

Spin Physics from COSY to FAIR The SPIN Programme at COSY: Priority Topics

> Colin Wilkin University College London

Spin Physics inside the COSY RING

Proposal presented to the November 2005 PAC

- 1. Proton-neutron reactions at small momentum transfers.
- 2. Proton-deuteron reactions at high transfers.
- 3. Non-strange meson production.
- 4. Production of strange mesons and baryons.
- 5. Test of Time-reversal in pd scattering.
- 6. Spin rotation and birefringence in storage rings.

Available Equipment

- 1. ANKE magnetic spectrometer with forward, positive, and negative detectors.
- 2. Polarised Internal Target (PIT).
- 3. Polarised proton and deuteron beams and polarised hydrogen and deuterium targets.
- 4. Silicon tracking telescopes to measure low energy charged particles (including *spectators*) emerging from the target.

But (almost) no measurement of final polarisation.

Nucleon-nucleon elastic scattering

- Thanks largely to EDDA, there is a wealth of differential cross sections, analysing powers and spin-correlations for $T_p < 2.5$ GeV.
- Had a large impact on Phase Shift Analysis for T_p > 500 MeV, significantly reducing the ambiguities in *I*=1 phase shifts.
- The np situation is poor in comparison and so the *I=0* phase shifts are far more uncertain.

NN-Interaction – The EDDA Legacy

15 distributions of pp analysing power in terms of beam momentum at fixed cm scattering angle.

- → high precision
- → internal consistency

Furthermore, there are unpolarised (σ) and double-polarised (A_{NN} , A_{SS} , A_{SL}) data

Deuteron Charge-Exchange

- Due to the Pauli principle, at low excitation energies E_{pp} the *pp* system is a spin-singlet.
- The $dp \rightarrow \{pp\}_S n$ reaction involves a spin and isospin flip from the $\{np\}_{S,D}$ to $\{pp\}_S$.
- In impulse approximation, the amplitude is proportional to the $np \rightarrow pn$ spin-flip terms.
- Measurements of σ , A_{xx} , A_{yy} will fix three magnitudes as functions of q. [David Chiladze]
- Spin correlations $C_{y,y}$ & $C_{x,x}$ fix two phases, A^{p}_{y} a third. Needs polarised cell. [Sergey Dymov]

Future Extensions

- Work in inverse kinematics and detect the two low energy protons from $pd \rightarrow n \{pp\}_S$ in the tracking telescopes. [Dieter Oellers]
- Extends the maximum beam energy per nucleon from ≈1.1 GeV up to ≈3 GeV.
- Also extends considerably the range in momentum transfer (< 120 MeV/c with d beam) since ANKE not needed.
- Allows one to measure $pd \rightarrow \Delta^0 \{pp\}_S$ with $\Delta^0 \rightarrow \pi^- p$ being detected in ANKE.

Acceptance simulations of chargeexchange: two protons in the SST

Acceptance simulation for $pd \rightarrow n \{pp\}$

There is possibly a hole between cases where the two protons go into the same or different telescopes

Reaction can be measured in parallel when a polarised D₂ target is being used. Huge statistics!

Predicted acceptance at 3 GeV/c

10

The $dp \rightarrow \{pn\}_{S} p$ Reaction

- More theoretical analysis needed since {pn}_S is a mixture of T=0 & T=1 states.
- At small momentum transfers much of the final {pn}_S flux is swallowed up by the deuteron final state and comes out as *dp* elastic scattering.
- (△I=1, △S=1) transitions play a very important role here as well as for deuteron charge exchange.
- The reaction can be very well measured at ANKE.

The $dp \rightarrow \{pn\}_{S} p$ Reaction

- More theoretical analysis needed since {pn}_S is a mixture of T=0 & T=1 states.
- At small momentum transfers much of the final {pn}_S flux is swallowed up by the deuteron final state and comes out as *dp* elastic scattering.
- (△I=1, △S=1) transitions play a very important role here as well as for deuteron charge exchange.
- The reaction can be very well measured at ANKE.
- But surely it must be worth 10% of the experimental budget to extract the PHYSICS from such experiments.

Pion Production in NN Collisions

One very useful ingredient in chiral perturbation theory is the $4N\pi$ contact term, which can be measured in pion production if we can isolate the transition from the *T*=0 *np* to the *T*=1 {*pp*}_S system.

Only terms up to k_{π^2} needed to describe the TRIUMF $np \rightarrow \{pp\}_S \pi^-$ data at T_n =353 MeV.

We must measure the analysing power and spin correlations in π^0 and π^- production leading to the {pp}_S state.

CHALLENGE: Ayy for $\overrightarrow{n p} \rightarrow \{pp\}_{S} \pi^{-}$

The pp \rightarrow {pp}_s π^0 Reaction

Differential cross section measured for E_{pp} < 3 MeV at 800 MeV using ANKE. Varies very rapidly with angle, showing a forward dip.

Only two invariant amplitudes and these must cancel near the forward direction.

Niskanen predicted such a behaviour, though his cancellation is at too small a value of $cos^2 \theta_{\pi^*}$

Rich Structure predicted for ANKE

In an $N \triangle$ approach the $N \triangle$ S-wave is forbidden for the $pp \rightarrow \{pp\}_S \pi^0$ reaction. The *P*-wave feeds both the pion *s*- and *d*-waves, leading to the possibility of cancellations. Violent fluctuations are expected (Niskanen *dixit*).

Heavier Non-Strange Meson Production

Spin correlations in $pp \rightarrow pp X^0$ give information on the reaction mechanism. Near threshold the decay of the X⁰ may already contain much information. [Irakli Keshelashvili for the φ]

ANKE very well equipped to measure diprotons $\{pp\}_S$ at low excitation energy and this can give very clean spectra.

For $\eta \& \pi^0$ production there are only two amplitudes. Spin correlations can split them.

The data show very clean two-pion production. The best ABC structure on the market!

Large Momentum Transfer Reactions $pd \rightarrow dp$ $pd \rightarrow \{pp\}_{s}n$

Cross sections and proton analysing power measured for the $pd \rightarrow \{pp\}_{s}n$ reaction at ANKE. [Andro Kacharava]

Deuteron tensor analysing power would contain far more information on the dynamics. Is it similar to backward elastic dp scattering? If so, it might be driven by $pd \rightarrow dp$ followed by a soft charge-exchange by the deuteron on the way out (*fsi*).

There are many other models!

The $pp \rightarrow K^{+}YN$ Reaction

COSY-11, TOF

Strangeness production in $pp \rightarrow pK^+\Lambda$ shows clear evidence for the YN fsi; largely absent in $pp \rightarrow pK^+\Sigma^0$. Extraction of a Ap scattering length is hampered by having contributions from spinsinglet and triplet. Hypernuclear data suggest that the singlet interaction is more attractive.

$$(1 - C_{NN}) \sigma(pp \rightarrow pK^{+}\Lambda)$$

leads only to spin-triplet final states for $\theta_{\rm K}$ = 0°.

The $NN \rightarrow K^{+} \Lambda N$ Challenge

With a long target it might be "easier" to measure *pn* than *pp*. LET US DREAM !

Due to the weak decay, the $\Lambda \rightarrow p\pi^-$ distribution defines P_{Λ} . Perhaps we can measure spin-transfer and spin-correlation in *pp* and *pn* interactions.

There are only three spin-isospin amplitudes $W_{I,s/t}$ near threshold. D_{NN} sensitive to differences in fsi and hence to ΛN scattering length differences.

$$\begin{split} & \mathsf{I}(\mathsf{pp} \to \mathsf{K}^{+}\Lambda\mathsf{p}) = (|\mathsf{W}_{1,\mathsf{s}}|^{2} + 2 |\mathsf{W}_{1,\mathsf{t}}|^{2})/4 \\ & \mathsf{I}(\mathsf{pn} \to \mathsf{K}^{+}\Lambda\mathsf{n}) = (|\mathsf{W}_{1,\mathsf{s}}|^{2} + 2 |\mathsf{W}_{1,\mathsf{t}}| 2 + |\mathsf{W}_{0,\mathsf{t}}|^{2})/16 \\ & \mathsf{I}(\mathsf{pp} \to \mathsf{K}^{+}\Lambda\mathsf{p}) \ \mathsf{C}_{\mathsf{NN}}(\mathsf{pp} \to \mathsf{K}^{+}\Lambda\mathsf{p}) = |\mathsf{W}_{1,\mathsf{s}}|^{2}/4 \\ & \mathsf{I}(\mathsf{pn} \to \mathsf{K}^{+}\Lambda\mathsf{n}) \ \mathsf{C}_{\mathsf{NN}}(\mathsf{pn} \to \mathsf{K}^{+}\Lambda\mathsf{n}) = (|\mathsf{W}_{1,\mathsf{s}}|^{2} - |\mathsf{W}_{0,\mathsf{t}}|^{2})/16 \\ & \mathsf{I}(\mathsf{pp} \to \mathsf{K}^{+}\Lambda\mathsf{p}) \ \mathsf{D}_{\mathsf{NN}}(\mathsf{pp} \to \mathsf{K}^{+}\Lambda\mathsf{p}) = - \operatorname{Re}\{\mathsf{W}_{1,\mathsf{s}}\mathsf{W}_{1,\mathsf{t}}^{*}\}/2 \\ & \mathsf{I}(\mathsf{pn} \to \mathsf{K}^{+}\Lambda\mathsf{n}) \ \mathsf{D}_{\mathsf{NN}}(\mathsf{pn} \to \mathsf{K}^{+}\Lambda\mathsf{n}) = - \operatorname{Re}\{(\mathsf{W}_{1,\mathsf{s}}^{-}\mathsf{W}_{0,\mathsf{t}})\mathsf{W}_{1,\mathsf{t}}^{*}\}/8 \\ & \mathsf{I}(\mathsf{pn} \to \mathsf{K}^{+}\Lambda\mathsf{n}) \ \mathsf{D}_{\mathsf{NN}}(\mathsf{pn} \to \mathsf{K}^{+}\Lambda\mathsf{n}) = - \operatorname{Re}\{(\mathsf{W}_{1,\mathsf{s}}^{-}\mathsf{W}_{0,\mathsf{t}})\mathsf{W}_{1,\mathsf{t}}^{*}\}/8 \end{split}$$

Priorité à droite ! (Priority on the left ?)

By which I mean that one (wo)man's priority might not be the first choice of somebody else.

I have a vested interest in $dp \rightarrow {}^{3}\text{He }\eta$ [Timo Mersmann] especially with a polarised beam (and possibly target) but I could not sell a four-year programme at COSY on it.

- Good experiments can always struggle to the front.
- Like in a bubble chamber, many experiments will be carried out simultaneously if the trigger conditions are chosen judiciously.

NOW IT IS TIME FOR THE YOUNGSTERS TO DISPLAY THEIR WARES !

LET US HOPE THAT WE GET MORE THAN FOOD FOR THOUGHT !

FOLLOWING OUR 2004 EXPERIENCES I HAVE NO WORRIES IN THIS

REGARD.

PHYSICS PROGRAMME PRESENTED TODAY IS SHORT-TERM FUTURE; FOR MY 75th BIRTHDAY I WANT TO BE WORKING WITH **PAX** !

