and 

minimisation steps 

Minimisation by mere gradients, quasi-Newon method L-BFGS 

(Large dimensional Broyden Fletcher Goldfarb Shanno), 

concentration species 1  
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Extensions to Generality 
1. very high degree of freedom of highly nonlinear systems M: 

“curse of dimensionality” O(107-108) 

2. underdetermined system: too few observations, i.e. less than 

degrees of freedom 

3. observations scattered in time and space, 

4. different observation techniques:    

 errors and representativity of observations diverse 

5. observations often indirectly related to parameters of interest: 

remote sensing data 

 

Methodology applicable to a wide range of problems:   

Consider optimisation problem  

with unique optimum 
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1. Very high degree of freedom:  

“curse of dimensionality” O(107-108) 

(grid points x 10-100 variables) 

now 

T1299L91 

(~16 km) 

 

dim O(108) 
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1. Very high degree of freedom:  

“curse of dimensionality” O(107-10-8) 

(grid points x 10-100 variables) 

 

3-D models 

Example KAMM/DRAIS 

KIT IMK (Karlsruhe) 

SACADA icosahedral grid 

(see presentation K. Kasradze) 
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2. Underdetermined system: too few 

observations, i.e. less than degrees of freedom 

 

Type and number of 

observations used to 

estimate the 

atmosphere initial 

conditions during a 

typical day.  

(Buizza, 2000) 

dimobservation space 

<< O(107) 
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Satellite data sources in 2007+, 

but only a fraction can be used 
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Source:  
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Take the model for over-determination:  

Synergy of information sources 
 

a priori (=prediction or climatology) observation 

Bayes’ rule: 

xa 

Analysis (=estimation) BLUE 

Best Linear Unbiased Estimate 

xb yo xa xb yo xb 

Example: inconsistent data 
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3. Observations scattered in time (and space) 

MOZAIC - JAGOS 
Aeronet 

LIDAR 

MetOp-1 
IASI, GOME-2 

AIREP, AMDAR, ACAR 
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4D-var 

Kalman Filter 

Types of assimilation algorithms: 

“smoother” and filter 
y 

a 
x 

y=ax+b 
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Transport-diffusion-reaction equation and its adjoint 
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Adjoint integration “backward in time” 

How to make the  

parameters of resolvents i  

M(ti-1,ti) available in reverse 

order?? 
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CONTRACE 
Convective Transport of Trace Gases into the upper 

Troposphere over Europe: Budget and Impact of 

Chemistry 

Coord.:  H. Huntrieser,        DLR 

 

flight path Nov. 14, 2001 
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CONTRACE  
Nov. 14, 2001 north (= home) bound 

O3 

H2O2 

CO 

NO 

1. guess   assimilation result  observations flight height [km] 
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4. Observation errors are varying and  

representativity of observations are diverse 

 

Background (forecast) error 

correlation can bridge gaps 

according to subgrid scale land 

use information:  

e.g. from forest to forest 

Example: Analysis increments 

using the novel background error 

covariance matrix formulation 

la
n
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s
e

 m
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5. Observations often indirectly related to 

parameters of interest: Remote sensing 

level 0: detector tensions: 

digital data 

level 1: calculate 

spectra 

level 2: calculate located 

geo data (say: y=[NO2] ) 

level 3: “analysis 

fields” (say NO2) 

Example: 

SCIAMACHY 

Retrieval: 

Solve the model equivalent: 

radiative transfer equation H(x) 

 

Calculate difference (y – H(x)),  

and assimilate 
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ENVISAT 
SCIAMACHY,  

GOMOS;  

MIPAS 

AATSR 

TERRA 
MOPITT, MODIS 

MetOp-1 
IASI, GOME-2 

AURA 
OMI, HRDLS, MLS, TES 

AQUA 
 AMSR-E, MODIS,  AMSU 

AIRS, HSB, CERES 

A train 

AQUA (2002) AMSR/E: clouds, 

radiation and precipitation , 

MODIS: clouds, radiation, 

aerosol and vegetation 

parameters , AMSU, AIRS, HSB 

temperature and humidity, 

CERES radiation   

Main observational data 
(spaceborne) 

AURA (2004) MLS trace gases of 

the upper troposphere to upper 

stratosphere, + water HIRDLS, 

temperature and trace gases in the 

upper troposphere, stratosphere and 

mesosphere  TES trop. ozone and 

some photochemical precursors ; 

OMI total column ozone and NO2 

and UV-B radiation .  

ENVISAT (2002-2012) MIPAS, 

SCIAMACHY, GOMOS 

temperature, ozone, water vapour 

and other atmospheric constituents 

(ii) AATSR, MERIS aerosoll, 

MERIS sea colour , ASAR land 

and ocean images  RA-2 land, ice 

and ocean monitoring, MWR water 

vapour column and land surface 

parameters DORIS cryosphere 

and land surface parameters  

TERRA  (1999).ASTER,land 

surface, water and ice, 

CERES radiation, MISR 

radiation and biosphere 

parameters; MODIS biological 

and physical processes on 

land and the ocean; MOPITT  

CO and CH4 in the 

troposphere, . 

MetOp-1 

IASI 

ozone, 

NO2, 

GOME-2 

ozone 

SO2 NO2 

formaldeh

de 
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Satellite information: 

ESA UV-VIS satellite footprints  Ruhr area comparison 

minimal areas: 

GOME 1 320 x 40 km2 

(special mode)       80 x 40  “ 

SCIAMACHY   60 x 30  “ 

GOME 2   80 x 40  “ 

OMI    24 x 13  “ 

Ruhr area domain     90 x 80 km2 

1 km resolution 

(~12 000 000 inhabitants) 
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Generalized cost function to be minimized 

4. Observation errors 

 and  

errors of representativity 

3. Forecast errors  

1. Model constraint and  

time propagator (resolvent) 

5. Observation operator 

2. Background term for 

artificial over-determination 
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Question: Which parameter to be optimized? 

Hypothesis:  

initial state and emission rates are least known 

emission biased model state 

only emission rate opt. 

only initial value opt. 

true state 

observations 

time 

co
n
ce

n
tr

at
io

n
 

joint opt. 
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Terminology 

Inverse Modelling 

The inverse modelling problem consists of using the actual result of 

some measurements to infer the values of the parameters that 

characterize the system. 

     A. Tarantola (2005) 
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Data Assimilation in general 

 The ambitious and elusive goal of data assimilation is to 

provide a dynamically consistent motion picture of the 

atmosphere and oceans, in three space dimensions, with 

known error bars. 

M. Ghil and P. Malanotte-Rizzoli (1991) 
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Objective of atmospheric data assimilation 

"is to produce a regular, 
physically consistent 
four dimensional 
representation of the state 
of the system 

from a heterogeneous array 
of in situ and remote 
instruments 

which sample imperfectly 
and irregularly in space 
and time.   

Data assimilation  

extracts the signal from noisy 
observations (filtering) 

  interpolates in space and time 
(interpolation) and 

  reconstructs state variables that 
are not sampled by the 
observation network 
(completion).“ (Daley, 1997)  
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radiation 

 

 

  

 

Information sources and theories 

•contol theory 

•statist. filter theory 

•classical numerics 

•optimisation algorith. 

 

 

 

 

 

 

 

 

 

 
 

Interpolation 

in space and time 

Filter  

error affected  

data 

Completion 

non-observed 

parameters 

Information set 

 

 

 

 

 

 

 

 

 

 

 

 

declarative information: 

•observations/retrievals 

•forecasts 

•“Climate” statistics, 

•error statistics  

procedural Information 

differential equations 

models 

A
d

v
e

c
ti
o

n
 

4D-consistent 

process description 

aeroso

ls 

aqueou

s 

phase 

chem. 

micro-

physics 

gas- 

phase 
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NOx 

1.5 x 

 

 

 

  1 x 

 

 

 

 

 0.6 x 

 
VOCs 

0.6 x                  1 x                            1.5 x 

0.6 x                   1 x                          1.5 x 

Ozone:  

NOx-VOC  

emissions  

variation 

ensemble  

(21.7.1998,  

15:00 

UTC) 

Note: 

not 

C-orthogonal, 

not max. 

sensitivities 

aligned 

How can I select “good”simulations? 
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x=54 km 

Which is the requested resolution? 

BERLIOZ grid designs and observational sites  

 (20.21. 07.1998) 

x=18 km 

x=6 km 

x=2 km 

C
o

n
tr

o
l 

an
d
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ia

g
n

o
st

ic
s 
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Some BERLIOZ examples of  

NOx assimilation (20.21. 07.1998) 

NO 

NO2 

 Time series for selected NOx 

stations on nest 2.  

+ observations,  

-- - no assimilation, 

-____ N1 assimilation (18 km),  

-____N2 assimilation.(6 km),  

-grey shading: assimilated 

observations, others 

forecasted. 
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NO2,        (xylene (bottom), CO (top)  SO2 . 

Emission source estimates by inverse modelling 

Optimised emission factors for Nest 3 
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Nest 2:  (surface ozone) 

 (20.21. 07.1998) 
without 

assimilation 
with assimilation 
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2. Analyses, Example (ii): 

Zepter 2: 4D-var assimilation of particle number densities 
 
Flight 14 assimilation of PND (0.005-3.0 µm) 02.11.2008 (11-15 UTC)  

First Guess 

Analysis 

Measurement 

airship altitude 

terrain height 

P
N

D
 [
c
m

-3
] 

A
ltitu

d
e

 [m
] 

(from Lars Nieradzik, PhD thesis 2011) 

water solubles include Friese and Ebel, 2010: 

Lake Constance 

flight domain 
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2. Analyses, Example (ii cntd.): 

Flight 14 assimilation of PND (0.005-3.0 µm), Nov. 2 
Analysis increment (Analysis – Background) 

Aitken mode  PND Acc. mode PND 

(~ 450m a.g.)  4 hour assimilation  

5 km grid 

from Lars Nieradzik, PhD thesis 2011 
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Thank you for your attention! 
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2 Questions: 

 

1. Spatial optimisation only (no time evolution involved): How 

does a closed formula for the optimum read? 

 

 

2. Temporal optimisation:  How can we integrate “backward in 

time” with an adjoint model MT for an optimum at initial time? 

 

 


