Flatté-like distributions and the $a_0(980)/f_0(980)$ mesons.

V. Baru, J. Haidenbauer, C. Hanhart,A. Kudryavtsev and U.-G. Meissner

Institute of Theoretical and Experimental Physics Moscow, Russia Institut f. Kernphysik (Theorie) Forschungszentrum Jülich, Germany Introduction

$\frac{dG_{i}}{dm} \sim \left \frac{m_{R} \cdot \Gamma_{i}}{m_{R}^{2} - m^{2} - i m_{R} \left(\Gamma_{T_{R}} + \Gamma_{KE} \right)} \right ^{2}$
$i = \pi 2$ or $K\bar{K}$ $R = q_0$
$m_{p} \simeq 2m$ $\Gamma = \int \frac{2}{2} \sqrt{m^2 - 4m_k^2}$ above the.
KR = ligk 14mk = m² below thr.
3 free parameters: $\bar{g}_2(\bar{m}), \bar{g}_R$ and \bar{m}_R
The uncertainties in the parameters
for the to and as mesons remain large.

				Conception of the local division of the loca	
Ref.	m_R	\bar{g}_η	\bar{g}_K	R=	α
Teige	1001	0.218	0.224	1.03	0.276
Bugg	999	0.454	0.516	1.14	0.105
Abele	999	0.215	0.222	1.03	0.221
KLOE ^a	984.8	0.376	0.412	1.1	-0.28
N.Achasov ^a	992	0.453	0.56	1.24	0.006
SND ^a	995	0.389	1.414	3.63	0.027
Ref.	m_R	\bar{g}_{π}	\bar{g}_K	R	α
SND^{a}	969.8	0.417	2.51	6.02	-1.35
$CMD2^{a}$	975	0.317	1.51	4.76	-1.00
KLOE ^a	973	0.538	2.84	5.28	-1.07
OPAL	957	0.09	0.97	10.78	-1.60
E791	977	0.09	0.02	0.22	-0.66

ao

fo

Scaling behavior $f_p = -\frac{1}{2q^{th}} \frac{\Gamma_p}{E - E_{BW} + \frac{\Gamma_p}{2} + \frac{\sigma_{BK}}{2} \times K}$ $\Gamma_P = \overline{g_P} \cdot q_P^{\text{th}} \quad E_{BW} = m_R - 2m_K$ $E = I S - 2 m_{K} \qquad K = \sqrt{I m_{K} E} \qquad E > 0$ $I = I S - 2 m_{K} \qquad K = \sqrt{I m_{K} E} \qquad E < 0$ $f_p = \frac{\overline{q_p}}{\overline{q_k}} - \frac{1}{-1} + \frac{r_k}{2} \kappa^2 - c \kappa$ $a_{k\bar{k}} = -\frac{g_k}{2(E_{RM} - if_{\bar{k}})}$ $r_{k\bar{k}} = -\frac{4}{m_k g_k}$ Scale transformation EDW > LEDW IP > LFP gr > 1gr VER - VER art -> art

Effective range approximation is not scale invariant $f_p = \frac{g_p}{g_k} - \frac{1}{a_z} + \frac{1}{4} \frac{r_{k\bar{k}}}{g_{\bar{k}}} \kappa^2 - \hat{c}\kappa$ Scattering length approximation is scale invariant $a_{K\bar{K}} = \frac{-g_{K}}{2(E_{BW} - \frac{i}{2}f_{B})}$ $f_p = \frac{g_p}{g_k} - \frac{1}{-1} - \frac{1}{\kappa}$ $R = \frac{\overline{g_{R}}}{\overline{g_{O}}} \qquad d = \frac{2E_{BW}}{\overline{D}}$ 9ph from PDG $f_{p} = \frac{1}{d q_{p}^{th} - i(q_{p}^{th} + RK)}$ $G_{p} = \frac{4\pi}{(q_{p}^{th})^{2}} \frac{1}{1+d^{2}} \int \frac{1-\frac{2R}{1+d^{2}}}{1+d^{2}} \frac{K}{q_{p}^{th}} E > 0}{1-\frac{2Rd}{1+d^{2}}} \frac{K}{q_{p}^{th}} E < 0$ E>O

Figure 1:

$$f_{\pi\pi} = \frac{g_{\pi}}{\bar{g}_{K}} \frac{1}{\frac{-1}{a_{K\bar{K}}} + \frac{1}{\lambda} \frac{r_{K\bar{K}}}{2} k^{2} - ik}; \quad \sigma_{\pi\pi} = 4\pi |f_{\pi\pi}|^{2},$$

$$\bar{g}_{\pi} = 0.317, \quad \bar{g}_{K} = 1.51, \quad |E_{r}| = 16.3 MeV$$

Figure 2: Results for the $\pi\pi$ cross section. The curves are results based on Flatté distributions taken from the table.

Scaling tendency

 $\pi\eta$ results based on Flatte parameters from the table

Conclusions

We studied properties of the Flatté and Flatté-like distributions, which are usually employed to describe S-wave resonance-like structures, located near a threshold.

• The experimental observables near threshold are not sensitive to all Flatté parameters $(E_{BW}, \bar{g}_P, \bar{g}_K)$ but only to the two ratios $R = \bar{g}_K/\bar{g}_P$ and $\alpha = 2E_{BW}/\Gamma_P$. There is a large uncertainty in the absolute values of the coupling constants in the literature, whereas the ratios R and α can be extracted from experiments with much better accuracy.

• The scattering length $a_{K\bar{K}}$ is expressed in terms of R and α and therefore can be determined!

• The energy region where the scaling behavior is pronounced is much less for the a_0 meson as compared to the f_0 .

• In principle, only the information about all Flatté parameters opens the possibility to calculate the $K\bar{K}$ effective range parameters and to reconstruct the position of the poles of the scattering amplitude in the complex k plane. The knowledge of the position of the poles allows to draw conclusions on the nature of the resonance.

(V.Baru et al., Phys. Lett. **B 586**, 53 (2004))

However, the ratio R is also an interesting quantity. For example, a large R is a strong indication for a molecular-like structure of the near-threshold resonance.