

The near-threshold production of ϕ mesons in pN collisions

Irakli Keshelashvili for the ANKE collaboration IHEPI TSU and FZJ

(I.Keshelashvili@FZ-Juelich.de)

Outline

- Experiment & Analysis
- ♦ Results: pp→pp
 & pn→d
- Summary and Outlook

CGSWHP '06

scares pp→pp♦ data

- no $pn \rightarrow d\phi data$
- renergy dependence of the total -
- ϕ cross section $\Rightarrow \boldsymbol{g}_{\phi NN}$
- isospin dependence

 μ m_{ϕ} = 1019 MeV (distance of two colliding

nucleons < 0.2fm)

Okubo-Zweig-Iizuka (OZI) rule

At ANKE: (pp) $\varepsilon = 18.5, 34.6, 75.9 \text{ MeV}$ (pn) ε up to 80 MeV

2

Motivation: OZI rule

SU(3):
$$|\omega\rangle_1 = \frac{1}{\sqrt{3}} \left(|u\overline{u}\rangle + |d\overline{d}\rangle + |s\overline{s}\rangle \right)$$

 $|\omega\rangle_8 = \frac{1}{\sqrt{6}} \left(|u\overline{u}\rangle + |d\overline{d}\rangle - 2|s\overline{s}\rangle \right)$

$$|\phi\rangle = \cos \theta_V |\omega\rangle_8 - \sin \theta_V |\omega\rangle_1 \approx |s\overline{s}\rangle |\omega\rangle = \cos \theta_V |\omega\rangle_8 + \sin \theta_V |\omega\rangle_1 \approx \frac{1}{\sqrt{2}} \left(|u\overline{u}\rangle + |d\overline{d}\rangle \right)$$

 $\sigma_{\phi} / \sigma_{\omega} = \tan^{2}(\theta - \theta_{i}) = 4.2 \times 10^{-3} \equiv R_{OZI}$ $\bar{p}p \text{ annihilation}$ C.Amsler, Rev.Mod.Phys.70 (1998) $R_{\phi/\omega} \approx (30 \div 70) \times R_{OZI}$

Mesonic and radiation decay πN , pp collision (ϵ >100MeV) $R_{\phi/\omega} \approx 3 \times R_{OZI}$

DISTO @ SATURNE (Saclay, France) σ_{tot} =200nb @ ϵ =83MeV $R_{\phi/\omega} \approx 7 \times R_{OZI}$

Experiment: ANKE Set-up @ COSY

Negative ejectiles pp→pp\$→pK⁺K⁻p **D2** ✓ 2.83 GeV (75.9 MeV) TOF-stop K ✓ 2.70 GeV (34.6 MeV) TOF-stop. Curved Cherenkovs MWPC -✓ 2.65 GeV (18.5 MeV) TOF-start **D3** $\mathbf{D1}$ MWPC 2.83 GeV (75.9 MeV) Target TOF-start p,c $pd \rightarrow d\phi p \rightarrow dK^{+}K^{-}p$ MWPC PD relescopes FD Hodoscope ✓ 2.65 GeV **1**m Side hodoscope **Positive ejectiles**

CGSWHP '06

Analysis: Particle/Reaction Identification

Results: $pp \rightarrow pp\phi$ (total cross sections)

Results: $pp \rightarrow pp\phi$ (differential cross sections)

ε **= 18.5 MeV**

¹S₀ (pp) final-state (pp)
\$\phi\$ in relative S-wave respect (pp)
³P₁ (pp)-entrance channel
<u>clear transition</u>

<u>clear effect of pp-FSI !!!</u>

Results: The ϕ/ω production ratio

OZI: high energy $R_{\phi/\omega} \approx (1 - 2.4) \times R_{OZI}$ (in agreement with πN data and the $\phi \rho \pi$ and $\omega \rho \pi$ coupling)

-ANKE OZI: 18.5-79.5 MeV R_{φ/ω} ≈ (3.3±0.6)×10⁻² ≈ 8×R_{OZI}

Results: $pn \rightarrow d\phi$ (event selection)


```
T_{p} = 2.65 \, GeV
```

 $pd \rightarrow d\phi(K^+K^-)p_{spectator}$ $pn \rightarrow d\phi(K^+K^-)$

Monte Carlo simulation:

Fermi momentum in the target deuteron

derived from Bonn potential.

ರ್ಣ ≈ 2 MeV extract cross section < 80 MeV

Results: $pn \rightarrow d\phi$ (differential cross sections)

1S+9 possible P-wave amplitudes!

				Ll_{J_q}		
$^{1}P_{1}$	\rightarrow	${}^{3}S_{1}$	s	Ss		
$^{-3}S_{1}$	\rightarrow	${}^{3}S_{1}$	p	S^1p_0		
${}^{3}S_{1}$	\rightarrow	${}^{3}S_{1}$	p	S^1p_1		
${}^{3}S_{1}$	\rightarrow	${}^{3}S_{1}$	p	S^1p_2		
${}^{3}D_{1}$	\rightarrow	${}^{3}S_{1}$	p	$S^2 p_0$		
${}^{3}D_{1}$	\rightarrow	${}^{3}S_{1}$	p	S^2p_1		
${}^{3}D_{1}$	\rightarrow	${}^{3}S_{1}$	p	$S^2 p_2$		
• • •						

to allow for the possibility of higher partial waves ... most general form:

 $d\sigma/d\Omega_{\phi}^{K^{+}} = = 3/(8\pi)(a \sin^{2}\Theta_{\phi}^{K^{+}} + 2b \cos^{2}\Theta_{\phi}^{K^{+}})$

 $\sigma_{tot} = a + b$

from fits to these data: $b/a \approx (0.012 \pm 0.001)(\epsilon/MeV)$

Results: $pn \rightarrow d\phi$ (total cross sections)

using final-state-interaction theory (G. Faeldt and C. Wilkin, Phys. Lett. B. 382 (1996) 209).

 $\sigma(pn \rightarrow pn\phi) / \sigma(pp \rightarrow pp\phi) \approx 2.3\pm0.4$

Summary and outlook

pp→pp∳	(ε=18.5,	34.5 and	175.9	MeV)
--------	----------	----------	-------	------

ε=18.5 MeV, S-wave production

 $({}^{3}P_{1} \rightarrow {}^{1}S_{0} \text{ transition})$

clear pp-FSI (energy dependence)

OZI: R_{φ/ω}(18.5-79.5 MeV)

≈ (3.3±0.6)×10⁻² ≈ 8×Rozi

pn \rightarrow d ϕ (Tp=2.65 GeV, ϵ up to 80 MeV)

 $\sigma_{\mbox{\tiny tot}}$ phase-space energy dependence

P-wave contribution already at low energy

OZI: $R_{\phi/\omega}$ ($\approx 60 \text{ MeV}$)

≈ (4.0±1.9)×10⁻² ≈ 9×Rozi

new pp→ppφ data at ε=75.9 MeV

(≈ 3000 ∮'s)

higher partial wave contribution ??

Results: $pp \rightarrow pp\phi$ compared with theoretical predictions

K. Tsushima and K. Nakayama, Phys. Rev. C 68 (2003) 034612.

L.P. Kaptari and B. Kaempfer, Eur. Phys. J. A 23 (2005) 291.

A. Faessler *et al.*, Phys. Rev. C 68 (2003) 068201. (resonance model, two step)

