

Analysing power in deuteron breakup First Measurement of the Analyzing Power in pd \rightarrow (pp)n with a Fast Forward ${}^{1}S_{0}$ Diproton

Analysing power in deuteron breakup First Measurement of the Analyzing Power in $pd \rightarrow (pp)n$ with a Fast Forward ${}^{1}S_{0}$ Diproton

S.Yaschenko^{1,2}, S.Dymov², V.Komarov², G.Macharashvili^{2,3}, F.Rathmann⁴, S.Barsov⁵, M.Hartmann⁴, V.Hejny⁴, R.Gebel⁴, A.Kacharava^{1,3},
A.Khoukaz⁶, P.Kulessa^{4,7}, A.Kulikov², V.Kurbatov², N.Lang⁶, I.Lehmann⁴, B.Lorentz⁴, T.Mersmann⁶, S.Merzliakov², S.Mikirtytchiants⁵,
A.Mussgiller⁴, M.Nioradze³, H.Ohm⁴, D.Prasuhn⁴, R.Schleichert⁴, H.Seyfarth⁴, E.Steffens¹, H.J.Stein⁴, H.Ströher⁴, Yu.Uzikov^{2,8}, B.Zalikhanov², and N.Zhuravlev²

¹ PI II, Uni. Erlangen-Nurnberg, Germany; ² JINR, Dubna, Russia;
 ³ HEPhI TSU, Tbilisi, Georgia; ⁴ IKP FZ-Julich, Julich, Germany;
 ⁵ PNPI, Gatchina, Russia; ⁶ IKP, Uni. Munster, Germany;
 ⁷ INPh, Krakow, Poland; ⁸ KNU, Almaty, Kazakhstan;

Physics motivation

Study of pd dynamics at high momentum transfer; Short-range structure of NN interactions;

 ${}^{1}S_{o}$ –state of the fast forward diproton provides new features absent in the pd—dp and exclusive deuteron disintegration;

Insight on few nucleon systems at short distances;

Different Δ contribution at 0.5 and 0.8 GeV. Δ contribution suppressed by the isospin factor 3 times at 0.8 GeV.

A number of theoretical models proposed:
L.Kondratyuk et al., Phys. Lett. B 100, 448 (1981),
Yu. Uzikov. Phys. Part. Nucl. 29 (1998) 583,
L.P.Kaptari et al., Eur. Phys. J. A19, 301 (2004), ...

ANKE spectrometer

ANKE spectrometer

Polarizaed proton beam: stored in COSY ring 3 ·10⁹ polarization 0.564 ± 0.003^{stat} ± 0.004^{syst}

D₂ cluster target: density along the beam 12 mm full width

2.10¹⁴ cm⁻² 4.5 mm

Spectator detector (SDT). Energy resolution 300 keV.

Proton momentum in FD for detected in SDT deuterons. No background ...

These elastic events were used for beam polarimetry

Polarization export

-Spin flip occures at 631.8 MeV (the 2nd improper resonanse) -depolarization caused by: magnetic field errors; misalignment of magnets; vertical focussing magnets; -Polarization loss is less than 1 %

A.Lehrach et al., Spin-2002, p.153

Beam polarimetry at 0.8 GeV

Analysing power in pd elastic scattering is used for the beam polarization measurement in the 1st and the 3rd flattops. The Polarization value is exported to the 2nd flattop at 0.5 GeV.

Exp. data from: F.Irom et al., Phys.Rev.C 28, 2380 (1983)

Analysis procedure

Double-track events are filtered for proton-pair selection;

The efficiency of double-proton identification is checked by $\triangle E$ and TOF difference methods;

Two proton phase space was checked;

Left/Right scattered events were accumulated

Two particle momentum correlation.

Break-up events are concentrated at the outer arc center.

Two particle TOF differences (measured versus calculated)

For the calculation two-proton hypothesis was used.

(pp) – on the diagonal
(dπ⁺) (dp) (pπ⁺) (tπ+) identified
TOF measurement uncertainty
(the diagonal profile RMS):
200 ps at 0.5 GeV
180 ps at 0.8 GeV

Missing-mass spectra.

Proton-pair selection criteria E_{pp}< 3 MeV cosφ > 0.7 |Y_{target}| < 2.2 cm

Background in ±3σ interval: 0.5 GeV 5% 0.8 GeV 13%

A, calculation and statistical uncertainties.

Left/right counts of the break-up events were accumulated in each θ bin:

 $\begin{array}{l} L(\theta) \sim X_{+} \left(1 + A_{y} \left(\theta\right) P_{+} < \cos\varphi \right) \\ R(\theta) \sim X_{-} \left(1 - A_{y} \left(\theta\right) P_{-} < \cos\varphi \right) \end{array}$

Measured asymmetry: $\epsilon(\theta) = (L(\theta) - f R(\theta)) / (L(\theta) + f R(\theta));$ Where f is the relative luminosity correction factor $f = X_{+}/X_{-};$

Statistical uncertainty: $\delta \epsilon = (L + fR)^{-1} [(1 - ε^2)L + (1 + ε^2)(f^2R + δ_f^2R^2)]^{\frac{1}{2}}$

Finally, the analysing power is defined as: $A_v(\theta) = \epsilon(\theta) / P < \cos \phi >_{\theta}; P = 0.5 (P_+ + P_-)$

Systematic uncertainties

Difference of the beam polarization $P = 0.5 (P_+ + P_-)$ $\Delta P = 0.5 (P_+ - P_-)$ leads to the change of analysing power: $A_y \rightarrow A'_y = A_y (1 + \Delta P \cdot A_y)^{-1}$

Relative luminosity correction factor $\mathbf{f} = \mathbf{L}_{+}/\mathbf{L}_{-}$ if $\mathbf{f} \rightarrow \mathbf{f}' = \mathbf{f} (\mathbf{1} + \xi)$ $\mathbf{A}_{y} \rightarrow \mathbf{A}'_{y} < \mathbf{A}_{y} - \xi/2\mathbf{P}$

Systematic uncertainties are negligible in comparison with statistical ones (≤ 0.02)

Realtive luminosity monitoring

For relative luminosity monitoring the polarization independent count rates used:

Single protons counted at polar angles close to zero θ_{cm} < 1°

Single protons counted at azimuthal angles $85^{\circ} < \phi < 95^{\circ}$ or $265^{\circ} < \phi < 275^{\circ}$

S – wave dominance

Selected event $\cos\theta_k^{cm}$ distributions.

S – wave dominance

Excitation energy spectra

Events accepted if $E_{pp} < 3 \text{ MeV and}$ $\cos \varphi > 0.7$

E_{pp} uncertainty (RMS)

E_{nn} - proton-pair excitation energy

ngular dependence of the function of back-scattered neutron c.m. ang

bout 2800 and 0.8 GeV respe

were collected at 0.5 and

180

Summary

The analysing power in the deuteron break-up was measured at two beam energies of 0.5 and 0.8 GeV, at proton-pair sacttering angles $0^{\circ} < \theta_{cm} < 14^{\circ}$.

The model accounting ONE, SS, and △ excitation describes well the unpolarized break-up cross section [V.Komarov et al., Phys.Lett. B 553, 179 (2003)].

The model fails to reproduce large A, at 0.5 GeV.

New approach is required.

