

nysby Żsysbadyn-ab bsby-mianb Gin-abab bsby-ibagm ybayymbadyda

CTA

Cherenkov Telescope Array: Reflector Design Study

Zara Bagdasarian Ivane Javakhishvili Tbilisi State University

DESY

Supervisor: Gareth Hughes

May 4th 2010

CGSWGP Georgian-German School and Workshop in Basic Science 2010

Zara Bagdasarian e-mail:zara_bagdasarian@hotmail.com Short CV

EDUCATION:

Receiving Bachelor's degree in Theoretical Physics (June 2010)

Deutsches Electronen Synchrotron (DESY) Summer Student Program 2009

SCHOLARSHIPS:

Presidential scholarship WORLD FEDERATION OF SCIENTISTS' SCHOLARSHIP

Georgian-German Workshop CSSWHP_2010 2.

Outline

Cherenkov Telescope Array: the next generation facility for gamma-ray astronomy

Physics's goal

Current Telescopes: MAGIC, HESS, VERITAS, CANGAROO

Future: CTA Cherenkov Telescope Array – an advance facility

Obtection of gamma rays Cherenkov Telescopes

Oavies-Cotton design

Importance of Raytracing

Raytracing of Parabolic Mirror

Comparison of arrival Time spread

Point Spread Function

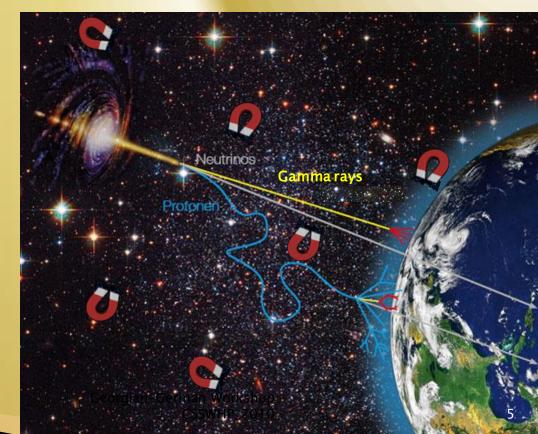
Results and conclusion

Physics's Goal

The mal radiation: keV energy range

Exploring the Non-Thermal Universe: up to 10²⁰ eV

Sources of high energy particles in Cosmos: Supernovae, Pulsars and pulsar nebulae, Binary stars, Black holes, Relics of the g Bang.


Classification of the acceleration mechanisms

Georgian-German

Gamma Ray Astronomy?

Gamma rays point back directly to the sources

- Flux of gamma rays decreases rapidly with increasing energy
- Large effective detection area: ground-based telescopes
- Satellite telescopes: primary rays (only GeV)

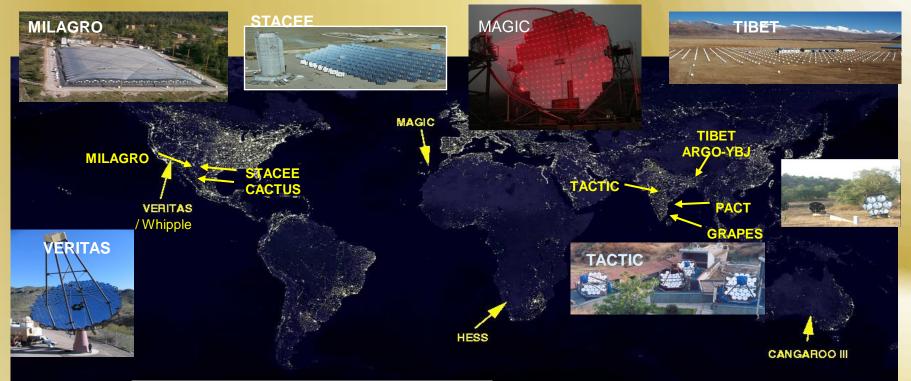
Extensive Air Shower

~ 10 km

Gamma ray

Particle shower

Cherenkov light cone

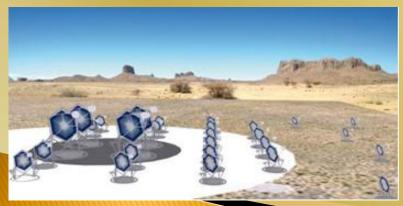

Birth of secondary particles

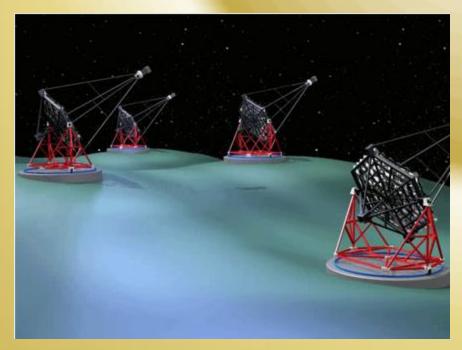
Sif v>c/n, emission of Cherenkov light

Detection of Cherenkov light by telescope: Imaging Atmospheric Cherenkov Technique

0.05° resolution marks the upper limit for achieving gamma ray-hadron showers discrimination

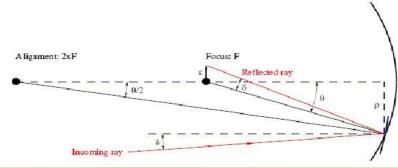
Ground-based γ -ray astronomy in the World: exploring several TeV




Cherenkov Telescope Array: above 100 TeV

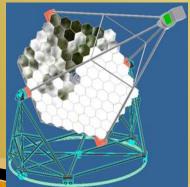
Two arrays: Northern and Southern Hemispheres': full sky coverage

Southern(10GeV-100TeV): mixed array of 50-100 telescopes with 23m, 12m, 6m diameters


DESY Zeuthen: designing and simulating performance of 12m telescope

Reflector Geometry: Raytracing

- Accurate prediction of optical performance for imaging system, including tessellated reflector geometries.
- Light randomly distributed across the mirror from a source point in infinity
- Hit point on the mirror is found:corresponding normal, and therefore reflection vector (untill 1000000 succesful rays are traced onto the camera face
- Before the advent of fast computers Third Order analysis was used, not applicable to the tessellated reflectors


Choice of Reflector Geometry: Parabolic **Davies-Cotton**

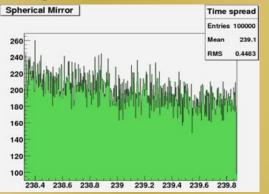
OINTIALLY DESIGNED AS SOLAR concentrator

Spherical support

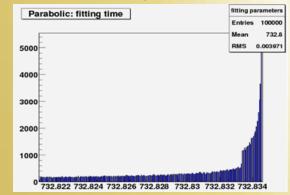
Spherical facets with 2x radius of curvature

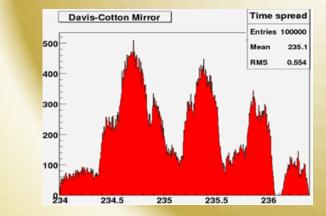
•Paraboloid of revolution $z = \frac{x^2 + y^2}{a^2}$ $\mathbf{a} = \mathbf{b}$

symmetry


•Rotational $z(r) = \frac{r^2}{4f}$

•Obtained the equation of normal for any point on the mirror in terms of focus $z'(r) = -\frac{2f}{R}r + z(R) + 2f$


where (R, z(R))is the point on the mirror

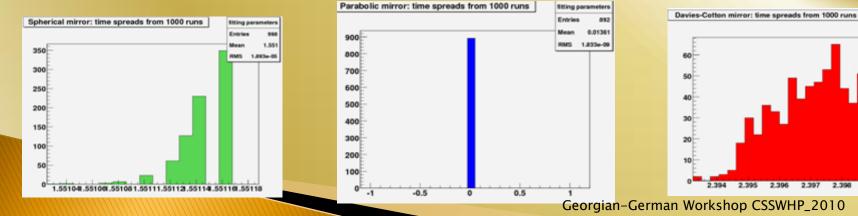

I edited Ray Tracing codes to obtain photons' arrival time at the camera

Histograms of arrival time of 1, 000, 000 successful photons

Timing(f/d=1.5)

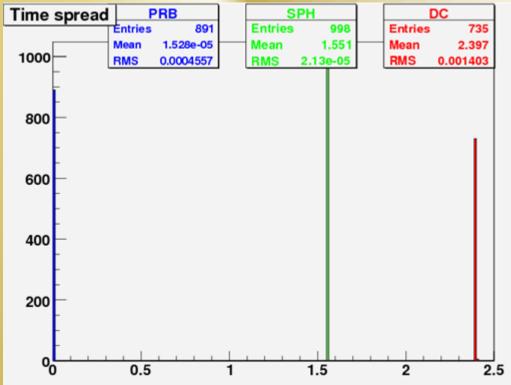
fitting parameters

736


2.391

Entries

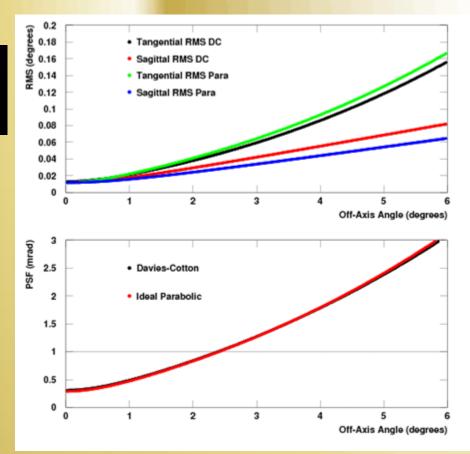
RMS 0.001409


2,399

After many iterations of simulations, I made histograms of distribution of arrival Time spreads

Comparison

- Putting all three histograms on one scale:
- Mean values of arrival time:
- Parabolic mirror:0.015Spherical mirror:1.55Davies-Cotton mirror:2.397
- As far as flashes of Cherenkov lights last only for few nanosecs, isochronous arrival at camera is very important



Point Spread Functions

Response of an imaging system to a point source.

RMS root-mean square deviations of the ray's actual image coordinates from centroid position are reasonable measure of optical spot size

Real Davies-Cotton ~ Ideal Single parabolic

Point Spread Function, as the function of Off-Axis Angle

Georgian-German Workshop CSSWHP_2010

Conclusions:

Simulation of performance for Spherical, Davies-Cotton, Single parabolic mirror was performed in C and analyzed in ROOT

Parabolic mirror showed good timing and PSF. Results of this work were put in DESY Design Report

Current status of CTA: proposed design's costs are checked. In 2010–2011 prototype telescopes will be built

Deep investigation of galactic sources, the central part of our Galaxy, and also the observation of extragalactic objects.

REFERENCES:

- 1. www.cta-observatory.org
- 2. F.A. Aharonian Very High Energy Cosmic Gamma Radiation.
- 3. Richard J. White Rise Time Simulated VERITAS 12m Davies-Cotton Reflector.
- 4. Albert Schliesser, Razmik Mirzoyan: Wide field prime focus Imaging Atmospheric Cherenkov Telescopes: A systematic study.
- 5. Astrophysics with H.E.S.S: www.mpihd.mpg.de/hfm/HESS/pages/about/physics

6.Pratik Majumdar: Lectures for Summer Students: Astroparticle Physics