Design Study of HESR and CSR at FAIR

- The FAIR facility
- HESR design criteria
- Future upgrade prospects
- Summary

The FAIR Facility

The Staging Plan for Construction

SIS 100

<u>Political request since early 2003:</u> "Build FAIR complex in three stages in order to guarantee physics output at each stage"

The Costbook Rev. 3.0

Investment Cost:

- Accelerators w/o sFRS* 592 M€ Civil Construction 322 M€ Experiments incl. sFRS 200 M€ 1114 M€ Sum Manpower 2400 FTE 185 M€
- according to FCI (1 FTE=77k€/y)

Project Cost

1299 M€

"The Costbook reflects the present status of the estimate. The facility costs are evaluated on a component basis and then aggregated for the subsystems and finally for the total facility.

This adds up to a total of 1114 M€ in investment cost."

*sFRS equivalent 81 M€

D. Krämer June 19th, 2006

Costbook Version 2.67

2.11	HESR		65.831
2.11.1	System Design	0	
2.11.2	Magnets	25.680	
2.11.3	Power Converter	7.257	
2.11.4	RF Systems	2.227	
2.11.5	Injection/ Extraction	156	
2.11.6	Beam Diagnostics	5.336	
2.11.7	Vacuum	1.870	
2.11.8	Particle Sources	0	
2.11.9	Electron Cooling	12.500	
2.11.10	Stochastic Cooling	4.000	
2.11.11	Special Installations	0	
2.11.12	Cryogenics (local)	6.805	

The Antiproton path to HESR

The HESR in the actual Topology

The \overline{p} -beam is injected from RESR at 3.8 GeV/c

- Advantage:
 - Low energy beam lines and injection elements
 - Electron cooling at low energy
- Disadvantage:
 - HESR is a synchrotron
 - Reduced duty cycle

Basic Data of HESR

- Circumference 574 m
- Momentum (energy) range
 - 1.5 to 15 GeV/c (0.8-14.1 GeV)
- Injection of (anti-)protons from RESR at 3.8 GeV/c
- Acceleration rate 0.1 (GeV/c)/s
- Electron cooling up to 8.9 GeV/c (4.5 MeV electron cooler)
- Stochastic cooling above
 - 3.8 GeV/c

Additional Installations

2 compensation dipoles for the PANDA-chicane

Compensation solenoids for PANDA and the electron cooler

System Design

- Ring mainly cold (only short warm insertions)
- 2 Cryogenic subsections, cryogenic bypasses for warm sections

Dipoles	48	3.6 T
Quadrupoles	112	60 T/m
Sextupoles	24	560 T/m ²
Correctors	112	1 mrad

Impression of the segmented 180 degree cryostat

Modes of Operation with PANDA

Experiment Mode	High Resolution Mode	High Luminosity Mode	
Target	Pellet target with 4*10 ¹⁵ cm ⁻²		
rms-emittance	1 mm mrad		
Momentum range	1.5 – 8.9 GeV/c	1.5 – 15.0 GeV/c	
Intensity	1*10 ¹⁰	1*10 ¹¹	
Luminosity	2*10 ³¹ cm ⁻² s ⁻¹	2*10 ³² cm ⁻² s ⁻¹	
rms-momentum resolution	1*10 ⁻⁵ 4*10 ⁻⁵	1*10 ⁻⁴	

Injection Parameters at 3.8 GeV/c for the ...

High Resolution Mode	High Luminosity Mode		
(1*10 ¹⁰ p)	(1*10 ¹¹ p)		
• $\varepsilon_{\rm rms, geom.}$ = 0.1 mm mrad • $\Delta p/p_{\rm rms}$ = 1.5*10 ⁻⁴	• $\epsilon_{rms, geom.} = 0.6 \text{ mm mrad}$ • $\Delta p/p_{rms} = 3.8*10^{-4}$		

High Resolution Mode between 1.5 and 8.9 GeV/c

- Injection at 3.8 GeV/c
 - \succ N = 10¹⁰ p
 - $\succ \epsilon_{\rm rms} = 0.1 \, \rm mm \, mrad$

$$> \Delta p/p_{rms} = 1.5*10^{-4}$$

 Acceleration/Deceleration to required momentum (up to 60 s)

Experiment with electron cooling

September 24, 2006

CGSWHP, Tbilisi

Electron Cooling : HR-Mode @ p = 8.9 GeV/c

Number of antiprotons:	10 ¹⁰	
Initial rms emittance (H):	0.000861	mm mrad
Initial rms emittance (V):	0.000258	mm mrad
Initial rms relative momentum spread:	$2.28 \cdot 10^{-5}$	
Rms-beam radius at cooler (H):	0.3	mm
Rms-beam radius at cooler (V):	0.2	mm
Revolution frequency:	519.40	kHz
Kinematic beta:	0.994	
Kinematic gamma:	9.526	
Frequency slip factor:	0.035	
Luminosity:	$2\cdot 10^{31}$	$cm^{-2} s^{-1}$

- Electron cooling and target ON
- Equilibrium dominated by IBS

Final rms-momentum spread with target and IBS :

3.0 x 10-5

Stochastic Cooling: HL-Mode @ p = 3.8 GeV/c

Transverse and longitudinal stochastic cooling

Including IBS+Target

Final rms-momentum spread: $\approx 1.5 \times 10^{-4}$

September 24, 2006

- The present layout is based on 48 straight dipole magnets in the arcs
- Still under investigation: Costs for curved dipole magnets
 - Increase of momentum acceptance
 - Reduction to 32 longer magnets
 - Reduction of ring circumference
 - Extension in east-west direction reduced by 17 m

Comparison of the HESR lattice with straight or curved dipole magnets

HESR 6fold symmetry circumference 574 m area 99m x 231m

HESR 4fold symmetry circumference 518m (-10%) area 82m x 214m

- Straight dipoles:
 - 48 dipoles with 1.8 m length
 - Sagitta of 38 mm
 - High order field components for the off-center beam
- Curved dipoles:
 - 32 dipoles with 2.7 m length
 - No sagitta
 - Beam is centered in the dipole

Advantage of the curved dipole lattice:

More space between PANDA-hall and Plasma Physics Cave

September 24, 2006

The "symmetric collider" scheme worked out by Yuri Shatunov HESR with p-p option (sketch)

Problems connected to the symmetric collider lattice

CGSWHP, Tbilisi

Preparations in view of the symmetric collider:

- We continue the design of the HESR as planned now
- It is checked if the position of HESR can be moved by 30 m to the South
- This gives space for the future extension in
 North – South direction

Summary

or:

My Personnel View of the HESR tasks

- PANDA is part of the CORE program
 - The layout of HESR to meet the PANDA experimental requirements is finalized
- PAX is a 2nd generation experiment:
 - Buildings and infrastructure for PAX and the additional rings are foreseen
 - An upgrade to the asymmetric collider is taken into account in the planning
 - Electron cooling can be upgraded to maximum HESR energy
- The symmetric collider is a project of the far future
 - The topology of FAIR will foresee space "not to exclude" a later rearrangement of the HESR

Technical Challenges for HESR

- Design of curved dipole magnets (ρ =13 m)
- High bandwidth stochastic cooling system (4 to 8 GHz)
- High energy electron cooler
 (4.5 MeV → 8 MeV)
- Beam dynamic issues for high phase space density beams