Caucasian-German School and Workshop in Hadron Physics (Tbilisi 2006)

Investigation of the ³He η Final State in dp-Reactions at ANKE

Timo Mersmann

Institut für Kernphysik Westfälische Wilhelms-Universität Münster

Motivation for measurements to study the ³He η interaction

- Situation:
 - Existence of an attractive ³He η interaction
 - Open question: "Does a bound state exit?"
- How to measure the 3 He η interaction?
 - Taking advantage of the effect of final state interactions on reaction cross sections near threshold
 - Production experiment $dp \rightarrow {}^{3}He \eta$
 - The ³He η scattering length is closely related to the properties of a bound state

Correlation of Cross Sections and ³He η scattering length

$$\frac{p_i}{p_f}\left(\frac{d\sigma}{d\Omega}\right) = |f|^2 = |f_B \cdot FSI|^2 = \left|\frac{f_B}{1 - i \cdot p_f \cdot a}\right|^2 = \frac{f_B^2}{1 + p_f^2 |a|^2 + 2p_f \mathfrak{I}(a)}$$

ANK

(OSY

- p_i, p_f: initial and final state center of mass momentum
- $(d\sigma/d\Omega)$: differential cross section
- f: scattering amplitude
- f_B: production amplitude
- a: scattering length of the ${}^{3}\text{He}$ η system

Fit in **three** variables of the energy dependency of the cross section (absolute height f₂; shape Re(a), Im(a))

Motivation for new measurements on the reaction dp \rightarrow ³He η

ANKE

Measurements on the reaction $dp \rightarrow {}^{3}He \eta at ANKE$

- ANKE
- Momentum reconstruction of the ³He (magn. spectrometer)
- Identification of the ³He nuclei via "dE-vs.-p"-method
- Reconstruction of the η meson via missing mass technique

Angular Acceptance for the reaction $dp \rightarrow {}^{3}He \eta$ at ANKE

- Geometrical acceptance in wire chambers:
 - Q ≤ 20 MeV: "acceptance" ≈ 100 % (acceptance limited by gaps between the scintillation layers)
 - Q = 40MeV, 60 MeV: Full angular acceptance!

COSY beamtime for dp \rightarrow ³He η measurement at ANKE in Jan. 05

- COSY can provide a continuously ramped beam
 - Excess energy range
 -4 MeV ≤ Q ≤ 12 MeV
 - Beam momentum range $3.120 \text{ GeV/c} \le p \le 3.191 \text{GeV/c}$
 - Subthreshold and near threshold region
- Fixed beam momenta:
 - Q = 20, 40, 60 MeV (p = 3.224, 3.308, 3.391 GeV/c)
 - Partial wave analysis

ANK

Identification of ³He nuclei "dE-vs.-Momentum" method

• Three scintillation layers are used to identify the ³He

ANKE

(OSY

Spectra with a cut on all three layers are shown!

Identification of the reaction $dp \rightarrow {}^{3}He \eta$ via momentum ellipse

• Event weight: 1/Transv. Mom \rightarrow correction of density on ellipse

ANKE

Missing mass distribution and background description

- Situation: Peak on kinematical limit
- Idea: Use subthreshold data for background description
- Upscaled ³He- and beammomentum to η data

 $\vec{p}_{reconstr.}^{backgr. description}$

*P*_{beam}
 "Scaled" Missing Mass for background description

 $\frac{P \text{ beam}}{\text{ subthreshold}} \cdot \vec{p}_{\text{reconstr.}}^{\text{ subthreshold}}$

$$MM = \left| P_{beam}^{\eta \ data} + P_{target} - P_{reconstr.}^{backgr. \ des} \right|$$

(05)

Missing mass angular distribution

ANK

Geant4-simulations and acceptance correction

ANKE

Cos

Hit Position X [mm]

Excess Energy reconstruction for the continuous ramp

Excitation function existing data base

ANKE

ANKE

ANKE

Summary Outlook

- Calibration of the detection system, except:
 - Absolute excess energy (only fine tuning)
 - Angular distribution (only fine tuning)
- Absolute normalization via dp-elastic scattering (Michael Papenbrock, diploma thesis in preparation)
- Study of higher excess energy data (Q=20, 40, 60 MeV)
- Study of polarised data of February 2005
- Preparation for the polarised dp \rightarrow ³He η beamtime in second half of 2007

Normalization via dp-elastic scattering

Comparison with the d η system in the reaction pn \rightarrow d η

- Study of the reaction $pn \rightarrow d\eta$ using the spectator model
- Direct reconstruction of deuteron and η meson

Total cross section σ [nb]

Total cross section σ [nb]