

Luminosity for *PAX* project

Alexander Smirnov

Joint Institute for Nuclear Research (JINR) Joliot Curie 6, Dubna, 141980 Russia

http://lepta.jinr.ru/

September 7, 2006

 N_1 and N_2 – total number of particle, σ – rms beam sizes in collision point, f_1 – revolution frequency in first ring, n_2 – number of bunches in second ring

bunch length less than beta-function at interaction point!

September 7, 2006

September 7, 2006

Physical effects defined luminosity

Intrabeam scattering
 Electron cooling
 Beam-beam effect
 Tune shift
 Particle losses

IBS & ECOOL kicks

IBS kick per one revolution period with Gaussian distribution ξ_{rand}

$$\Delta \theta_{j} = \frac{\varepsilon_{j}}{\beta_{j}} \frac{T_{rev}}{\tau_{j}} \cdot \xi_{rand} \qquad \qquad \frac{1}{\tau} = \frac{N_{i} r_{p}^{2} c L_{C}}{8 \pi \gamma^{4} \beta^{3} \varepsilon_{x} \varepsilon_{y} \sigma_{s} \frac{\Delta P}{P}} \cdot \frac{Z_{i}^{2}}{A_{i}} \cdot I_{lattice}$$

ECOOL kick per one revolution period

$$A\theta_{j} = \frac{F_{j}}{m_{i}c^{2}\beta^{2}\gamma}l_{cool} \qquad \vec{F}_{PRF} = \frac{4Z_{i}^{2}e^{4}n_{e}L_{C}}{m_{i}}\frac{-\vec{V}_{i}}{\left(V_{i}^{2} + \Delta_{e,eff}^{2}\right)^{3/2}}$$

here index j corresponds to degree of freedoms, $\varepsilon_{x,y}$ – emittances, r_p – proton radius, N_i – ion number, c – light speed, L_c – Coulomb logarithm, Z_i – ion charge state, A_i – atomic number, σ_s – bunch length, $\Delta P/P$ – momentum spread, e – electron charge, $I_{lattice}$ – integral function over lattice structure, m_i – ion mass, I_{cool} – cooler length, V_i – ion relative velocity, Δ_{eff} – electron effective velocity

September 7, 2006

Space charge limits

(NT

beam-beam parameter

$$\xi_{x,y} = \frac{Z_1 Z_2 r_p}{4\pi A_1} \frac{(1+\beta_1 \beta_2)}{\gamma_1 \beta_1} \cdot \frac{\beta_{x2,y2}^*}{\sigma_{x2,y2}(\sigma_{x2,y2} + \sigma_{y2,x2})} \times \begin{cases} \frac{N_2}{n_2} - bunched\\ \frac{N_2 d}{C} - coasting \end{cases}$$

tune shift

$$\Delta Q_{x,y} = \frac{Z^2 r_p}{2\pi A \beta^2 \gamma^3 \varepsilon_{x,y} \left(1 + \sqrt{\varepsilon_{y,x} / \varepsilon_{x,y}}\right)} \times \begin{cases} \frac{N_1 s}{n_1 \sigma_s} - bunched \\ N_1 - coasting \end{cases}$$

 β^* – beta function at colliding point, $\varepsilon_{x,y}$ – horizontal and vertical emittances, σ_s – bunch length, *s* – longitudinal separatrix length

September 7, 2006

Luminosity via space charge

For PAX experiment we assume $Z_1 = Z_2 = A_1 = A_2 = 1$, $\beta_1 \approx \beta_2 \approx 1$, $\sigma_{x1} = \sigma_{x2} = \sigma_{y2} = \sigma_{y2}$

Luminosity via beam-beam parameter (bunched and coasting beam)

$$L(\xi) = \frac{f_1 \gamma_1}{r_p} \cdot \frac{\xi}{\beta^*} N_1$$

Luminosity via tune shift for bunched

Luminosity via tune shift for coasting

$$L_b(\Delta Q) = \frac{f_1 \gamma_1}{r_p} \cdot \frac{\Delta Q}{\beta^*} \cdot \frac{n_1 \sigma_s}{n_2 s} N_2$$

$$L_c(\Delta Q) = \frac{f_1 \gamma_1}{r_p} \cdot \frac{\Delta Q}{\beta^*} \cdot \frac{d_1}{C_1} N_2$$

$$\frac{L_b}{L_c} = \frac{n_1 \sigma_s}{n_2 s} \cdot \frac{C_1}{d_1} = \frac{10 \cdot 0.3 \text{[m]}}{30 \cdot 15 \text{[m]}} \cdot \frac{150 \text{[m]}}{0.5 \text{[m]}} = 2 \quad -\text{ for CSR}$$

September 7, 2006

βςοοι

BETACOOL assumptions

- General goal of the BETACOOL program is to simulate long term processes (in comparison with the ion revolution period) leading to variation of the ion distribution function in 6 dimensional phase space.
- The ion beam motion inside a storage ring is supposed to be stable and it is treated in linear approximation. Ion beam is presented by array of model particles
- Simplest model of the ring only lattice functions in the location of the effects are necessary.
- Each effect calculates a kick of the ion momentum components and changes the particle number
- One integration step equals some revolution turns

September 7, 2006

Physical Effects involved in BETACOOL code

	🖋 Task Growth Rates 📃 🗆 🗵									
	step multiplier	Rates Evolution Horizont Vertical Long 3D rate			3D rate					
		Electron Cooling								
		Rest Gas	Horizontal Vertical Longitudinal			-0.01237587892	[1/sec]			
	-10 -	Internal Target				-0.01241052959	[1/sec]			
		Collision Point			.	-0.06144860402	[1/sec]			
IL.		Particle Losses								
	5	Intrabeam Scattering	Parti	icle nu	mber	-0.0001700332093	[1/sec]			
		Additional Heating	Calcu	ulate	Find	betacool.exe	Open			
		Stochastic Cooling				- (D-(
		Optical Stoch, Cooling	I ✓ Draw Evolution of Hates							
		Laser Cooling								

September 7, 2006

3D Diagrams for HESR heating and cooling growth rates

RMS Dynamics for HESR (ECOOL+IBS)

	bunc	hed	coasting	
	CSR	HESR	CSR	HESR
Particles	antiproton	proton	antiproton	proton
Momentum [GeV/c]	3,65	15	3,65	15
Length of interaction point [cm]			50	50
Number of bunches	10	30		/) /
Total number of particles	5×10 ¹¹	2,4×10 ¹²	5×10 ¹¹	1×10 ¹³
Beta function at IP [m]	0,3	1	0,1	0,1
Electron cooler length [m]	10	30	10	30
Electron beam current [A]	1	1	1	
Cooling time [sec]	~300	~1000	~250	~1500
Transverse emittance [mm mrad]	0,5	0,08	0,05	0,05
Momentum spread, ∆P/P	2,7×10-4	3×10-4	1×10-4	2×10-4
Bunch length [cm]	28	31		
Beam-beam parameter, ξ	0,01	0,0025	0,006	2×10 ⁻⁴
Tune shift, ΔQ	0,05	0,02	0,02	0,006
Total life time [hours]	~1500	~300	~1500	~300
Peak luminosity [cm ⁻² sec ⁻¹]	5×1	030	1,2×10 ³¹	

Maximum Luminosity

Luminosity	CSR	HESR		
L (ξ=0.03), cm ⁻² s ⁻¹	1.5×10 ³¹	5×10 ³¹		
L ($\Delta Q = 0.1$), cm ⁻² s ⁻¹	1×10 ³¹	2.5×10 ³¹		

Ways to increase luminosity

Design of lattice structure

- decrease beta-function at interaction point
- decrease intrabeam scattering
- Optimization of cooling process
 - beta-function at electron cooler
 - combination electron and stochastic cooling
- Space charge limits
 - achieve maximum brilliance
 - increase the energy of experiment

September 7, 2006

Bcool