Caucasian - German School and Workshop on Hadron Physics Tbilisi, Georgia

Development of modern magnet systems

a tutorial by

C. - A. Wiedner and S. Martin, UGS

Sept. 6, 2006

Development of modern magnet systems

Customer requirements

- 1) Charged particles, mass, charge
 - a) Energy, momentum, rigidity $B \rho$ (s. tab.)
 - b) Intensity, phase space $\epsilon_x,\,\epsilon_y$, $\delta p\,/\,p$
 - c) Time structure, DC, AC beams, macro-, microcycle

2) Purpose and aims

- a) Beam transport
- b) Applications e. g.

Irradiations (food ...)

Isotope production (incl. mass separation..)

Spectroscopy (energy, mass, time ...

Medical treatments (voxel scanning, application of

3) Available space and limitations

- a) New buildings or tunnels, new radiation shielding
- b) Existing or annexes (*multifloor layout...*)

4) <u>Expenditures (periphery omitted here !)</u>

I <u>Hardware</u>

- a) Overall new investments
- b) Usage of existing magnets, possibly to be modified
- II <u>Manpower</u>
 - a) Customer's manpower (e.g. formulation of optics concept, engineering, acceptance tests - field mapping alignment, commissioning.....)
 - b) Outside or commercial manpower

III <u>Operation costs</u>

- a) Power
- b) Cooling
- c) Backup & spares, preservation investments
- d) Maintenance
- e) System aspects (controls, documentation ...)

5) <u>Performance and reliability</u>

- a) Availibility (short term)
- b) Reprocucibility
- 6) <u>Delivery aspects</u>

ad 1)

a) The requested <u>rigidity</u> prejudices the technology:

normal conducting (n. c.) 0.3 T < B < 1.2 (1.5) T

superconducting (s. c.) > 1.5 T

permanent magnet (p. m.) B ~ 1 T

The deflection radius ρ determines size, weight, power and Costs.

b) The <u>emittances</u> fix apertures, magnet gaps, quadrupole and sextupole ... bores.

N. B. Liouville theorem :

Phase space conservation connects size to divergence : E. g. For typical $\varepsilon_x = 5$ mm mrad a requested spot of 100 μ leads to 50 mrad ~ 3 ° duivergence!

c) <u>Time structure</u> of beams lead to specific technologies :

- DC : Solid low C iron (n. c.), Rare Earth Co (p. m.)
- AC : Laminated poles, yokes

(Ramping, hysteresis effects... steel specs)

ad 2 & 3)

The application of the charged particle beam requires an ion optical concept :

In general:

<u>Start :</u> A beam of momentum p and emittances ε_x , ε_y , $\delta p / p$.

Destination:

That beam with specified spot size, divergence,

momentum and $\Delta p / p$, as well as time structure.

In between topological requests and others (shielding, monitoring..)

as well as beam deflection angles, beam rotation have to be met.

Also some optical conditions have to be observed e.g.

 $p / dp = D / M x \rho / x_0$ $D = R_{16}$ - Dispersion

 $M = R_{11}$ - Magnification

 x_0 - spot size, ρ = bending radius

For economy the beam should be small inside the magnets

(axial waist in dipoles) and symmetric in quadrupoles.

Generally one starts with a first order approach using <u>matrix algebra</u> : The beam is specified by a 6 - dimensional vector, the elements (magnets and drifts in between etc...) by (6 x 6) matrices, whose elements are derived from a solution of the equation of motion.

$$\begin{pmatrix} x_1 \\ x_1' = \theta_1 \\ y_1 \\ y_1' = \phi_1 \\ l_1 \\ \delta_1 \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & 0 & 0 & 0 & R_{16} \\ R_{21} & R_{22} & 0 & 0 & 0 & R_{26} \\ 0 & 0 & R_{33} & R_{34} & 0 & 0 \\ 0 & 0 & R_{43} & R_{44} & 0 & 0 \\ R_{51} & R_{52} & 0 & 0 & 0 & R_{56} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} x_0 \\ x_0' = \theta_0 \\ y_0 \\ y_0' = \phi_0 \\ l_0 \\ \delta_0 \end{pmatrix}$$

For a particle travelling from A (index 0) to B (index 1) through drifts L_1 to L_3 . a dipole and a quadrupole the matrices are to be multiplied in <u>opposite</u> direction.

$$\mathbf{A} \quad \mathbf{L}_{1} \quad \mathbf{M}_{1} \quad \mathbf{L}_{2} \quad \mathbf{Q}_{1} \quad \mathbf{L}_{3} \quad \mathbf{B}$$

$$\left[\begin{pmatrix} x_{1} \\ \theta_{1} \\ \cdots \\ \delta_{1} \end{pmatrix} = R_{L3} * R_{Q1} * R_{L2} * R_{M1} * R_{L1} \begin{pmatrix} x_{0} \\ \theta_{0} \\ \cdots \\ \delta_{0} \end{pmatrix} \right]$$

The elements of the product matrix defines the optical constraints – typical for single ray optics e. g.

Achromaticity :	R ₁₆ =	$R_{26} =$	0	
Isochronicity :	R ₅₁ =	R ₅₂ =	R ₅₆ =	0
Focussing conditions :				
Point to point :	R ₁₂ =	R ₃₄ =	0	
Parallel to point :	R ₁₁ =	R ₃₃ =	0	
Parall. to parall. :	R ₂₁ =	R ₄₃ =	0	
Point to parall.:	R ₂₂ =	R ₄₄ =	0	
(from K. L. Brown, Transport	CERN 80	- 04)		

Another formulation of this first order matrix is given by

$$\begin{pmatrix} R_{11} & R_{12} & \dots & R_{16} \\ R_{21} & R_{22} & \dots & R_{26} \\ R_{33} & R_{34} & \dots & \dots \\ R_{43} & R_{44} & \dots & \dots \end{pmatrix} = \begin{pmatrix} c_x & s_x & \dots & d_x \\ c'_x & s'_x & \dots & d'_x \\ c_y & s_y & \dots & d'_x \\ c'_y & s'_y & \dots & d'_x \end{pmatrix}$$

These functions of the line element t are called cosine and sinelike of the radial (x) and the axial (y) planes

e.g. in a focus :

 $s_x = 0$ and c_x is the <u>radial magnification</u>, also

$$c_x' = -\frac{1}{f_x}$$

and

$$\begin{vmatrix} d_x = s_x \cdot \int c_x d\alpha \\ d\alpha = d\tau / \rho_0 \end{vmatrix}$$

To enlarge d 'make' sin-like function large !

FIG. 4--SINE-LIKE FUNCTION $s_{\chi}(t) = R_{12}$ IN MAGNETIC MIDPLANE. $s'_{\chi}(t) = R_{22}$.

A beam of particles is assumed to lie in the the boundaries of an ellipse.

With a beam matrix $\sigma_{nm} a$ beam from A (index 0) to B (index 1) as

$$\sigma(1) = R \sigma(0) R^{T}$$

where T denotes the transpose. The ellipse area equals the phase space.

A =
$$\varepsilon_x = \pi$$
 (det σ)^{1/2} = $\pi x_{max} \theta_{int} = \pi x_{int} \theta_{max}$
and $x_{max} = \sqrt{\beta_x * \varepsilon_x} \qquad \theta_{max} = \sqrt{\gamma_x * \varepsilon_x}$

(equivalently for axial coordinates)

A TWO-DIMENSIONAL BEAM PHASE ELLIPSE

The equation of the ellipse is

$$\gamma \cdot x^{2} + 2 \cdot \alpha \cdot \theta \cdot x + \beta \cdot \theta^{2} = \varepsilon$$
where
$$\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{21} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} = \varepsilon * \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}$$

The determinant of *this TWISS matrix* is given by :

$$T = \begin{vmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{vmatrix} = \left(\beta \cdot \gamma - \alpha^2 \right)$$

The transformation of TWISS with R - matrix elements is

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{1} = \begin{pmatrix} R_{11}^{2} & -2 \cdot R_{11} \cdot R_{12} & R_{12}^{2} \\ -R_{11} \cdot R_{21} & R_{11} \cdot R_{22} + R_{12} \cdot R_{21} & -R_{12} \cdot R_{22} \\ R_{21}^{2} & -2 \cdot R_{21} \cdot R_{22} & R_{22}^{2} \end{pmatrix} \cdot \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{0}$$

<u>Example:</u> The TWISS matrix elements for a symmetric drift ($\alpha = 0$) with ist R – matrix is:

$$R = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \qquad \beta_1 = \beta_0 + \frac{L^2}{4 \cdot \beta_0^2}$$

In addition we need an additional parameter, the phase shift $\Delta\psi$

$$\Delta \psi = \int \frac{1}{\beta} ds$$

s - line element along o.a.

(E. D. Courant & H. S. Snyder, Ann. Phys. 3 (1958))

For the beam – characterised by the σ – matrix - there are also constraints, e. g.

	Horizontal beam waist	σ ₂₁ = 0
۸	Vertical beam waist	$\sigma_{43} = 0$

In this tutorial we postpone here second and higher order calculations

Examples for optical modules

A) A telescope

It consists of two thin lenses (in one dimension)

separated by a distance equal to the sum of their

focal length providing simultaneous parallel to parallel and point to point imaging i. e. $R_{21} = R_{12} = 0$ and a phase shift always equal to n π and $\alpha_1 = \alpha_2$!

For a two - dimensional system 4 quadrupoles are needed

The magnifications of the beam envelopes may either be the same or different as for

an ideal matching system

(For further details s. K. L. Brown)

B) An application: The F - O - D - 0 system

The most economic beam transport system consists of idendical cells with focussing (F) and defocussing (D) components separated by a drift (O) .

It may be built with standard n. c. magnets of with

permanent magnets.

ad 4)

I <u>Hardware - layout and engineering</u>

This implies another tutorial with lots of details on

- detailed material specifications
- layout considerations (e.g. choice of special design)
- engineering recipes (partly commercial secrets)
- availibility of suppliers and their competence
- fabrication details and involved costs

Before a discussion of detailed results as provided by UGS some useful layout comments:

In terms of	β	ср	т	E	γ
β =	β	<u>((E₀/cp)² + 1)^{-1/2}</u> cp / E	(1 - (1 + T/E ₀) ⁻²) ^{1/2}	<u>(1 - (E0/E)²) ^{1/2}</u> cp / E	(1-γ ⁻²) ^{1/2}
cp =	<u>Ε₀ (β⁻² - 1) ^{-1/2}</u> Ε β	ср	<u>(Τ(2E₀+Τ)^{1/2}</u> Τ((γ+1)/(γ-1)) ^{1/2}	<u>(E² - E₀²) ^{1/2}</u> E β	E ₀ (γ ² - 1) ^{1/2}
E ₀ =	<u>cp/βγ</u> Ε(1-β ²) ^{1/2}	cp (γ ² - 1) ^{-1/2}	Τ(γ-1)	(E ² - c ² p ²) ^{1/2}	Ε/γ
T =	((1 - β ²) ^{-1/2} - 1) E ₀	$\frac{(E_0^2 + c^2 p^2)^{1/2} - E_0}{cp ((\gamma - 1) / (\gamma + 1))^{1/2}}$	т	E - E ₀	E ₀ (γ-1)
γ =	(1-β ²) ^{-1/2}	<u>cp / E₀β</u> (1+(cp / E ₀) ²) ^{1/2}	1 + T / E ₀	E/Eo	γ
	T kinetic energy	E total energy	E ₀ rest energy		

Relations between particle	e velovity, momentum and	d energy (from Bovet, CERN)
----------------------------	--------------------------	-----------------------------

 $p(GeV/c) = 0.2997925 B \rho (Tm)$ or $p(VAs^2 m^{-1}) = e B \rho (AsTm)$

Magnetic elements

Dipole magnet

Rigidity:	Βρ(Tm) =	=3.3356 p(GeV / c) 3.1297 βγ	for protons
Deflection a	ngle: θ (rad) =	θ (deg) = <u>B L_t / (Β ρ)</u>	($L_t / \pi \rho$) 180 L _t - length of particle trajectory
Excitation cu	<i>ırrent:</i> e.g.	N x I (A turns) = 800 Ampere turns / 0.1 T x 1 cm gap	B h_{B} / μ_{0} (mT / H m $^{\text{-1}}$) h_{B} - mean gap height
Stored energ	ду:	W _S (Ws)=	$B^2 h_B w l_B (T^2 m^3 / H m^{-1})$ l_B - total magnetic length w – inductance
Power:	$\sim l^2 \sim h_B$	2	(proportional to oper. Costs)
Fe - volum	e:~length	x area	(proportional to invest. Costs)
	~1/B x	B ²	
	~ 1 / B		

But lower B - field corresponds to larger layout and building costs !

Quadrupole lens

Excitation current per pole :	$N_Q \times I$ (Aturns) =	g r _Q ² / 2 μ ₀ (T m / H m ⁻¹) g - gradient r _Q - bore radius	
e. g.	400 Aturns/ 10 T / m @ 1 cm bo	pre radius	
Stored energy:	W _Q (W s) =	$g^2 r_Q^2 y_{max}$ (y_{max} + 2/3 w_Q) I_Q / μ_0 I_Q – quad length w_Q - inductance	

Power: ~ $I^2 ~ r_Q^4$

Estimate of Magnet Costs by UGS

Magnet type:	Dipole	HEBT DIP1 (fast)	-
Quantity			<

I. Magnet Parameters

A. Dipole: Magnetic and mechanical specifications

ltem		Unit	Customer Req.
Gapheight	80	mm	yes
Beam radius max	35	mm	
B-field max (gap)	1,600	Т	yes
B-field max (yoke)	1,77	Т	yes
Width (good field region)	122,5	mm	yes
Field quality dB/B	0,004		yes
Magnet strength (B x Leff)	2,355	Tm	
Effective field length	1,473	m	
Length of steel body	1,416	m	
Length total	1,758	m	
Horizontal size total	0,946	m	
Vertical size total	0,746	m	
Total weight (Fe& Cu)	7,159	t	
Provision of shims			yes
Shim width relative	0,2500		
Shim width abs	10,0000	mm	yes
Shim height relative	0,0475		
Shim height abs	1,9000	mm	yes
Chamfer in	83	deg	yes
Rogowski radius ratio	0,209		
		-	
	18,00	Tm	
Bend angle	7,500	deg	yes
Bend angle Bend angle	7,500 0,131	deg rad	yes
Bend angle Bend angle Bending radius	7,500 0,131 11,250	deg rad m	yes yes
B x rho max Bend angle Bend angle Bending radius Edge angle entrance Edge angle exit	7,500 0,131	deg rad	

B. Dipole: Electric specifications

Item		Unit	Customer Req.
Number of coils	2		
B-field ramp rate	8	T/s	yes
B-field rise time	0,2	s	
Pulse rep. rate	10	Hz	
Resistance per magnet	0,029359323	Ohm @ 20deg	
Current (max)	1086	Α	
Voltage per dipole (max)	31,9	V	
Driving voltage	4163	V	
Inductivity	95	mH	
Power per magnet	35	kVA	
Copper conductor specs			
Current density	4,476	A/mm^2	yes
Copper layers hor.	8		yes
Copper layers vert.	6		yes
Material (Outukumpu No.)	8473		
Insulation thickness	0,5	mm	yes
Pancake insulation (ground)	1	mm	yes

C. Dipole: Cooling specifications

Delta T in	30	deg	yes
Temp Coolant in	28	deg	
Pressure max in	12	at	

II. Dipole engineering design

A. Estimated working time

Magnet design (total)	10	weeks
Drafts man design	400	mh (technician)
Engineering design	24	mh (engineer)
Documentation, specs	16	mh (engineer)
3 D field design for	40	mh (engineer)
higher quality magnet		

B. Relevant salaries

Engineer	120	k€/y	
Technician	100	k€/y	
Trained workman	80	k€/y	
working hours per year	1760	h	

III. One- time investment for the magnet type

A. Tools and other provisions

1. Iron: yoke and poles

Stamping tool	remark 1	22000	€	
Table for stapling of lam.	remark 2	50000	€	
Frame for stapling	remark 3	2000	€	
Oven for glueing	remark 4	240	€	
Lifting console	remark 5	800	€	
		75040		

Remark 1: 50 000 stamps per tool are asumed. Control and sharpening after 5000 stampings:

1 man day (workman) + 0.5 man day (engineer) are assumed. Remark 2: The stacks of laminations have to be stored in suitable forms before they are inserted

into the oven with a suitable lifting tool. The costs vary with size and weight. Here the share for this magnet type has been roughly estimated.

Remark 3: The number stapling frames depends on the efficient manufacturing process.

Here 2 frames for each magnet type are assumed.

Remark 4: The operational costs for the oven are roughly estimated.

Remark 5: The lifting console is used for manipulating the magnet during stapling and remachining.

2. Coils

Winding frame (2)	remark 3	800	€	
Oven for bakeout	est. share in cost	400	€	
Coil support table	"	500	€	
Vessel for glueing	"	370	€	
		2070		

B. Working time

1. Iron: yoke and pole pieces

Stamping tool control, sharpening	see remark 1	1	md W / 5000 punches
		0,5	md E / 5000 punches
Preparations	remark 6	500	€
		*workman	**engineer

Remark 6: The stacks of laminations have to be stored in suitable forms before they are inserted into the oven with a suitable lifting tool. The costs vary with size and weight. Here the share for this magnet type has been estimated.

2. Coils		78010	
Preparations winding frames	remark 3	400	€

IV. Material costs

1. Iron: yoke and poles

Lamination	number of laminations	1374	
Lamination	thickness	1	mm
Coated lamination	price per kg (20% loss)	1,30	€
Weight (total)		5384	kg
Cost steel	per magnet	8399	€
Dowel pins	3 per yoke	360	€

2. Coils

Raw conductor cost	price per kg	14	€
Weight (total)		834	kg
Insulation	ins. coating (glas fiber)	0,4	€/m
inlets	no. of inlets per magnet	2	
cost copper before winding		23639	€
Connector box	electr. & water	2080	€
Coil fix. to yokes	8 per coil	524	€

3. Periphery

Magnet support	gross price frame	2216	€
Aligment feet (incl. fixings)	3 per magnet	2550	€
Alignment target+sockets	3 sockets 1 target	810	€
Crating	for shipping	454	€

V. Working costs

1. Iron: yoke and poles

Estim. labour costs	stamping	420	€
	stacking	4165	€
	welding of belt	364	€
	machining of pole profiles	736	€
	fix. for coils	364	€
	maching of ref. surfaces	0	€
	dowel pin fitting	552	€
	assembling	318	€
	mech. tests/ qual.control	170	€
	prep. for shipment	182	€
	onsite acceptance	227	€

2. Coils

Estim. labour costs	winding	503	€
	insulation	150	€
	bake-out	288	€
	soldering of connectors	142	€
	prep. for shipment	182	€
	onsite acceptance	1364	€

3. Periphery

Estim. labour costs	machining of suppport	4,46	K€
	prep. for shipment	294,48	€

VI. Operational costs for 1 dipole

Assumed operation	hours	5000	h/a.
Estim. annual expenditures	cooling	5,2	k€
"	power	17,3	k€
"	renewal (10%)	16,6	k€
Total operation cost		39,1	k€/a.
Ratio invest. to ann. op.	see VII.	4,2	

VII. Total investment costs

Estim. price	steel & coils		
per magnet	& support	75	K€
Magnet price x quantity	"	822	K€
Magnet & p.s.+cooling	investment cost	166	K€/ magnet
Rel.cost (breakdown)	price / kg magnet	14	
	Price / kg coil	31	€ Kg coil

Costs depending on manufacturer

Shipment incl. handling	?	€
Add. charges (e.g.insurance)	?	€
Profit and risk factor	?	
Inflation (scaling formula)	?	for next n years