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Qutline

e Is numerical analysis important ?

> Low accuracy of numerical schemes can not
be compensated by means of increasing
computational power

> Qualitative properties of exact solution must

be respected otherwise numerical models can
fail



Qutline

* Some approaches

° need for large time step?
locally one directional implicit schemes
> need for refinement and derefinement!?

multischeme:

* enables dynamic adaptation of computational meshes and
discretization schemes
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Is development of new numerical

methods important!?
* model = set of equations
* development of new model

o properties of solutions

o elaboration of numerical schemes
> studying convergence theoretically
> coding, implementation

o construction of test cases

> studying convergence practically

* Expensive — is it worth of efforts!?



Problem |, governing equation
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Problem |, numerical schemes

Standard cell centered
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Standard scheme:

Equilibrium scheme:
irregular FV mesh,

high accuracy

smoothed FV mesh,
low accuracy
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Problem |, Laptop vs PC Cluster

e Solve 2D problem on a Laptop using equilibrium scheme

e Solve the same one dimensional problem on a PC Cluster
using standard scheme

o Compare:
o Computing time

o Accuracy

« Laptop data:
« INTEL P3 800Mhz
« 128MB RAM

« PC Cluster data:
» INTEL P4 Foster XEON 2Ghz
« 2GB RDRAM



Problem |, Laptop vs PC Cluster

Function z(x,y) in the source term

Source and ET solution .
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Problem |, Laptop vs PC Cluster,

Results

Laptop

» 98 nodal points

« Computing time 25sec.,
* Error 8.9E-6

PC Cluster
* 1000 nodal points per CPU

« Computing time

Processors 2 | b 16

C — norm 0.0156 7.8-107% 30.107% 1.9.10°
L' — norm 0.0130 3.8-107% 98.101 ¢

—

)
C'omputing time(sec.) 32 7 147 512




Problem |: Conclusion

e Low accuracy of numerical schemes can not be
compensated by means of increasing
computational power



Problem 2

e Computational domain = unit circle

e Initial value = 0

e Boundary value = |

* Gouverning equation = inviscid Burgers
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Problem 2,"equivalent” form of
governing equations
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Problem 2,theoretical estimate of
propagation speed

* Original = 0.5
e Nonconservative = |

e Change of variables = 1/3



Problem 2, numerical results
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Problem 2, analysis

e Scheme Based on Transformation of Variables
Produces Wrong Propagation Speed

e Mesh Refinement Does not improve

Accuracy of the Scheme Based on Variable
Transformation

e Scheme Based on Variable Transformation
Converges to Wrong Solution

e Mesh Refinement Improves Accuracy of the
Scheme in Original Variables



Analysis

* Non Conservative Scheme Produces VWrong
Propagation Speed

* Mesh Refinement Does not improve
Accuracy of the Nonconservative Scheme

* Nonconservative Scheme Converges to
Wrong Solution

e Mesh Refinement Improves Accuracy of the
Conservative Scheme



Problem 2, conclusion

e Smoothness of solution was not taken into
account and entropy condition is not valid that
lead to wrong solution

\

e Qualitative properties of exact solution must be
respected otherwise numerical models can fail



Good Numerical Model

* Produces accurate enough solution at low
computational cost

> computational time
° storage/memory

> number of processors



Method of Decomposition

e Universal approach
e Results in efficient methods
e Main idea:

> reduce complex problem to several sub
problems of less complexity

e Example:
> exp(A)exp(B)=exp(A+B)

e Difficult to implement in complex
computational domains
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Cubed sphere

22



Cubed Sphere
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Locally one directional schemes,
implicit, large time steps

Approach:

e Derive semidiscrete monotone finite volume
scheme in usual way




Locally one directional schemes for

hedral hexagonal mesh !
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Numerical schemes

* Explicit
° ease to implement
> low computational cost for one time step
> small time steps

* implicit
o difficult to implement
> higher computational cost per time step
° large time steps

* What approach is more appropriate and
when?



Numerical schemes

e First order accuaracy
° ease to implement

> low computational cost for one time step
» Higher order of accuracy

o difficult to implement

> higher computational cost per time step

 Which order of accuracy is more
appropriate and when!



Meshes

* Fine
° better represents geometry
° better represents approximate solution
° contains more nodal points, expensive
* Rough

> cheaper, sometimes sufficient to produce
accurate enough solution

* What kind of mesh is more appropriate
and when!



Formulation of coupling problem

% Accuracy of computation is affected by
“+accuracy of numerical scheme
“+mesh

“+smoothness of exact solution

x Approach
“+use different numerical schemes in one algorithm

“+use different space and time steps in one
algorithm

+use smothness of solution to decide which one
(scheme or mesh) to apply



New approach: multischeme

e one mesh with two different schemes

° incorporate two numerical flux functions in
one scheme for computations in one nodal
point

* two meshes with one scheme

> use summing up of numerical flux functions
corresponding to smaller time step

 coupling the above two approaches



space-time meshes
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hyperbolic conservation laws
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Entropy condition

xSmooth solution does not exist in general
% Weak solution is not unique

% Entropy condition ensures uniqueness
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monotone schemes
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* Numerical flux function A(u,v)

> consistency A(u,u) =A(u)
° monotonicity

o smoothness



cfl condition and convergence

%(max | 4 (u,v)] +Max, o, A (u,v)) =1

ulvisug .

% Apriori estimates:
<+ uniform bound on approximate solutions
<+ uniform bound on total variation
“+discrete cell entropy inequality

x Compactness of approximate solutions
x Convergence

<+limit of the discrete entropy inequality
<++uniqueness of entropy solution



multischeme
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convergence theorem
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Theorem. Approximate solutions constructed by
multischeme algorithm with fixed maximum L levels
of refinement converge almost everywhere to the

unique entropy solution of (1),(2) as h—0 under
supposition that CFL condition (24) is valid.



Refinement and derefinement

Refinement and derefinement

h_init - initial step of nonuniform mesh;

h_uni - step of uniform mesh, is equal to minimal step of nonuniform mesh

k - when (u;-u;,;)>Kmax*h, h decrease 2-times and saves the value during k+1 steps
(hmin=h_init/10)

k - when (ui-u;,;)<Kmin*h, h increase 2-times and saves the value during k+1 steps
(hmax=3*h_init)

Example

interval [-1,1] h_init=0.1 Kmin=0.3 Kmax=0.5 k=3 h_uni=0.0125

Comparison with uniform mesh
N uni=2/0.0125=160; N_nonuni=49; difference=111;
N_uni/N_nonuni =3.265 (number of nodes in uniform mesh is appr. 3-times) , number of nodes in

uniform mesh compared to nonuniform mesh increases appr. 226.5 %
((N_uni- N_nonuni)/ N_nonuni =2.265).



Refinement and derefinement

Example

interval [-1,1] h_init=0.1 Kmin=1 Kmax=1 k=3 h_uni=0.0125

Comparison with uniform mesh

N_uni=2/0.0125=160; N_nonuni=34; difference =126;

N_uni/N_nonuni = 4.71 (number of nodes in uniform mesh is appr. in 5-times), number of nodes in

uniform mesh compared to nonuniform mesh increases appr. on 371 %- ((N_uni- N_nonuni)/
N_nonuni =3.71).

( I, x<-0.5 ( I, x>0.5
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From simple equations to real models

» Systems of conservation laws

o numerical flux formulation

* Several space dimensions

o Cartesian meshes, triangular meshes, arbitrary
finite volume

> summing up numerical fluxes corresponding
to smaller time steps along interfaces
between different meshes



Possible applications

* Problems formulated in the form of
mathematical models : partial differential
equations, conservation laws

 Solution of the problem on some subdomains
changes very fast while on other subdomains —
slowly

o Application of the uniform mesh is not suitable,
large nbr of unknowns, computational cost



Possible applications:
need for numerical scheme

* high order for rough meshes and first
order for fine meshes

o explicit scheme for large space steps and
implicit scheme for small space steps

e nonconservative formulation —
multischeme for source terms

e from multischeme to multimodel: coupling
of different different models via flux
function?



Related problems

e What if initial datum has no bounded
variation?

* What kind of compactness arguments can
be used in several space dimensions!?

e Data structure?

e Parallelization — load balancing



Thank you very much for your attention



