



# First results from ANKE cell-target data

Sergey Dymov (JINR, Dubna, Russia)

## Data and results

#### **Measurements:**

| November                  |                                                |          |  |
|---------------------------|------------------------------------------------|----------|--|
| test with CH <sub>2</sub> |                                                | COOO Mev |  |
| February                  | 2006: polarized H jet                          | @600 MeV |  |
| March                     | 2006: cell with unpolarized H <sub>2</sub> and | @831 MaV |  |
|                           | background study with N <sub>2</sub>           | eosi mev |  |
| <u>Results:</u>           |                                                |          |  |

- target density with jet and cell
- ABS jet polarization
- background from the cell in 3–body reactions

#### *Measurement of pp* $\rightarrow$ d $\pi^+$



Known large  $d\sigma/d\Omega$  and  $A_{\gamma}^{p}$  are used to get the gas density and polarization

#### *Vertex reconstruction by pp* $\rightarrow d\pi^+$ *with CH*<sub>2</sub> *target*



Sergey Dymov

CGSWHP'06

#### *Vertex reconstruction by pp* $\rightarrow d\pi^+$ *with storage cell*



Sergey Dymov

CGSWHP'06

#### Target thickness



| Method                     | Jet [atoms/cm <sup>2</sup> ] | Storage Cell [atoms/cm <sup>2</sup> ] |
|----------------------------|------------------------------|---------------------------------------|
| ABS flux (+ cell geometry) | (1.6±0.1)·10 <sup>11</sup>   | (1.9±0.1)·10 <sup>13</sup>            |
| Rates (pp→dπ+)             | (1.5±0.1)·10 <sup>11</sup>   | (2.1±0.1)·10 <sup>13</sup>            |

#### Vertex reconstruction with single particle

Two-body reactions pp $\rightarrow$ pp and pp $\rightarrow$ d(0<sup>0</sup>) $\pi$ <sup>+</sup>



#### Target polarization



#### Background from cell walls in 3-body processes

Use of Nitrogen gas in the cell to obtain background from interactions with the cell wall

The cell was fed with  $H_2$  or  $N_{2}$ :

- H<sub>2</sub> flux adjusted to match target chamber pressure flux of 1 HFS.
- N<sub>2</sub> flux adjusted to yield the same energy loss per unit of time in COSY compared to H<sub>2</sub>, i.e. a similar beam heating.



#### *Missing mass in 3-body processes with* $H_2$ *and* $N_2$ *targets*



Stochastical cooling reduses background fraction by 5-10 %

Identification of three-body final states with cell at ANKE is possible

## $dp \rightarrow (pp)n$ with cell: missing mass resolution



#### simulation

Variation of missing mass is comparable with  $M_{x}$  resolution with point-like target

## $dp \rightarrow (pp)n$ with cell: resolution in excitation energy $T_{pp}$

#### simulation



 $T_{pp}$  resolution does not change compared to point-like target case

#### Summary

- High intensity beam can be stored with the cell with help of electron and/or stochastic cooling (talk by Ralf Engels)
- Target thickness of (1.5±0.1)·10<sup>11</sup> atoms/cm<sup>2</sup> with the jet and (2.1±0.1)·10<sup>13</sup> atoms/cm<sup>2</sup> with the cell is achieved. The rest gas background is tolerable.
- ABS jet polarization of  $P_{av}=0.44\pm0.03$  is achieved, close to expectations.
- Identification of three-body final states with long cell at ANKE is possible.