Caucasian-German School and Workshop on Hadron Physics

Polarisation Experiments in Storage Rings

Frank Rathmann Institut für Kernphysik Forschungszentrum Jülich

Tbilisi, August 31, 2004

Frank Rathmann

Introduction

Past ~15 years, tremendous progress in spin-physics experiments with polarized beams on internal targets

Near future exploitation at COSY

Experimental and theoretical developments pave the way to Future Hadron Physics programs at FAIR Hadronic Probes: -IUCF-PINTFX:

- Proton-Proton Elastic
- NN \rightarrow NN π
- Proton-Deuteron Elastic
 -COSY
 - EDDA:
 - Proton-Proton Elastic
 - •Time-Reversal Invariance

- ANKE:

- Proton-Deuteron Breakup
- •Proton-Neutron Elastic
- WASA:
 - -Parity of θ+

-RHIC-SPIN

- Electromagnetic Probes:
 - -Bates-BLAST
 - -Novosibirsk-VEPP-3
 - -HERA-HERMES

Outline

Basics

- Medieval Warfare
 - Storage Rings and Internal Targets
- Polarimetry
 - Selected Experimental Results
- Production of Polarized Antiprotons
- Medical Application of Polarized Targets

Basics: Polarization

magnetic quantum number $m=s_z$ (z-component in units of hbar)

Two numbers N_{-} and N_{+} fully characterize the beam. Usually linear combinations are used:

Intensity $I = N_+ N_+$ Polarization $P_z = (N_+ - N_-)/(N_+ + N_-)$ $-1 \le P_z \le +1$

Basics: continued

$$P_{zz} = 0 \rightarrow N_{+} - 2 \cdot N_{0} = 0$$

$$\rightarrow N_{+} = 2 \cdot N_{0}$$

$$\rightarrow P_{z} = (N_{+} - N_{-})/(N_{+} + N_{0} + N_{-})$$

$$= 2 \cdot N_{0}/(2N_{0} + N_{0})$$

$$= +2/3$$

(other case analog)

Frank Rathmann

Outline

Basics

- Medieval Warfare
 - Storage Rings and Internal Targets
- Polarimetry
 - Selected Experimental Results
- Production of Polarized Antiprotons
 - Medical Application of Polarized Targets

South of France, between Toulouse and the Mediteranian

Frank Rathmann

Philippe III (the Strong) built the fortress (1270-1285).

Frank Rathmann

Internal Target in a Storage Ring

Storage Ring: Re-usable Projectiles Carcassonne application (type 1)

Distinct advantages over solid or high pressure targets:

- rapid reversal of target spin (x,y,z): In H/D up to 100 Hz achieved
- isotopically pure, no contamination by unpolarized components in the target
- low background due to absence of container walls
- no radiation damage, target gas replenished every few ms
 ⇒ Ideally suited for high precision experiments

Beam

Target

Source

Polarimeter

Detector

Storage Cell

Main types of sources (cont'd)

Outline

- Medieval Warfare
 - Storage Rings and Internal Targets

Polarimetry

- Selected Experimental Results
- Production of Polarized Antiprotons
- Medical Application of Polarized Targets

Polarimetry of PIT's

Three different approaches are distinguished:

I. Calibration by a known reaction

- FILTEX test (αp scattering)
- pp elastic scattering (PINTEX at IUCF)
- II. Ion extraction
 - NIKHEF Ion extraction polarimeter

III. Neutral gas extraction

- Breit-Rabi Polarimeter for HERMES
- Lamb-shift Polarimeter for ANKE

Method I does not distinguish atoms from molecules or any other material in the target \Rightarrow 1st choice where applicable

Methods II and III measure the polarization of atoms in the target, with additional instrumentation also the degree of dissociation in the target but: Molecules dilute the polarization!

and: What is the polarization of the molecules? (\rightarrow Talk by H. Seyfarth)

Frank Rathmann

Ex. 3: NIKHEF Ion-extraction polarimeter

Ex. 3: NIKHEF Ion-extraction polarimeter

Frank Rathmann

Ex. 4: HERMES Breit-Rabi Polarimeter

Determination of Hyperfine state population numbers by

- RF transitions
- sextupole magnet system

Frank Rathmann

Frank Rathmann

Outline

Basics

- Medieval Warfare
 - Storage Rings and Internal Targets
- Polarimetry
 - Selected Experimental Results
- Production of Polarized Antiprotons
- Medical Application of Polarized Targets

Polarization Buildup: General Features I

$$\sigma_{tot} = \sigma_0 + \sigma_{\perp} \cdot \vec{P \cdot Q} + \sigma_{\parallel} \cdot (\vec{P \cdot k}) \cdot \vec{Q \cdot k}$$
P beam polarization
Q target polarization
k || beam direction

For initially equally populated spin states: \uparrow (m=+ $\frac{1}{2}$) and \downarrow (m=- $\frac{1}{2}$) transverse case: longitudinal case:

$$\sigma_{\text{tot}\pm} = \sigma_0 \pm \sigma_\perp \cdot Q$$

Time dependence of P, I, and FOM $P(t) = \frac{I_{+} - I_{-}}{I_{+} + I_{-}} = -\tanh\left(\frac{t}{\tau_{pol}}\right)$ $I(t) = I_{+} + I_{-} = I_{0} \cdot e^{-\frac{t}{\tau_{beam}}} \cdot \cosh\left(\frac{t}{\tau_{pol}}\right)$ $FOM(t) = P(t)^{2} \cdot I(t)$

 $\sigma_{tot\pm} = \sigma_0 \pm (\sigma_\perp + \sigma_{\parallel}) \cdot Q$

$$\tau_{\text{beam}} = \frac{1}{(\sigma_0 + \Delta \sigma_c) \cdot d_t \cdot f_{\text{rev}}}$$
$$\tau_{\text{pol}} = \frac{1}{\sigma_{\text{pol}} \cdot Q \cdot d_t \cdot f_{\text{rev}}}$$
$$I_+(t) = \frac{I_0}{2} \cdot e^{-\frac{t}{\tau_{\text{beam}}}} \cdot e^{-\frac{t}{\tau_{\text{pol}}}}$$
$$I_-(t) = \frac{I_0}{2} \cdot e^{-\frac{t}{\tau_{\text{beam}}}} \cdot e^{+\frac{t}{\tau_{\text{pol}}}}$$

Polarisation Experiments in Storage Rings

Frank Rathmann

Polarization Buildup: General Features II

Experimental Setup at TSR (1992)

Frank Rathmann

Beam Polarization in a dedicated Antiproton Polarizer

Polarisation buildup through spin transfer

$$\overline{p} + \vec{e} \rightarrow \vec{\overline{p}} + e$$

Horowitz & Meyer, PRL 72, 3981 (1994) H.O. Meyer, PRE 50, 1485 (1994)

Frank Rathmann

Outline

Basics

- Medieval Warfare
 - Storage Rings and Internal Targets
- Polarimetry
 - Selected Experimental Results
- Production of Polarized Antiprotons
- Medical Application of Polarized Targets

Polarized ³He for NMR's of the human lung (Werner Heil) Spin-Off of Polarized Gas Target Technology Human Lung with 0.7 bar×liter of polarized ³He

Р_н ~ m·B/kT ~5·10⁻⁶

 $P_{He} \sim 1$

 $\rho_{H}/\rho_{He}\sim 2500$

signal P·µ·p S/S_H > 10

amount of gas: 1 bar · liter

Proton - MRI (1 H) Helium - MRI (³He) DKFZ, HD Nov. 1995; Lancet 1996

Frank Rathmann

Frank Rathmann

Funktionelle NMR mit ³He

Academic Radiology University of Sheffield

Dynamic Radial Projection MRI of Inhaled ³Helium Gas – Emphysema patient

Images courtesy of Jim Wild

EMPHYS~1

Frank Rathmann

Final Remark

In 1981 Rudolf Fleischmann (1903-2002)

• Professor of Physics in Erlangen

• "originator" of the first polarized atomic beam source (1956) asked *himself* at a conference, why progress in physics sometimes was so slow and took so many roundabouts.

"It seems to me that the main reason is that too much confidence is put in theoretical, and therefore quite hypothetical concepts and models, which are popular during the corresponding period and that it is very difficult to free oneself from them."

> from D. Fick, Talk held on 5.5 2003 in the Physics Colloquium at University of Erlangen