

High-intensity Lasers & Particle Physics

May 4, 2010 | Tbilisi State University | Markus Büscher

Conventional particle accelerators <u>Example</u>: LHC/CERN

Conventional (RF) accelerators

Need for novel approaches

Laser particle acceleration

... some fundamental facts

Lasers ... in everyday life

Information technology

Signal transport, data storage, laser printer, barcode scanner...

Analytics

Length and time measurement, spectroscopy...

Industrial applications

Manufacturing, cleaning...

Medicine Surgery, cicatricial therapy...

Laser in industry *

Development of Laser intensities

May 4, 2010

Laser: basic properties

LASER = <u>"Light Amplification by Stimulated Emission of Radiation"</u>

Laser: basic properties

Laser: basic properties

Nowadays peak powers up to Petawatt = 10^{15} Watt are available (*e.g.* 1 Joule in <u>1 fs</u>)

Extreme conditions

In the core of the sun, the <u>energy density</u> is about 10¹⁰ J/cm³

The energy density produced by a pulse of 500 J and 1 ps in duration, focused into a 5 μ m focal spot, is about 10¹¹ J/cm³

The light pressure is in the order of Gigabar (10⁹ atm)

This is the basis for the enormous <u>application potential</u> of powerful lasers

Laser-induced particle acceleration

Laser-plasma interaction lon Laser pulse Electron L=cτ Some electrons are pushed out ("ponderomotive force") Some electrons oscillate đ ("wake fields")

Laser-plasma interaction (simulation)

Wake fields

Wakefield acceleration

Wavebreaking Energy gain in the wave

"Bubble" acceleration

RF vs. Laser acceleration

RF cavity

Time = 0.74 [ps] 60 10^{-10} 10

1 m 1 MV/m } 1 MeV 100 μm 100 GV/m }10 MeV

Plasma "cavity"

Our experiments

Institut für Kernphysik, FZ Jülich Jülich Supercomputing Centre

Fachhochschule Aachen/Jülich Technical University Cologne RWTH Aachen Hochschule Merseburg (FH)

Institut für Laser- und Plasmaphysik, Univ. Düsseldorf

Institute für Laser- und Plasmaphysik, Univ. Düsseldorf (Prof. O.Willi)

 PULSAR Ti:Sapphire Laser: 100 TW, 800 nm
 ~ 2,5 Joule, less than 25 femtoseconds focused on 10 microns

DARCturus: powerful & high contrast

Target chambers

target in chamber T2: gas jets

target in chamber T2: foils

Measurements: He Gas Target

Pulsed gas jet: Supersonic expansion up to 3.10²⁰ particles/cm³ (~10 bar)

Measurements: He Gas Target

Main pulse:

Up to 2 J in 25 fs focused in 15 μm in diameter focal spot Pulsed gas jet: Supersonic expansion up to 3.10²⁰ particles/cm³ (~10 bar)

Measurements: He Gas Target

Probe pulse:

Few mJ @ 25 fs frequency doubled

Main pulse:

Up to 2 J in 25 fs focused in 15 μm in diameter focal spot Pulsed gasjet: Supersonic expansion up to 3.10²⁰ particles/cm³ (~10 bar)

Gas target: schematic layout

Plasma observation: shadow images

60 TW, 7.8 bar He

Images reveal plasma development and rapid filamentation Time resolution: few 10 fs (!)

Particle detection

bunches of many particles, extremly high particle rates

use detectors without dead time

photofilms: calibrated, usable only once

image plates: usable several times not calibrated

CR-39: usable only once insensitive to xrays and photons etching with NaOH and scanning reveals crates produced by particles

none of the detectors can be read out online

Real-time detectors

Test chamber for electron and proton detection

few 10⁹ electrons

Electron acceleration in gas target

Time stability of electron beams

40 fs 23 bar He

Permanent quadrupole magnets

4 neodym magnets in an aluminium housing

20-40 mm distance from beam-axis to pole

-> according to calculations 7.5 – 20 T/m

readjustable between measurements

Capture of accelerated particles

Quadrupole doublet

Target Normal Sheath Acceleration (TNSA)

H. Schwörer et al., Nature 439, 445 (2006)

Target Normal Sheath Acceleration (TNSA)

Measured proton spectra from foil targets

Data: T. Toncian

Maximum proton energy

Limited mass targets

Accumulation of protons in regions with high field strength Reduced reflux of electrons from the target

1d-targets: micro-filaments Target material: H₂O, N₂, Ar, Xe ...

Small distance nozzle ↔ plasma (max. few mm)
radiation damage, limited space

Not for pure Hydrogen

Point-like targets

Drops from H_2O , D_2O , Ethanol, ...

S. Ter-Avetisyan et al., PRL 96, 145006 (2006)

Small distance nozzle ↔ plasma (max. few mm) → radiation damage, limited space

Not for pure Hydrogen→No pure Target for Proton acceleration

Pellet Target: Principle

Frozen Pellet Target (FZJ, ITEP, MPEI)

Frozen pellets \varnothing ~ 20 μ m

H₂, N₂, Ar (D₂, Kr, Xe)

Pellet rate ~10 kHz

Pellet velocity ~80 m/s

Pellet beam $\emptyset < 1 \text{ mm}$

Hydrogen pellets as target

2-D Simulations from the JSC Jülich Laser pulse with λ =1 µm and fokus Ø =10 µm hits a 10 µm frozen H₂ pellet

maximum proton energy can further be increased (factor 4) by optimization of the focus size

Polarized Beams?

Field strengths: ~1000 T

Field gradients: ~10⁸ T/m (typical Stern-Gerlach exp.: 100 T/m)

Figure: Bulanov et al ., Phys. Rev. Lett. 98, 049503 (2007)

The end ...

