Results on single-polarized measurements at ANKE with deuteron beam

David Chiladze IHEPI, Tbilisi State University IKP, Forschungszentrum Jülich

Outline

- Introduction
- Experimental set-up
- Beam polarimetry
- Analysing power measurements
- Cross section
- Summary & outlook

Introduction: NN Scattering

- Characterization requires precise data for Phase Shift Analyses
- Current experimental status of NN data:
 - pp system (I=1) well-known up to 2.5 GeV (EDDA): Majority of data on unpolarized, single, and double polarized observables
 - np system (I=0) poorly known →
 ANKE will provide high-quality data in forward/backward region

Talks by: Colin Wilkin Andro Kacharava

Introduction: np elastic (small angle)

np forward

deuteron beam: deuteron target:

$$\vec{d\vec{p}} \rightarrow p_{sp} (np)$$

 $\vec{p}\vec{d} \rightarrow p_{sp} (pn)$

d beam: up to 1.1 GeV for np d target: up to 2.8 GeV for pn

Introduction: np elastic (large angle)

np charge-exchange

deuteron beam: $\vec{d}\vec{p} \rightarrow (pp)_{_{S_0}}n$ deuteron target: $\vec{p}\vec{d} \rightarrow (pp)_{_{S_0}}n$

d beam: up to 1.1 GeV for np d target: up to 2.8 GeV for pn

Experimental setup

Source

Polarized deuteron beam

N_d ~ 3 x 10⁹

Spin mode	P_z ideal	P_{zz} ideal	Intensity [I ₀]
0	0	0	1
1	-2/3	0	1
2	+1/3	+1	1
3	-1/3	-1	1
4	+1/2	-1/2	2/3
5	-1	+1	2/3
6	+1	+1	2/3
7	-1/2	-1/2	2/3

Beam polarimetry: LEP & EDDA

- Low Energy Polarimetry
 - □ T_d = 76 MeV
 - $\Box \ dC \rightarrow dC$
 - □ $A_v(40^\circ) = 0.550 \pm 0.025 \sim KVI$
- EDDA □ $T_d = 270 \text{ MeV}$ □ $dp \rightarrow dp$ □ $A_y, A_{yy} (65^\circ-95^\circ) \sim \text{RIKEN}$

$$P_z \approx 75 \% P_{zz} \approx 60 \%$$

Beam polarimetry: Reaction identification

Beam polarimetry: Results

Beam polarimetry: Polarization export

- Polarized deuteron beam at 3 energies
- Calibration of the beam polarization of arbitrary energy
- Super cycle: T_d = 1.2 GeV, 1.8 GeV.

Luminosity

Number of events χ^2 /ndf = 6.7 / 9 • $dp \rightarrow dp$ 10⁹ Cross Section from KEK • dp \rightarrow ³He π^0 10⁸ $dp \rightarrow dp$ Cross Section from SATURNE 7.5 9 9.5 10 $\theta_{Lab.}$ [Degree] 6.5 7 8 8.5 5.5 6 10 Luminosity ×10³⁰ cm⁻² sec⁻¹ 3 $dp \rightarrow dp$ \square dp \rightarrow dp π^0 (in progress) 2.5 $dp \rightarrow 3He\pi^0$ (preliminary) Cross Section from SAID 2 0.5 6810 6820 6830 6840 6850 Run number

Summary & Outlook

- Polarisation standard at 1.2 GeV
- Polarisation at higher energy
- Analysing power measurements are done
- Cross-section in progress
- 2 publications are published

- □ Higher beam energy (up to 2.3 GeV)
- □ Double polarized dp \rightarrow (2p)n reaction

Introduction: np amplitudes

$$\frac{d\rho \rightarrow (\rho\rho)_{1S_{0}} n}{dt^{2}} = |\gamma|^{2} + |\beta|^{2} + |\beta|^{2} R^{2}, \quad R = \frac{S^{+}(k, q/2)}{S^{-}(k, q/2)}, \qquad \frac{d^{4}\sigma}{dtd^{3}k} = \frac{1}{3}I[S^{-}(k, q/2)]^{2}; \\
IT_{20} = \frac{1}{\sqrt{2}}[[\gamma|^{2} + |\beta|^{2} + |\delta|^{2} R^{2} - 2|\varepsilon]]^{2}; \qquad IT_{22} = \frac{\sqrt{3}}{2}[[\gamma|^{2} + |\beta|^{2} - |\delta|^{2}R]^{2}; \\
IC_{y,y} = -2\Re(\varepsilon^{*}\delta)R; \quad IC_{x,x} = -2\Re(\beta^{*}\varepsilon); \quad IC_{z,z} = -2\Re(\varepsilon^{*}\beta)R. \\
\frac{d\sigma}{dt}, T_{20}, T_{22} \Rightarrow |\gamma|^{2} + |\beta|^{2}, |\delta|^{2}, |\varepsilon|^{2} \qquad \text{over a range in } t \\
Bugg, Wilkin; NP A467(1987) 575 \\
\frac{\ln \text{ collinear}}{kinematics} \Rightarrow \qquad I = 2|\beta|^{2} + |\varepsilon|^{2}; \quad IT_{20} = \sqrt{2}[[\beta|^{2} - |\varepsilon|^{2}] \Rightarrow |\beta|, |\varepsilon| \\
IC_{y,y} = -2\Re(\varepsilon\beta); IC_{xz,y} = -3\Im(\beta\varepsilon) \Rightarrow \cos(\varphi_{\varepsilon} - \varphi_{\beta})$$