The Quest for Polarized Antiprotons

Spin Physics, Medieval Warfare, and Medical Applications

May 03, 2010 Frank Rathmann

4th Georgian – German School and Workshop in Basic Science
Tbilisi, Georgia
What do we mean by „polarized“?

Most particles possess a magnetic moment, → they behave like little magnets

Unpolarized ensemble of particles (e.g. protons)

\[
\begin{align*}
\Delta E &= 2\mu_p B \\
m_1 &= -\frac{1}{2} \\
m_1 &= +\frac{1}{2}
\end{align*}
\]

\[
P = \frac{N_\uparrow - N_\downarrow}{N_\uparrow + N_\downarrow} \\
\approx \frac{\mu_p \cdot B}{k_B \cdot T} \\
\approx 5 \cdot 10^{-6}
\]

Polarized ensemble of particles

\[
P = \frac{N_\uparrow - N_\downarrow}{N_\uparrow + N_\downarrow} = \frac{7 - 0}{7 + 0} = 1
\]
Picture polarized particles (stored in a ring or in a target)
Outline

- Basics
- Medieval Warfare
 - Storage Rings and Internal Targets
- Quest for Polarized Antiprotons
- Medical Application of Polarized Targets
Medieval Warfare, Storage Rings, and Internal Targets

South of France, between Toulouse and the Mediterranean
Carcassonne
Fortress built by Philippe III (the Strong) (1270-1285)
Medieval Warfare

Multiple use of a projectile oscillating in a potential well.

Frank Rathmann
The Quest for Polarized Antiprotons
Internal Target in a Storage Ring

H, D, etc.
\(^{\textbf{\textit{H}}}, ^{\textbf{\textit{D}}}, ^{\textbf{\textit{3\ He}}} \)

Target

orbiting beam of projectiles

Storage Ring: Re-usable Projectiles
Application of the Carcassonne principle (type I)
After each wall collisions, atoms can intercept beam again.

Storage cell Target: Re-usable target atoms

Carcassonne principle (type II)
Outline

- Basics
- Medieval Warfare
 - Storage Rings and Internal Targets
- **Quest for Polarized Antiprotons**
- Medical Application of Polarized Targets
The basic concept

We have proposed a method to polarize antiprotons by „spin-filtering“.
New initiative, driven by the FAIR-project at GSI

(How) is it possible to provide polarized antiproton beams in HESR?

High Energy Storage Ring (HESR) for a beam of antiprotons
"Transversity" in polarized proton - polarized antiproton Drell-Yan collisions:

\[
A_{TT} \equiv \frac{d\sigma^{\uparrow\uparrow} - d\sigma^{\downarrow\downarrow}}{d\sigma^{\uparrow\downarrow} + d\sigma^{\downarrow\uparrow}} = \hat{a}_{TT} \sum_q \frac{e_q^2 h_1^q(x_1, M^2) \bar{h}_1^q(x_2, M^2)}{\sum_q e_q^2 q(x_1, M^2) \bar{q}(x_2, M^2)}
\]
Hadron Physics „Dream Machine“ for FAIR

… an asymmetric (double-polarized) proton (15 GeV/c) – antiproton (3.5 GeV/c) collider using HESR, CSR and APR

Frank Rathmann

The Quest for Polarized Antiprotons
Production of polarization in a stored beam

For an ensemble of spin $\frac{1}{2}$ particles with projections $+$ (↑) and $-$ (↓)

![Diagram showing selective loss and selective flip]

selective loss

discard (one) substrate
(more than the other)

selective flip

reverse (one) substrate
(more than the other)

→Selective flip preferred (no loss in intensity)!
Polarization build-up

repeated passage through a polarized target in a storage ring:
Polarization Buildup

Unpolarized anti-p beam

Polarized target

Polarized anti-p beam

Polarized target
Spin-filtering studies at COSY

Experimental setup:

- low-ß section
- Atomic Beam Source
- Breit-Rabi polarimeter
- Openable storage cell
- Si tracking telescopes
PAX at the AD (the only place worldwide)

Siberian snake

Electron cooler

PAX target section
Outline

- Basics
- Medieval Warfare
 - Storage Rings and Internal Targets
- Quest for Polarized Antiprotons
- Medical Application of Polarized Targets
Polarized 3He for NMR’s of the human lung (Werner Heil)

Spin-Off of Polarized Gas Target Technology

Human Lung with 0.7 bar \times liter of polarized 3He

$P_H \sim m \cdot B/kT$
$\sim 5 \cdot 10^{-6}$

$P_{He} \sim 1$

$\rho_H/\rho_{He} \sim 2500$

signal $P \cdot \mu \cdot \rho$
$S/S_H > 10$

amount of gas: 1 bar \cdot liter

Proton - MRI (1H)

DKFZ, HD Nov. 1995;

Helium - MRI (3He)

Lancet 1996
Gas delivery to partners

Research & Training Network (RTN)
Marie Curie Actions
FP 6 (2007-2011)

PHeLINet
Polarized Helium Lung Imaging Network

Feasibility of functional magnetic resonance lung imaging in Australia with long distance transport of hyperpolarized helium from Germany

≈ 100 shipments / year @ 500 bar·litres
Hyperpolarized 3He administration

- volume-control: $\Delta V/V = 3\%$

- gas administration at predefined times during inspiration

- on-line polarimetry

- use of gas mixtures (3He, 129Xe), (3He, SF$_6$)

- gas recovery !!!

(shortage of 3He)
Techniques and practices for HP gas production and delivery

Central 3He gas production facility

3He recovery

3He administration

3He storage, transport, and polarimetry
Functional NMR using 3He

Dynamic Radial Projection MRI of Inhaled 3Helium Gas – Emphysema patient

Images courtesy of Jim Wild
“Man muß etwas Neues machen, um etwas Neues zu sehen.”
“You have to make (create) something new, if you want to see something new”
Polarized Antiprotons receive ERC Grant

a nice Xmas present

Brussels, 21/12/2009
ERC.C1-D(2009)/602641

Prof. Hans STRÖHER
Forschungszentrum Jülich GmbH
Institute for Nuclear Physics
Leo-Brandt-Str.
DE-52425 Jülich

Sent by electronic mail only

Programme “Ideas” - Call identifier: ERC-2009-AdG
Proposal No 246980 - POLPBAR

1584 ERC AdvG Proposals submitted
• 236 selected (15% success rate)
 – Life Science (89)
 – Social Sciences & Humanities (42)
 – Physical science & Engineering (105)
 o PE2-Fundamental constituents of Matter (11)
International Spin Physics Committee

E. Steffens Erlangen (Chair)
T. Roser BNL (Past-Chair)
M. Anselmino Trieste
F. Bradamante Trieste
E.D. Courant* BNL
D.G. Crabb Virginia
A.V. Efremov JINR
G. Fidecaro* CERN
H. Gao Duke
W. Haeberli* Wisconsin
K. Hatanaka RCNP
K. Imai Kyoto
A.D. Krisch Michigan
G. Mallot CERN
A. Masaike* Kyoto
R.G. Milner MIT
R. Prepost Wisconsin
C.Y. Prescott* SLAC
F. Rathmann Jülich
H. Sakai Tokyo
Y.M. Shatunov Novosibirsk
V. Soergel* Heidelberg
E.J. Stephenson Indiana
N.E. Tyurin IHEP-Protvino
W.T.H. van Oers* Manitoba

Local Organizing Committee

H. Ströher Jülich (Chair)
F. Rathmann Jülich (Co-Chair)
K. Aulenbacher Mainz
B. Badelek Warsaw
R. Beck Bonn
S. Bertolucci CERN
N. d’Hose Saclay
E. DeSanctis Frascati
M. Garçon Saclay
Ch. Hanhart Jülich
E.M. Kabuñ Mainz
A. Kacharava Jülich
N. Kalantar-Nayestanaki Groningen
A. Lehrach Jülich
P. Lenisa Ferrara
F. Maas GSI & Mainz
R. Maier Jülich
U.-G. Meißner Jülich & Bonn
W. Meyer Bochum
S. Paul München
J. Ritman Jülich
G. Rosner Glasgow
A. Schäfer Regensburg
T. Sefzick Jülich
A. Sissakian JINR
P. Thorngren-Engblom Stockholm
C. Wilkin London

Frank Rathmann

The Quest for Polarized Antiprotons