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ANZOR KHELASHVILI,TEIMURAZ NADAREISHVILI 
(TSU, HEPI) 

PHYSICS OF SINGULAR POTENTIALS 
I. Statement of problem (Scrhrodinger equation.Discrete Spectrum) 

From the demand, that H and 
1

rP i
r r
∂⎛ ⎞= − +⎜ ⎟∂⎝ ⎠  operators are 

Hermitian it follows, that [1.D.Blockincev, 2.V.Pauli, 3.A.Messia] 
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For regular potentials  
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Second term in (1.3) doesn’t obey (1.1) and is neglected usually 
Singular potentials 
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Transition potentials 
                            2

0 00
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Theorem. For attractive transition potentials Schrodinger equation 
except standard solutions, may also have additional solutions.    Proof: 
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( 1)2 ( ) 0;l lu m E V r u u u Rr
r
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At small r from (1.6) we obtain 
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Where  
                          ( )2

01/ 2 2P l mV= + −                                           (1.8) 
For  



 2

                            0<P<1/2                                     (1.9) 
Both standard and additional solutions satisfy (1.1) condition (For 
P>1/2 only standard solutions stay!) 
From (1.8) and (1.9) we obtain condition of existence of additional 
states 
                               0( 1) 2l l mV+ <                                                  (1.10) 

addu  satisfy requirement, that [4.-L.Schiff. Quantum mechanics.] 
integral from particle coordinate probability density is finite! 
Remark: 
In paragraph 35- “Falling on the center”  [5-L.Landau, E.Lifchitz. 

Quantum mechanics]. behavior of  uR
r

=      is considered at small r 

                               1/ 2 1/ 2

0

P P

r
R Ar Br− + −

→
= +                                  (1.11) 

In (1.11) for P<1/2  both terms are singular (second term is more 
singular!) and in [6- R.Newton monograph] author notice: “If P<1/2, 
then the second solution is irregular in sense, that it is dominant above 
first solution”. So R.Newton come very close to additional state 
problem, but doesn’t mention that they exist! In [5] potential is made 
regular by cutting off it at some small 0r and the limit 0 0r → is taken, 
which selects less singular solution and so additional solutions are 
neglected! But if we multiple (1.11) relation on r we get (1.7) relation, 
where we have, no singularity in the 0<P<1/2 region and as mentioned 
above standard and additional solutions are “equal in rights” members 
of (1.7) relation! 
 
 

I I. Introduction of self-adjoint extension parameter 
 

In [7-K.Case.Phys.Rev.80,797(1950); 8-K.Meetz.Nuovo Cimento 34, 
690(1964); 19-A.Perelomov, V.Popov.TMF.vol 4 (1970)] was shown, 
that for  attractive regular and transition potentials it isn’t enough to 
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know potential and is necessary to introduce one arbitrary constant, 
which is equivalent to give boundary condition at the origin. Indeed, 
when   
                               ( )2

02 1/ 2mV l> +                                               (2.1) 
                    
 
P is complex from (1.8), both stu and addu solutions have same behavior 

at the origin and for example for 0
20

lim
r

VV
r→

= −  at small distances one 

have [5, 7] 

                 ( )( )2
0cos 2 1/ 2 lnu A r mV l r B≈ − + +                       (2.2) 

B is arbitrary constant. On the Mathematical language it means, that H 
is Hermitian (symmetric), but isn’t Self-adjoint operator and it is 
necessary to introduce 1 parameter to make H Self-adjoint 
![M.Reed,B.Simon:vol 2]. As was shown in [7] if B is fixed constant, 
then all eigensolutions form a complete orthonormal set, and E-
eigenvalues are real! But in this case we have“falling” on the center 
and energy isn’t bounded from below! 

In the region 
                          ( )2

02 1/ 2mV l< +                                                  (2.3) 
based on the above mentioned paragraph of [5] , addu solutions is 
neglected. We notice above, that in the 0<P<1/2 region it is necessary 
to preserve addu ! 

Then for arbitrary 1E and 2E levels ortogonality condition is 
 

     { }2 1 2 1 1 2 2 1
0

( ) 2 st add st addm E E u u dr P a a a a
∞

− = −∫                        (2.4) 

 
And for ortogonality right side of (2.4) is zero 
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                             1 2

1 2

st st

add add

a a
a a

=                                               (2.5) 

So, we get it is necessary to introduce self-adjoint τ extension 
parameter 

                                     add

st

a
a

τ =                                                   (2.6) 

From (1.7) and (2.6) we have: 
a) 0( 0)adda τ= = .We retain only standard levels  
b)  0( )sta τ= = ±∞ .We retain only additional levels  
c) When  ,0τ ≠ ±∞ ,then both levels exist at the same time! 
For some unknown reasons the Nature choose only standard levels 
yet! We think, 
that other cases are also possible! 
 
I I.I Model of Valent electron 

                                      0
02 ; , 0VV V

r r
α α= − − >                         (3.1) 

This potential “naturally” appears for coulomb potential in the Klein-
Gordon equation. Following [12-W.Krolikowski; Bulletin De L’ 
academics polonaise Vol XVII.83(1979);13-  
A.A.Khelashvili,T.P.Nadareishvili, Bulletin of   Georgian 
Acad.Sci:Vol 164.no1(2001)] we obtain general solution for (3.1) 
potential 

1/ 2 / 2 1/ 2 / 2
1 2(1/ 2 ,1 2 ; ) (1/ 2 ,1 2 ; )P Pu C e F P P C e e F P Pρ ρρ λ ρ λ ρ+ − − −= + − + + − − −    (3.2) 
Where P is given again by (1.8) and 

          28 ; ; 0
8
mmE r E

mE
αρ λ= − ⋅ = <

−
                              (3.3) 

we get transcendental equation for E 

         
( )

(1/ 2 ) (1 2 )
(1/ 2 ) (1 2 )8 P

P P
P PmE

λ τ
λ

Γ − − Γ −
= −

Γ − + Γ +−
                          (3.4) 
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where  SAE parameter τ  is 

                        
( )

2

1

1
P

C
C mE

τ =
−

                                                (3.5) 

E depends on τ parameter. For 0τ = and τ = ±∞  we obtain standard 
and additional levels analitically 

[ ] ( )

2 2

, 2 2
2

0
2 1/ 2 2 1/ 2 1/ 2 2

st add
r

r

m mE
n P n l mV

α α
= − = −

+ ± ⎡ ⎤+ ± + −⎢ ⎥⎣ ⎦

 (3.6) 

                                        0,1,2rn =  
 

Remark: For 0 0V < in (3.1), we get Kratzer Molecular potential and we 
obtain for standard levels well known formula, but in this case isn’t 
fulfilled (1.10) condition and so we have no additional levels for 
Kratzer potential . 
For alkaline metal atoms (Li,Na,K,Rb,Cs) is used (3.1) potential [14-
S.Frish .Optical specra of atoms;15 –M.Eliashevich.Atomic and 
molecular spectroscopy].Spectra of this atoms is similar hydrogen 
atom spectra 

                                         2

1
nE R

n′ = − ′
                                            (3.7) 

Where R is Rydberg constant and n′ is effective principal number 
                                      1rn n l′ ′= + +                                               (3.8) 
And  l′  is defined from 
             0( 1) ( 1) 8l l l l mV′ ′ + = + −                                                       (3.9) 
For l′ is taken only + sign in front of root P [12,13] 

( )2
01/ 2 1/ 2 1/ 2 2l P l mV′ = − + = − + + −                              (3.10) 

  So up to now wasn’t considered additional levels (- sign in front of 
root). Then in [13] the root is expand is expand for small 0V  



 6

                
( )2

1 ; 1st rst
l

E R n n l
n

= − = + +
+ ∆

                                   (3.11)      

Where st
l∆ is Rydberg correction (quantum defect) 

                       02
2 1

st
l

mV
l

∆ = −
+

                                                    (3.12) 

 
For addE we can’t take small 0V ,because 0( 1) 2l l mV+ < So for stE at 

0 0V →  one get hydrogen atom spectra; addE exist only for “strong” 
values of 0V ! 
So it is expectable, that in the Model of Valent electron, beside the 
well known stE levels, may also exist addE and (3.4) transcendental 
equation levels. 
Remark: Our formalism works everywhere, where (3.1) potentials 
works: for excited (Rydberg) atoms, for alkaline isoelectronic ions and 
etc. 
I V . Singular (Spiked) Oscillator model 

                  20
02 ; , 0VV gr V g

r
= − + >                                                 (4.1) 

 
Use: Calogero model, Fractional statistics and anyons, Quantum Hall 
effect, Spin chains, Two dimensional QCD. 

              
( ) / 2

( 1/ 4 2 / 1/ 2 / 2) (1 )
(1 )( 1/ 4 2 / 1/ 2 / 2) 2 P

m g E P P
Pm g E P mg

τΓ − + − Γ −
= −

Γ +Γ − + +
      (4.2) 

� 
For 0τ =  and τ = ±∞we get standard and additional levels 

{ }, 2 / 2 2 1 ; 0,1,2...st add r rE g m n P n= + ± =                       (4.3) 
Remark:  For  2

0 / ( )V V r W r= − + potential (where W is regular 
potential) we can define generally quantum defect by 
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( )1/ 2st
l P l∆ = − +  as a deviation from W(r), because when 0 0V = , 

then P=l+1/2 and 0st
l∆ = .    

V. Scattering Problems (Continuous Spectrum).   

                                 0
02 ; 0VV V

r
= − >                                    (5.1) 

   This interaction is realized in nature- physical applications: . 
1).Gharge interacting with a point dipole [14H.Camblong...Phys.Rev.     
Lett. 87, 220402 (2001)]                                                                     
2).Interaction of a neutral, but polarizable atom with a charged wire 
[15-J.Denschlag; Phys.Rev.Lett.81.737. (1998)                    
3)Aaronov-Bom effect [16 –J.Audretsh…J.Phys.A28,2359 (1995)]. 
4).Black holes [Gupta,Shabad…]  
    { } 2( ) ( )( ) ( ) ( ) ; 2 ; 0k P PB kU r kr A Jk J k krr k mE E−= + = >         (5.2) 
In (5.2) for 0<P<1/2 ( )Pr J kr− is regular at the origin and we keep it! 
a).Introduction of SAE parameter   

     ( ) ( )2

0

( ) 2 ; k
k k k

uI r R r R r dr k k R
r

πδ
∞

∗
′ ′= = − =∫                              (5.3) 

 
 We use integrals from [17-J.Audretsch.J.Phys.A34,235 (2001)] for 
Bessels functions and get 

( ){ } ( ) ( ) ( ) ( ) ( ) ( )2 2

2sincos
P PP k kI AA BB B A A B P k k B k A k A k B k

k kk k
ππ δ

π

−
∗ ∗ ∗ ∗ ∗ ∗

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞′ ′ ′= + + + − + −⎨ ⎬⎜ ⎟ ⎜ ⎟′ ′′− ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 (5.4) 

                             ( ) 2 2( ) ( )
( ) ( )

P P
P

B k B kk k
A k A k

τ
∗

− −
∗

′
′ = =

′
                        

(5.5) 
 (5.5) is analog of (2.5) for continuous spectrum. 
From (5.4) and (5.5) we get 
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                        2 4 22 cos 1 2P P
P PAA k k Pτ τ π π∗ ⎡ ⎤+ + =⎣ ⎦                   

(5.6) 
 Based on the methodology of [17] and [18 - S.Alliluev.JETP.Vol 
61,p15 (1970)] articles,where is considered  

   ( ) ( ) 2 2
0 0

1lim
RR

k k
k k k kR

du duI u r u r u u
k k dr dr

∗ ∗ ∗ ′
′ ′

→∞

⎡ ⎤= = −⎢ ⎥′ − ⎣ ⎦∫                (5.7) 

 
 One can show, that τ parameter is introduced from the lower limit of 
the (5.7) integral as it was for the bound states and (5.6) is introduced 
from the upper limit of this integral (For bound states wave function 
decrease at large distances and we no analog of (5.6) relation).                       
b).Phase Shifts Calculation.      

                     ( ) ( ){ }( ) ( )k Pu r B k rkr A k N k= +                            
(5.8) in (5.8) Second term is regular at the origin for 0<P<1/2 and we 
keep it!   

        ( )lim sin / 2 ;lr

C uR kr l R
r r

π δ
→∞

= − + =                                        

(5.9) 
        [ ]1/ 2 / 2 /P arctgB Al Pδ π= + − −                                         

(5.10) 
 or using (5.5) definition of SA parameter we get:    
            [ ] 21/ 2 / 2 ( )P

P Parl P ctg kδ π τ= + − −                                (5.11)       
 
In the literature is known only first term [17.A.M.Perelomov;  
V.S.Popov.TMF.  Vol 4.No1(1970)]                                            
a).B=0;         [ ]0; 1/ 2 / 2st

P P l Pτ δ π= = + −                                    (5.12) 
b).A=0;         ; / 2add st

P P lτ δ δ π= ±∞ = ±                                          (5.13) 
 
+ sign in (5.13) is excluded, comparing it with asymptotic expression  
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                  ( ) ( )2 sin / 2 / 4PN kr kr P
kr

π π
π

≈ − −                  

Remarks: 1. From (5.11) we see that Pδ  is depended on the energy 

( )2 2k mE= for 0,Pτ ≠ ∞  ,so scale invariance is violated!         

2. We considered 0
2

VV
r

= − attractive potential, for which 0Pδ > .As 

one see from (5.11) may be 0Pδ < or we get repulsive potential! So Pτ    
parameter may change the NATURE of potential!         
We have two possibilities: a).From the Physical motivation restrict 

Pτ parameter (Don’t change attractive potential by repulsive!) or as 
one see from (5.11) demand  
                   [ ] ( )21/ 2 / 2 0P

Pa kl rctgP τπ+ − − >  
b).Agree,  that 0Pτ > can change potential nature! 

    ( ) ( ) ( ) ( )2

0

1; (2 1) 1 cos
2 l l

l

d f f l S P
d ik
σ θ θ θ

∞

=

= = + −
Ω ∑        (5.14) 

                            2 li
lS e δ=                                                       (5.15) 

                   2
2

0

4 (2 1)sin l
l

l
k
πσ δ

∞

=

= +∑                                       (5.16) 

                   ( )
0

1 (cos )
2 l l

l
f f P

ik
θ θ

∞

=

= ∑                                     (5.17) 

               ( ) ( )21 11 1
2 2

li
l lf S e

ik ik
δ= − = −                                (5.18) 

                     ( ) 24 2 1l ll fσ π= +                                             (5.19) 
 
Remarks: 1. 0( 1) 2l l mV+ <  (1.10).So in (5.14 – 5.19) one need 
SAE for l ,which satisfy (1.10).(l=0 always satisfy it!).                  

2. Total cross section σ is infinite for 0
2

VV
r

= − in usual quantum 
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mechanics ( )0τ = .We show, that for A=0 (τ=+∞) and small k σ is 
again infinite, but in general case, when 

[ ] ( )21/ 2 / 2 P
PP arctgl P kτδ π −= + −  − σ can become finite! This 

problem needs more careful investigation!  
VI.Scattering length a 
In [17] is calculated scattering length a for the following potential 
in the l=0 state                                                

                              ( ) ( )0
2

VV r R r
r
θ= − −                                   (6.1)  

We now obtain more general formula using SAE.When r<R wave 
function is  
       (6.2) 

                
0γ  is SAE parameter, when one have “falling” on the center and is 

known in the literature [5,17]                                                        
For r>R          
                              ( )0 C r aχ = −                                           (6.3)              
 “Sewing” condition at r=R gives  

( )
( ) ( ) 0

(1 2 )
;2 1/ 4

1 2
1 2
1 2

P

P

P

P

BR PP AR
a R mV

P BR PAR

−

−

− +
= − <

+ −+
+

                (6.4) 

( )
( )

0
0

0

1 2 ln
;2 1/ 4

1 2 ln
ctg R

a R mV
ctg R

ν ν γ
ν ν γ

− −
= − >

+ −
                            (6.5) 

When B=0 we get [17] article formula  

                                1 2
1 2

Pa R
P

−
= −

+
                                        (6.6) 

As P<1/2, a<0 and it corresponds to attractive potential, but from 
(6.4) a have no definite sign- we can’t say one have attractive or 

( )

1/ 2
0 0

1

1/ 2

/ 2
0 0 0

;2 1/ 4; 1/ 4 2

sin ln ;2 1/ 4; 2 1/ 4

PPAr mB V P mV

r

r

r mV mV
χ

ν γ ν

+ −⎧ + < = −
⎪= ⎨
⎪ + > = −⎩



 11

repulsive interaction!                                                                   
SAE now we define  
                                  /A Bτ = −                                              (6.7) 

                                  1 1

2 2

a ba
a b
τ
τ
+

=
+

                                          (6.8) 

                          
( ) ( )

( ) ( )

1 1
1 1

2 2

1 2 ; 1 2

1 2 ; 1 2

P P

P P

a P R b P R

a P R b P R

+ −

−

= − − = +

= + = − −
           (6.9) 

 In the region    
                               1 2τ τ τ< <                                                 (6.10)  
where 

                         1 2 2

1 2 1 1 2 1;
1 2 1 2P P

P P
P R P R

τ τ− +
= =

+ −
 

 

a>0 and we have repulsive interaction! ( ) ( )0
2

VV r R r
r
θ= − −  is 

attractive potential and τ parameter from (6.10) region can change 
it NATURE! Again one have two alternatives : a). From the 
physical motivation exclude (6.10) region. b). Agree that τ can 
change interaction nature!                                                   
Remarks: 1). We expand (6.4) and (6.5) near 02 1/ 4mV =  and get 
relation between τ and   0γ  
 

                                   0
12
1

ctg τγ
τ
+

=
−

                                    (6.11) 

2). ( ) ( )24tot aσ π τ σ τ= =  depends on ! 0σ > demand restrict τ! 
VII.Scattering effective radios ( 02 1/ 4mV < )   

                              ( ) ( )2 2
0 0 0

0

2r u r r drχ
∞

⎡ ⎤= −⎣ ⎦∫                          (7.1)  

where 
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                                        ( )0u C r a= −                                   (7.2) 

                             
( )

1/ 21/ 2

0

;
;

PPAr r R
C r a R

r
r
B

χ
+ −⎧ + <⎪= ⎨
− >⎪⎩

                     (7.3) 

( ){ } ( )
( )

( )
2 12

2 2 2 232 3
0 2

2 2 1
3

1
/

P
Pr C R a D R R

p
a R

P
τ τ

−
+⎧ ⎫⎪ ⎪− +⎨ ⎬+ −

=
⎪⎩

− + −
⎪⎭

 

                         ( )
1/ 2 1/ 2P P

C R a
D

R Rτ− +

−
=

−
                                      (7.4) 

0 0r >  demand restrict τ!  
 VIII.Modification of Rutherford formula 
For Model of valence electron (3.1) potential for scattering case 
we get 

( ) ( )/ 21/ 2 / 2 1/ 2
1 21/ 2 ,1 2 ; 1/ 2 ,1 2 ;P Pu C e F P P C e F P P

ρρρ λ ρ ρ λ ρ
−+ − −= + − + + − − −  

(8.1) 
Where P is given again by (1.8) and  

      2 ; ; 0; 2 ; ;m mikr i i E k mE
k k
α αρ λ η η= = − = − > = =           (8.2)    

SAE  parameter is 

                              ( ) 22

1

2 PC ik
C

τ −=                                              (8.3) 

 ( )lim sin ln 2 1/ 2 / 2 st
cou Plr

u kr kr Pη π δ δ
→∞

⎡ ⎤= + − − − +⎣ ⎦                (8.4) 

Where 
           ( )arg 1/ 2st

coul Pδ λ= Γ + −                                                 (8.5) 

( ) ( ) ( )
( ) ( )

2 1 2 1/ 2
; 2

1 2 1/ 2
P

P P

P P
arctg k

P P
λ

δ τ
λ

Γ − Γ + −
= Ψ Ψ =

Γ + Γ − −
             (8.6) 

                   [ ]1/ 2st
P coul l Pδ δ δ= − + + −                                    (8.7) 
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                   [ ] ( )
( )

1 2/ 2 1/ 2
1/ 2

iar tgi l
P

cP P
S ee

P
π λ

λ
+ − ΨΓ + +

=
Γ − −

                    (8.9) 

                               1
1

st
PS

i
S i+ Ψ

−
=

Ψ
                                            (8.10) 

                                     1iψ =  is pole! 
And we again obtain (3.4) transendental equation for bound states. 
                                  0( 1) 2l l mV+ <                                       (1.10)            

( ) ( )
0

0

1/ 2 1/ 4 2

0 1/ 2 1/ 4 2

1( ) 2 1 cos (2 1) (cos ) 11
12

mV
st st

l P l P
l mV

f l P S l P
i i

Si
k

θ θ θ
⎡ ⎤− + + ∞⎣ ⎦

= ⎡ ⎤− + +⎣ ⎦

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤= + + + −⎨ ⎬ ⎣ ⎦⎢ ⎥⎣ ⎦⎪ ⎪

+ Ψ
Ψ⎩ − ⎭

∑ ∑  

(8.11) 
                           ( ) SAE VEff fθ = +                                           (8.12)      
 When 0V →∞  ,in the (8.9) leading term is SAEf  and for small 0V is  

VEf                                                                                                   

            2 22 R) 2( eSA V EVE E E SAfd f ff f
d
σ θ ∗= += +
Ω

                (8.13) 

       ( ) ( )2 0
0

21/ 2 2 2 1
2 1
mVP l mV l
l

= + − ≈ + −
+

                        (8.14) 

We keep in this case in  SAEf only l=0 term and get  
 

( )2 3
0 2

0 1/ 2 02 2 4

21 1 sin 2 2 / cos2(
4 sin / 2

V md mV m E
d k E

πσ θ π σ σ
η θ

⎡ ⎤
= + − −⎢ ⎥

Ω ⎢ ⎥⎣ ⎦
+

( )
2 0

2 0
0 02

0

2 3

sin [cos lnsin / 2 2 2
s

2
n

in
i

sSAE
SAE

SAE mV
k k
δ η η θδ σ π δ

θ
− − − − −  

( )2 0
0 0 1/ 22 / sin cos lnsin / 2 2 2SAEmV m E mVπ θ η θ π δ σ−− − −       (8.13) 

where the first term is usual Rutherford formula modified for VE 
model last two terms are caused by SAE procedure and are similar 
to the short range interactions. So SAE can again play a role in 
potential nature! This formalism can be used also for, π- 
π+scattering, where is used Klein-Gordon equation. 
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VIII. Concluding remarks. Summary                                              
1. Our main result: We show, that for 2

0 00
lim ( 0)

r
r V V V
→

= − >  

potentials in the region ( )2
01/ 2 2l mV+ >  (no “falling onto center!) 

it is necessary to keep second additional solution in the 0<P<1/2 
interval (We have our variant of Landau mentioned paragraph!) 
and it is also necessary to introduce self-adjoint extension τ 
parameter. in both bound states and scattering problems.               
2. Physical quantities 0, , ,E a r σ depend on τ parameter and by this 
reason physical picture is different then in usual quantum 
mechanics! (As was mentioned above SAE can change nature of 

potential, pδ became energy dependent for 0
2

VV
r

= −  potential and 

so on.                                                                                             
We have three possibilities:                                                         
1).It should be found another strong requirement in the quantum 
mechanic mathematical formalism, which “destroys” additional 
states!                                                                                               
2) If it isn’t possible, try to ‘’struggle’ against τ parameter by 
physical demands: 0 0, 0r σ> > ,don’t change physical nature of 
interaction and so on.                                                                
3).Admit SAE existence and find new levels, and so on. And now 
it stay open the following question: Why the NATURE “select” 
only standard states ( 0)τ = ?!  

 


