

Spin-Filtering Studies at COSY

Detector Setup and Organization

to

The Goal The ANKE Silicon Tracking Telescopes Questions Organization Measure beam (Anti) proton polarisation built-up

One detection system for $p\vec{p}, p\vec{d}, p\alpha, \overline{p}p$ elastic? Is silicon a good choice for a 'universal detector'?

 \rightarrow Large overlap with spectator detection @ ANKE

The ANKE Silicon Tracking Telescopes

Silicon Tracking Telescopes

Range telescopes with up to 4 layers of x,y silicon detectors provide

- 1. $\Delta E/E$ particle identification and tracking
- 2. Energy determination of stopped particles
- 3. Self-triggering
- 4. Time-resolution

5100µm thick Si(Li) detector

300 μm Si detector (is missing in this picture)

Identification, tracking and total energy = 4-momentum of spectator protons

 $69 \,\mu m, \Delta E < 2.5 MeV, 66 \cdot 52 mm^2, \sim 0.4 mm \, pitch$ $300 \,\mu m, \Delta E < 6.2 MeV, 66 \cdot 52 mm^2, \sim 0.4 mm \, pitch$ $500 \,\mu m, \Delta E < 8.2 MeV, 66 \cdot 52 mm^2, \sim 0.4 mm \, pitch$ $5500 \,\mu m, \Delta E < 40 MeV, 64 \cdot 64 mm^2, \sim 0.7 mm \, pitch$

69/300/500 μm Si-detector, Micron Semiconductur, England

 $5100{-}20000\mu m$ thick Si(Li) detectors, IKP Semiconductor Laboratory

Silicon Tracking Telescopes: Dead Layer Losses

Electronics

Silicon Tracking Telescopes: Floating Power Supply

Floating power supply connection of preamplifiers (Bias 0V-250V)

VA32TA2 front-end electronics: IKP and ideas/Norway

Number of channels Technology Power supply Power dissipation Linear range Slow shaper (Peaking Time) Fast shaper (Peaking Time) Minimum Threshold Threshold homogenity Time walk (0.05-11MeV) Energy resolution (C_{det}=60pF) Readout frequency

32 0.8μm CMOS ±2V 3mW/channel 11MeV (±500fC) 2 μs 80ns 40keV (1.8fC) 4keV (0.2fC) ~100ns 890e⁻ (sigma) 10Mhz

Threshold tuning of VA32TA2 based front-end electronics

Before threshold DAC-tuning...

After threshold DAC-tuning...

Silicon Tracking Telescopes: Block Scheme

Silicon Tracking Telescopes: Front-end Electronics

0 1 2 3 4 5cm

Flange card (two per detector):

- Opto decoupling of digital input/output buffers
- analog output buffer with variable gain
- floating power supplies
- DACs
- I2C-Bus ADCs (bias current, temperature, etc.)

I2C-Bus Lab View control:

- detector current
- detector temperature
- temperature of vacuum electronics

Silicon Tracking Telescopes: VME System

One module per detector:

- Two 12Bit ADCs, 10MHz sampling
- One sequencer per detector
- Hardware common-mode correction
- \rightarrow Prototype under test

Time Resolution

Prototype board for Saclay/Mate 3 chip

Parameters of the Saclay/MATE 3 front-end chip

Number of channels Technology Power supply Power dissipation Linear energy range Slow shaper (Peaking Time) Fast shaper (Peaking Time) Minimum threshold Time resolution (E>1.5MeV) Energy resolution (C_{det} =60pF) Readout frequency Common stop

16 0.8µm BICMOS ±2.5V 30mW/channel 50MeV (± 2220fC) 1µs and 3µs 22ns 0.4MeV (8fC) σ ≤0.3ns σ =1530e⁻ 2MHz (energy & time) (Reset needed)

Combined MATE3 Time-Resolution Results

Energy deposit, MeV	0.2	0.5	1	1.5
σ, ns	3.0 ± 0.5	$1.5 \pm 0,3$	0.7 ± 0.2	0.3 ± 0.2

128 channel MATE 3 ceramic5W power dissipation

Parameters of front-end chip MATE3

16

Number of channels Technology Power supply Power dissipation Linear energy range Slow shaper (Peaking Time) Fast shaper (Peaking Time) Minimum threshold Time resolution (E>1.5MeV) Energy resolution (C_{det} =60pF) Readout frequency

Common stop

0.8 μ m BICMOS ±2.5V 30mW/channel 50MeV (± 2220fC) 1 μ s and 3 μ s 22ns 0.4MeV (8fC) $\sigma \le 0.3$ ns $\sigma = 1530e^{-}$ 2MHz only (energy & time) (Reset needed)

Silicon Tracking Telescopes: Cooling

Spin-Filtering: Questions.

Spin-Filtering: Questions

Optimize for pp-elastic only?

Identical setups for COSY spin-filtering and the AD-experiment?

- Openable cell?

- Can we escape from a strong longitudinal holding field?

Magnetic field configuration?

CERN UHV conditions?

Vacuum-break protection?

$p\vec{p}, p\vec{d}, p\alpha, \ \overline{p}p \ elastic?$

Find the appropriate detector layout(s)

- What is the energy range of interest (40-800MeV)?
- one detection system for all energies?

Detection concept?

- single/double particle tracking?
- combined $\Delta E/E$ particle identification?
- number of layers?
- thickness of detectors?

Background suppression

- segmentation?
- time-resolution?

Spin-Filtering: Organization?

Spin-Filtering @ COSY Where Do I Place Which Detectors?

Misha Nekipelov, Ralf Schleichert, David Yamanidze 19. July 2006

Version 0.0a

Detectors:

a) 50x60mm², 60mm along the beam axis.

b) 1mm pitch.

c) 20-50mm distance to the beam axis

d) 70, 300 and 500um are available.

Event Generator:

a) Pluto pp-elastic

b) include differential cross-sections and analysing-powers from the SAID data base.

Target:

a) take a point-like target for the beginning.

b) Extended target: 40cm long, triangular shaped density distribution.

Single telescope (no coincidence), two planes: z1=z2=+30mm, x1=50mm, x2=70mm

For each of the conditions

a) Tbeam=40MeV,	d1=300um,	d2=300um
b) Tbeam=40MeV,	d1=70um,	d2=300um
c) Tbeam=800MeV,	d1=300um,	d2=300um

d) Tbeam=800MeV, d1=70um, d2=300um

show the following spectra

i) Kinetic energy and theta distribution for the non-detected proton.

ii) E vs dE1, E vs. dE2, dE1 vs. dE2 (kinetic energy in MeV).

iii) detection threshold per detector segment.

iv) count rate per segment.