

Storage Ring Experiments

Erhard Steffens

University of Erlangen-Nürnberg, Germany

steffens@physik.uni-erlangen.de

Talk restricted to

Please note:	IT
Talk not about physics of Storage Ring Experiments	PIT
(allthough very important to make sure that physics is excellent!)	
but about the experimental technique of such experiments!	
• in single-user mode very important disti	nction!

Design of storage ring experiments strongly related to storage ring design! See talk by S. Martin

Advantages of Storage Ring Experiments

Scattered beam particles remain in the beam (if $\theta_{scatt} < \theta_{acc}$) \rightarrow economic use! important for antiprotons, rare isotopes etc!

> Pure gas targets \rightarrow low background

Open Spectrometers possible

 \succ Targets very thin \rightarrow detection of recoil particles

e.g. recoil protons, decay of hyperons,...

Outline of Talk

Number of working Storage Ring Experiments is limited mainly to ANKE (Jülich), HERMES (Hamburg) and the RHIC-Jet (BNL). A few more experiments are working in a more irregular manner (DEUTERON-BINP, POLARIS-JINR,...).

For full coverage of the subject also past and future experiments will be discussed.

- Some Historical Remarks
- Requirements of Storage Rings for IT-Experiments
- Experiments in Electron Rings (BLAST, HERMES)
- Experiments in Ion Ring (ESR-Mass Spectrometry, WASA, ANKE, future projects)
- Conclusions

1984 Cluster target in the CERN ISR (single <u>p</u> beam) >> Charmonium spectroscopy Later repeated in the Fermilab Accumulator ring: P. Dalpiaz et al, see talk at STORI 2005

SPS/CERN (\approx 1980), converted into **SppS** collider \rightarrow discovery of Z^o, W[±] (1983)

SppS used in parallel by UA6:
H Cluster target in the p beam
polarized H jet target not implemented

- 1984 Cluster target in the CERN ISR (single <u>p</u> beam) \rightarrow Charmonium spectroscopy Later repeated in the Fermilab Accumulator ring: talk by P. Dalpiaz, STORI 2005
- 1988 UA6: Cluster target in the SppS antiproton beam + open spectrometer Polarized target planned, but not installed
- Polarized D jet in the VEPP-2 ring at Budker Institute Novosibirsk (BINP)
 Polarized D jet injected into Storage Cell: first test of polarized storage cell in high energy electron beam (VEPP-3: 2.5GeV)

1985 FILTEX proposal: goal to measure double polarized <u>pp</u> in LEAR

Low Energy Antiproton Ring LEAR

First dedicated ion storage ring, built as stretcher (slow extraction) and for internal target experiments:

LEAR/CERN (1983-1996) \rightarrow Low energy antiproton physics (ps available from AC/AA but expensive: econonomic use!!)

LEAR had electron and stochastic cooling, and ultra-slow extraction.

- 1984 Cluster target in the CERN ISR (single <u>p</u> beam) \rightarrow Charmonium spectroscopy Later repeated in the Fermilab Accumulator ring: talk by P. Dalpiaz, STORI 2005
- 1988 UA6: Cluster target in the SppS antiproton beam + open spectrometer Polarized target planned, but not installed

1985Polarized D jet in the VEPP-2 ring at Budker Institute Novosibirsk (BINP)

- 1988 Polarized D jet injected into Storage Cell: first test of polarized storage cell in high energy electron beam (VEPP-3: 2.5GeV)
- 1985 FILTEX proposal: goal to measure double polarized <u>pp</u> in LEAR
- 1992 FILTEX test performed in the Heidelberg TSR >> spin filtering confirmed!

2006-09-06

Filtex at TSR (Heidelberg)

Spin filter test experiment (1992): first polarized storage cell in an ion storage ring!

F. Rathmann. et al., PRL 71, 1379 (1993)

see talks by P. Lenisa and F. Rathmann

Requirements on Storage Rings for IT Experiments: some basic facts

Phase ellipse: Area $F = \pi \epsilon$, with ϵ = beam emittance

(emittance grows due to scattering, shrinks due to phase space cooling -> equilibrium)

Phase ellipse upright at symmetry point, i.e. at beam waist.

The beta function b(s) is a periodic function of the coordinate s along the closed orbit.

 $x [mm]_{2}^{3}$ $F(s) = \sqrt{\epsilon \beta(s)}$ $F(s) = \sqrt{\epsilon \beta(s)}$ Trajectory $F(mm)_{2}^{3}$ $F(mm)_{2}^{3}$ $F(mm)_{2}^{3}$ $F(mm)_{2}^{3}$ $F(mm)_{2}^{3}$

Beam particle moves along trajectory x(s):

→ trajectories are within the beam envelope E(s):

 $\mathbf{E}(\mathbf{s}) = [\varepsilon \ \beta(\mathbf{s})]^{1/2}$

Requirements on Storage Rings for IT Experiments: some basic facts

Phase ellipse: Area $F = \pi \epsilon$, with ϵ = beam emittance

(emittance grows due to scattering, shrinks due to phase space cooling -> equilibrium)

Phase ellipse upright at symmetry point, i.e. at beam waist.

The beta function b(s) is a periodic function of the coordinate s along the closed orbit.

• Storage cell for PIT placed at the beam waist

• Radii x, y such that envelope is not touched

• A larger emittance of the beam during injection might require a cell with variable cross section (PAX test at CERN AD?): needs new development!

Requirements on Storage Rings for IT Experiments

- Beam cooling to compensate for heating by the target
 - Ion rings: Cooling device necessary (Electron cooling, Stochastic cooling)
 - Electron rings: usually damping of betatron oscillations due to SR sufficient!

• Sufficient acceptance at the target position (IP) A = ring acceptance

- main losses in Ion Rings: ,single scattering losses' prop. to $Z^{2/}\,\theta_{acc}{}^{2}$

- $\theta_{acc} = (A / \beta)^{1/2}$ \longrightarrow low-beta values at IP required !

- for A = 30mm mrad and $\theta_{acc} = 10$ mrad $\rightarrow \beta = 0.3$ m

Requirements on Storage Rings for IT Experiments: Storage Cells

Storage Cell proposed by W. Haeberli

•Proc. Karlsruhe 1965, p. 64

•Proc. Workshop IUCF 1984, AIP Conf. Proc.#128, p.251

•Ballistic flow from Atomic Beam Source H, D

•Flow driven by pressure gradient Laser Driven Sources H, D, ³He

Density gain compared to Jet of same intensity can be up to several hundred!

Target areal density given by

$$t = L \rho_o$$
 with $\rho_o = I_t / C_{tot}$ and $C_{tot} = \Sigma C_i$

Note: Conductance of tube proportional to d^3/L

1

Storage Cell Design: Requirements

- Minimum aperture allowed by machine optics for high density: $t \sim 1/r^3$ e.g. $r = x, y = 15\sigma_{x,y} + 1mm$
- Maximum length compatible with tracking detector e.g. 2L = 400mm (HERMES)
- Thin walls with coating for minimum recombination and depolarization e.g. Teflon, Drifilm
- Cooling of cell wall?
 - density enhancement
 - compensation of cell heating
 - frozen layer of water helps to prevent recombination

FILTEX target for TSR test experiment (1992)

Experiments in Electron Rings

-South Hall Ring (SHR), MIT Bates similar to AmPS, NIKHEF (dismantled)

-HERA-e, DESY

Pulse Stretcher (OOPS): Limited turns in South Hall Ring before gradual extraction to external target Storage (BLAST): Gradual stacking of electron pulses in South Hall Ring for long-lived CW beam

South Hall Ring

- 190 m circumference
- 16 dipoles
- Single RF cavity (f=2.856 GHz)
- Racetrack design
- Full energy two-turn injection

South Hall Ring

- 190 m circumference
- 16 dipoles
- Single RF cavity (f=2.856 GHz)
- Racetrack design
- Full energy two-turn injection
- Stored beam operation at 850
 MeV from 2002-2004 for BLAST
- Over 200 mA stored electron current achieved

E. Steffens - Storage Ring Experiments

(BLAST)

17

South Hall Ring

- 190 m circumference
- 16 dipoles
- Single RF cavity (f=2.856 GHz)
- Racetrack design
- Full energy two-turn injection
- Stored beam operation at 850

MeV from 2002-2004 for BLAST

Over 200 mA stored electron current achieved

2006-09-06

E. Steffens - Storage Ring Experiments

18

BLAST experiment:

Magnetic spectrometer with toroidal field and internal polarized storage cell target (deuterium)

- **Target** located within the toroid spectrometer field coils (!)
- Turbopumps placed outside the field region
- Other sensitive components are shielded or also placed outside the coil system

BLAST experiment:

Magnetic spectrometer with toroidal field and internal polarized storage cell target (deuterium)

HERA Electron Proton Collider Coswing **DESY-Hamburg**

C = 6.3km, $E_p = 920$ GeV, $E_e = 30$ GeV (max)

First operation: 1992

HERA scheduled to shut down in July 2007

2006-09-06

HERA Electron Ring

- C = 6336m, 4 straights 360m long
- Nominal energy: $E_{el} = 30 GeV$
- $I_{max} \le 50 \text{mA}$ in 210 bunches ($\Delta t = 96 \text{ns}$)
- Beam size at IP $\sigma_{x/y}$ = 0.29/0.07mm
- Acc. voltage U_{max} = 260MV (13.2MW)
- E-loss per turn 127MeV @ 30GeV
- $E_{operation} = 27.5 \text{GeV} (v_{spin} = 62.5)$
- One/three Spin Rotators for longitudinal spin at IPs
- $P_{e\pm} \approx 60\%$ (2000 run), rise time 30min
- Two collider experiments H1/ZEUS
- HERMES experiment with polarized H, D, 3He storage cell target

HERA Polarized Electron Ring

Beam polarization measured by Compton-Backscattering of pol. Laser photons.

Two polarimeters:

- •TransPol (West Hall, op. since 1992)
- LongPol (East Hall, @ HERMES straight)

- C = 6336m, 4 straights 360m long
- Nominal energy: E_{el} = 30GeV
- $I_{max} \le 50$ mA in 210 bunches ($\Delta t = 96$ ns)
- Beam size at IP $\sigma_{x/y}$ = 0.29/0.07mm
- Acc. voltage U_{max} = 260MV (13.2MW)
- E-loss per turn 127MeV @ 30GeV
- E_{op} = 27.5GeV (v_s = 62.5)
- One/three Spin Rotators for longitudinal spin at IPs
- $P_{e\pm} \approx 60\%$ (2000 run), rise time 30min
- Two collider experiments H1/ZEUS
- HERMES experiment with polarized H, D, 3He storage cell target

2006-09-06

HERA Polarized Electron Ring

Beam polarization measured by Compton-Backscattering of pol. Laser photons.

Two polarimeters:

- •TransPol (West Hall, op. since 1992)
- LongPol (East Hall, @ HERMES straight)

- C = 6336m, 4 straights 360m long
- Nominal energy: E_{el} = 30GeV
- $I_{max} \le 50 \text{mA}$ in 210 bunches ($\Delta t = 96 \text{ns}$)
- Beam size at IP $\sigma_{x/y}$ = 0.29/0.07mm
- Acc. voltage U_{max} = 260MV (13.2MW)
- E-loss per turn 127MeV @ 30GeV
- E_{op} = 27.5GeV (v_s = 62.5)
- One/three Spin Rotators for longitudinal spin at IPs

• $\overline{P}_{e\pm}$ = 55% (2000 run), rise time 30min

- Two collider experiments H1/ZEUS
- HERMES experiment with polarized H, D, 3He storage cell target

HERMES Experiment

• C = 6336m, 4 straights 360m long • Nominal energy: E_{el} = 30GeV $I_{max} \leq 50 \text{mA}$ in 210 bunches ($\Delta t = 96 \text{ns}$) • Beam size at IP $\sigma_{x/v}$ = 0.29/0.07mm • Acc. voltage $U_{max} = 260MV (13.2MW)$ • E-loss per turn 127MeV @ 30GeV • $E_{op} = 27.5 \text{GeV} (v_s = 62.5)$ One/three Spin Rotators for longitudinal spin at IPs • P_{e±} ≈ 60% (2000 run), rise time 30min Two collider experiments H1/ZEUS

• HERMES experiment with polarized H, D, 3He storage cell target

HERMES Target

- In 1995 successfully operated with ³He target
- 1996-2005 ABS-SC target for H and D:
 - 1996-97 longitud. H
 - 1998-00 longitud. D
 - 2002-05 transverse H
- Operational continuously about 10 months /year
- Large data sets for DIS on <u>polarized</u> <u>and unpolarized</u> gases collected

Transverse target magnet: high uniformity along cell axis required!

HERMES Target

Nov 2005: Polarized H&D target removed!

> Rest of Run-2: Recoil detector

-Mass Measurements at ESR (GSI)

Use of the ESR as mass spectrometer – no target and detector!

-WASA at CELSIUS & COSY

- ANKE at COSY (Jülich)

- Schottky noise is measured by means of a tuned Pick-up (quality factor Q)
- The summed signal is processed and Fourier-analyzed \rightarrow High resolution!
- Two modes cold beams: with Ecool $\rightarrow \Delta v/v \approx 0$

- hot beams: with $\gamma = \gamma_t$ for $\Delta f/f \approx 0$

CELSIUS Ring

Previous incarnations:

- •CERN (g-2) experiment
- ICE (initial cooling experiment)

Circumference	81.8 m
Length of cooling and injection straight sections	9.6 m
Length of target straight sections	9.3 m
Bending radius	7.0 m
Maximum rigidity (at present)	7.4 Tm
Maximum kinetic energy (protons)	1.43 GeV
Maximum kinetic energy per nucleon for ions with $q/A = 1/2$	500 MeV

2006-09-06

E. Steffens - Storage Ring Experiments

32

WASA Experiment

CELSIUS ring (1988 - 2005)

WASA experiment (1999-2005)

After the shutdown of CELSIUS in June 2005 WASA has been reinstalled at COSY: new program in an extended energy range!

WASA Installation at COSY

Task: to exploit photons in the final state as a probe!

Pellet target allows for close-to- 4π geometry of the detector

ANKE Experiment at COSY

see talks by A. Kacharava (exp.) and R. Engels (target)

- COSY: Storage Ring with synchrotron acceleration and cooling
- Momentum range 0.3 3.7GeV/c
- Storage of polarized p and d beams
- Electron cooling at ≈ injection
- Stochastic cooling at high momenta
- Several internal target experiments:
 - EDDA (H jet / cell)
 - COSY-11 (H cluster target)
 - ANKE (H, D cell)

Commissioning: - WASA (H pellet target)

see talk by R. Engels/F. Rathmann

Feeding tube:	l = 120 mm, Ø = 10 mm
Extraction tube:	I = 230 mm, Ø = 10 mm
Beam tube :	$I = 400 \text{ mm}, 20 \times 20 \text{ mm}^2$

Use of Nitrogen gas in the cell to simulate background from interactions with the cell wall

The cell was fed with H_2 or N_2 .

- H_2 flux adjusted to match target chamber pressure at equivalent flux of single HFS.
- N_2 flux adjusted to yield the same energy loss per unit of time in COSY compared to H_2 , i.e. similar beam heating.

Stochastic Cooling

- compensates the beam heating
- keeps the background from beam-wall interactions at a tolerable level
- · Identification of three-body final states with PIT at ANKE is possible

Method	Jet [atoms/cm ²]	Storage Cell [atoms/cm ²]
ABS flux (+ cell geometry)	(1.6±0.1)·10 ¹¹	(1.9±0.1)·10 ¹³
Rates (pp \rightarrow d π +)	(1.5±0.1)·10 ¹¹	$(2.1\pm0.1)\cdot10^{13}$

Future experiments

- at CSR-e/m (Lanzhou)
- and at FAIR (Darmstadt)

- Rare lons produced by the SSC (K=450)
- accepted by CSRm and accelerated

- Q/A = ½: 900MeV/A

- U⁷⁰⁺: 400MeV/A
- transfered to **CSRe** for internal target experiments with RIs
 - Q/A = ½: 600MeV/A
 - U⁹⁰⁺: 400MeV/A
- both rings equipped with electron cooling (35keV / 300keV)

Status of CSR complex

- Both rings assembled
- CSRm in the commissioning phase

CSRe

4π Detector for CSRm

Pellet Target Forward detector (4°~18°) Central detector (20°~160°)

In collaboration with TLS, Uppsala, Sweden

PAX: see talk by M. Contalbrigo

-- Existing Facility -- New Facility

E. Steffens - Storage Ring Experiments

NESR

PANDA Experiment

see talk by I. Lehmann

• Pellet target for high luminosity

• Dipole magnet for forward region

see talk by M. Contalbrigo

• Storage ring experiments represent a very advanced, powerful tool for Nuclear and Hadron Physics and other fields

• We are discussing an impressive variety of operating and future facilities

• New large-scale facilities in Europe, China and Japan in the design or commissioning phase will enable experiments of excellent potential

• Hadron physics using ion and antiproton beams has great promise for the future!

Thank you for your attention!

