Evidence for a new Y*(1475) hyperon in pp collisions at ANKE

$\textbf{2.83 GeV} \hspace{0.2cm} pp \rightarrow pK^{+}Y$

 $Y=\Lambda_{1116}, \quad Σ_{1193}, \quad Σ(1385), \quad \Lambda(1405), \quad Y^{*}(1475), \quad \Lambda(1520)$

• excess energy:

424 MeV, 348 MeV, 155 MeV, 135 MeV, 65 MeV, 20 MeV

• kinematical limit: mass=1540 MeV/c²

"Multichannel analysis of the reaction $K^-p \rightarrow K^0\pi^-p$ at 4.2 GeV/c" J.J.Engelen et al., Nucl. Phys. B167 (1980) 61

4. The iterative procedure

4.1. Iteration 2

68

As a result of iteration 1 with the input described in subsect. 3.2 the channels are separated only approximately. We will not illustrate this statement in detail here, but rather turn to the next iteration.

Iteration 2 uses as input improved t' dependences for the $(K\pi)$ partial waves. These t' dependences, covering the full t' range, can be determined on the output of iteration 1. For the $(p\pi)$ channels we also determine t' dependences now. [For the $(p\pi)$ channels the four-momentum transfer squared from initial to final K is used. See sect. 5 for the full distribution function of the $(p\pi)$ system.]

For channel vii, $\Sigma^+(1765)$, we observe evidence for both forward (K* exchange) and backward (Δ^{++} exchange) production, as is illustrated by the cos Θ^* (Θ^* is the c.m. production angle of the ($p\bar{K}^0$) system) distribution of fig. 3. Hence we will describe the production characteristics of channel vii in terms of cos Θ^* .

As the most striking result after iteration 1 it appears necessary to introduce a new channel:

 $K^-p \rightarrow \pi^- \Sigma^+(1480)$ to be called channel viii

Evidence for this channel is deduced from the $M(p\bar{K}^0)$ distribution of channel iiib, the 2⁺¹ – K*(1420) partial wave. This $M(p\bar{K}^0)$ distribution is reproduced in fig. 4, where a distinct peak at a mass of about 1.5 GeV can be observed. Iteration 2 will take this channel into account, with a Breit-Wigner mass dependence, central value 1480 MeV and width 80 MeV. This width has been estimated from the data of fig. 4. Using this width (as a working hypothesis) we obtained satisfactory results (see also subsect. 5.3), but on our value of 80 MeV we should allow for an error of about 20 MeV.

As a result of iteration 2 the peak in the $\mathcal{M}(p\bar{K}^0)$ distribution of channel iiib has indeed vanished (dotted histogram in fig. 4). The output of iteration 2 shows as

69

Fig. 4. $M(p\bar{K}^0)$ distribution for the $2^+1-(K\pi)$ channel after iteration 1 (full histogram) and 2 (dotted histogram).

another striking result a considerable change in the cos $\theta_{p\pi}$, the cosine of the polar angle in the $(p\pi)$ Gottfried–Jackson frame, distribution of the $(p\pi)$ channels. These distributions showed strong peaking for cos $\theta_{p\pi} \approx 1$. These peaks have disappeared after iteration 2. Our interpretation of this observation is, that due to the better t' dependences [both for $(K\pi)$ and $(p\pi)$ channels] used in iteration 2, a better separation of channels is have each expected at cos $\theta_{p\pi} \approx 1$, when the outgoing proton goes approximately in the same direction as the incoming one. For channel vi we observe a similar change in cos $\theta_{p\kappa}$ [now in the (pK'') Gottfried–Jackson frame] in going from iteration 1 to iteration 2. These effects are illustrated in figs. 5a–d, where the full histograms are the results of iteration 1 and the dotted ones of iteration 2.

4.2. Iteration 3: study of the $(p\pi^{-})$ system

The asymmetric shape of the cos $\theta_{p\pi}$ distributions of the $(p\pi)$ samples (figs. 5a-c) shows that our samples of channels iv, v and vi do not correspond to pure resonances. A more detailed understanding of the $(p\pi)$ system can be obtained from a spin-parity analysis. The distribution function for the $(p\pi)$ system is written:

$$\begin{split} f_{p\pi} &= \sum_{\substack{J_{1,J_2} \\ M_i M_{2\lambda\eta}}} \rho_{M_1 M_{2\eta}}^{JJ_1} \mathbf{B} \mathbf{W}^{I_1}(M) \mathbf{B} \mathbf{W}^{J_2}(M)^* F_{M_1}^{J_1}(t') F_{M_2}^{J_2}(t') \\ &\times A_{M_1 \lambda\eta}^{J_1}(\theta, \phi) A_{M_2 \lambda\eta}^{J_2}(\theta, \phi)^*, \end{split}$$
(12)

with $\theta \equiv \theta_{p\pi}$ and $\phi = \phi_{p\pi}$ the polar and azimuthal angles of the proton in the $(p\pi)$ Gottfried–Jackson frame, M the $(p\pi^{-})$ effective mass, and t' as defined above. The

Status (PDG 2004)

• reasonable information:

Y=
$$\Lambda_{1116}$$
, Σ₁₁₉₃, Σ(1385), Λ(1520)

- question about $\Lambda(1405)$ nature
- $\Sigma(1480)$ Bumps omitted from Summary Table:
 - status * with unknown quantum numbers
 - estimated mass of 1480 MeV/c² from 120 events (<u>1480</u>, 1485±10, 1479±10, 1465±15)
 - width: no estimated value (<u>80±20</u>, 40±20, 31±15, 30±20) $\rightarrow \Gamma_{av}$ = 45 MeV/c²
 - decay modes: N \overline{K} , $\Lambda \pi$, $\Sigma \pi$

 $\Gamma(\Sigma\pi)/\Gamma(\Lambda\pi)=0.82 \pm 0.51, \ \Gamma(N\ \overline{K})/\Gamma(\Lambda\pi)=0.72 \pm 0.50, \ \Gamma(N\ \overline{K})/\ \Gamma_{\text{total}}=\text{small}$

Properties of strange baryons

	mass	FWHM
	(MeV/c ²)	(MeV/c ²)
Λ_{1116}	1115.683±0.006	(2.50±0.02)·10 ⁻¹²
Σ ₁₁₉₂	1192.642±0.024	0.0089±0.0009
Σ(1385)	1383.7±1.0	36±5
Λ(1405)	1406 ±4	50 ±2
Σ(1480)	1480	30 ÷ 80
Λ(1520)	1519.5 ±1.0	15.6 ±1.0

Production of Y*(1475)

 $pp \rightarrow pK^{+}Y^{*}(1475) \rightarrow pK^{+}N\overline{K}$

 $\rightarrow \mathbf{pK^{+}\pi^{0}\Lambda} \rightarrow \mathbf{pK^{+}\pi^{0}\pi^{-}p}$

 $\rightarrow pK^{+}\pi\Sigma$ $\rightarrow pK^{+}\pi^{+}\Sigma^{-} \rightarrow pK^{+}\pi^{+}\pi^{-}n$ $\rightarrow pK^{+}\pi^{-}\Sigma^{+} \rightarrow pK^{+}\pi^{-}\pi^{+}n$ $\rightarrow pK^{+}\pi^{0}\Sigma^{0} \rightarrow pK^{+}\pi^{0}\Lambda\gamma \rightarrow pK^{+}\pi^{0}\pi^{-}p\gamma (CGC\equiv 0 \text{ for } \Sigma)$

• K meson decays with π^+ and π^-

Production of Y*(1475)

 $pp \rightarrow pK^{+}Y^{*}(1475) \rightarrow pK^{+}N\overline{K}$

 $\rightarrow pK^{+}\pi^{0}\Lambda \rightarrow pK^{+}\pi^{0}\pi^{-}p$

 $\rightarrow \mathbf{p}\mathbf{K}^{+}\pi\Sigma^{-} \rightarrow \mathbf{p}\mathbf{K}^{+}\pi^{+}\pi^{-}\mathbf{n} \Rightarrow \mathbf{M}\mathbf{M}(\mathbf{p}\mathbf{K}^{+}\pi^{+})=\mathbf{M}(\Sigma_{1197})$ $\rightarrow \mathbf{p}\mathbf{K}^{+}\pi^{-}\Sigma^{+} \rightarrow \mathbf{p}\mathbf{K}^{+}\pi^{-}\pi^{+}\mathbf{n}$ $\rightarrow \mathbf{p}\mathbf{K}^{+}\pi^{0}\Sigma^{0} \rightarrow \mathbf{p}\mathbf{K}^{+}\pi^{0}\Lambda\gamma \rightarrow \mathbf{p}\mathbf{K}^{+}\pi^{0}\pi^{-}\mathbf{p}\gamma$ (CGC=0 for Σ)

• K meson decays with π^+ and π^-

Experiment

- by-product from the a₀ production experiment in February 2002
- 2.83 GeV protons on H₂ cluster-jet target
- triple coincidences: $pK^+\pi^+$ and $pK^+\pi^-$
- event selection with delayed veto
 - 442 events of pK⁺ π ⁺
 - 10624 events of $pK^+\pi^-$
- *K*⁺ *in positive detector (Te)*
- p in forward detector
- π^+ in positive detector (Te and SW)
- π -negative detector
 - only part of negative scintillators used

	ACCEPTANCE	
	horizontal	vertical
K+	- 10° ÷ 15°	± 6°
	- 5° ÷ 15° for π^+	
proton	- 8° ÷ 12° for π^-	± 4°
π^+ / π^-	± 15°	± 6°

$MM(pK^{+}\pi)$ vs $MM(pK^{+})$

2.83 GeV pp \rightarrow pK⁺ π^+ X⁻

2.83 GeV pp \rightarrow pK⁺ $\pi^{-}X^{+}$

$MM(pK^{+}\pi)$

CGSWHP, 30.08 - 3.09.2004, Tbilisi

More details: $pp \rightarrow pK^+\pi^-\Sigma^+ \rightarrow pK^+\pi^-\pi^+n$

Monte Carlo simulations of the reaction 2.83 GeV $pp \rightarrow pK^+Y$

- simulations for $Y = \Sigma(1385)$, $\Lambda(1405)$, $Y^*(1475)$, $\Lambda(1520)$
- GEANT3 only with phase space (GENBOD)
 - 65 MeV above the threshold for Y*(1475) production
 - possible deviations
 - FSI between $pY^*(1475) \rightarrow small$
 - K⁺Y(1475) couples to N and Δ resonances \rightarrow broad
- parameters in simulations
 - mass of Y*(1475)
 - width of Y*(1475)
- fitted relative contributions of four heavy hyperons and background

Background

Experimental and simulated missing mass distributions

2.83 GeV pp \rightarrow pK⁺ π^+ X⁻ Y*(1475): mass=1475 MeV/c², Γ=45 MeV/c² Y*(1475): mass=1470 MeV/c², Γ=45 MeV/c²

2.83 GeV pp \rightarrow pK⁺ $\pi^{-}X^{+}$

Experimental and simulated missing mass distributions

 $2.83~GeV~pp \rightarrow pK^{+}\pi^{+}X^{-}$

mass=1460 MeV/c², Γ =45 MeV/c²

mass=1470 MeV/c², Γ =55 MeV/c²

mass=1470 MeV/c², Γ=45 MeV/c²

mass=1475 MeV/c², Γ=45 MeV/c²

Experimental and simulated missing mass distributions

2.83 GeV pp \rightarrow pK⁺ $\pi^{-}X^{+}$

More details ...

 $\Delta M(\Lambda) \sim 3 \text{ MeV/c}^2$

 $\Delta M(\text{proton}) \sim 5 \text{ MeV/c}^2$

More details: K^+ momenta from 2.83 GeV pp \rightarrow pK⁺Y

More details: K⁺, p and π^- momenta from 2.83 GeV pp \rightarrow pK⁺Y

Decay modes

CGSWHP, 30.08 - 3.09.2004, Tbilisi

2.83 GeV pp \rightarrow ppK⁺K⁻ from Y.Maeda

CGSWHP, 30.08 - 3.09.2004, Tbilisi

2.88 GeV pp \rightarrow ppK⁺K⁻ from Y.Maeda

Decay modes of $Y^*(1475)$ pp \rightarrow pK⁺Y*(1475) \rightarrow pK⁺N \overline{K} \rightarrow p K⁺pK⁻

Decay modes of Y*(1475) $pp \rightarrow pK^+Y^*(1475) \rightarrow pK^+\pi^0\Lambda \rightarrow pK^+\pi^0\pi^-p$

Event number

	π^+	π^-
EXPERIMENT	100	967
MC Σ(1385)	20	32
MC Λ(1405)	22	170
MC Σ(1480)	52	692
MC Λ(1520)	6	73

Cross section

	pp→pK ⁺ π ⁺ X ⁻	pp→pK ⁺ π ⁻ X ⁺
counts	$100 \rightarrow 52$ for $\Sigma(1480)$	967 $ ightarrow$ 692 for Σ (1480)
ϵ_{Pd} for K ⁺	0.9	0.9
ϵ_{Pd} for π^+ / ϵ_{Nd} for π^-	0.7	0.7
ϵ_{Fd} for protons	0.7	0.7
ɛ _{delay veto}	0.15	0.15
effective time (s)	419597	389773
luminosity integrated (pb ⁻¹)	4.0	3.7
luminosity average (s ⁻¹ cm ⁻²)	0.95(0.92÷0.98) • 10 ³¹	
acceptance for $\Sigma(1385)$	0.00008	0.000285
acceptance for $\Lambda(1405)$	0.000077	0.000491
acceptance for $\Sigma(1480)$	0.000261	0.002220
acceptance for $\Lambda(1520)$	0.000845	0.006166

Cross section

	pp $\rightarrow pK^{+}\pi^{+}\Sigma^{-}$	$pp \rightarrow pK^{+}\pi^{-}X^{+}$
$\Sigma(1480)$ counts	52	692
ϵ_{Pd} for K ⁺	0.9	0.9
$\epsilon_{\rm Pd}$ for π^+ / $\epsilon_{\rm Nd}$ for π^-	0.7	0.7
$\epsilon_{\rm Fd}$ for protons	0.7	0.7
ε _{delay veto}	0.15	0.15
effective time (s)	419597	389773
luminosity integrated (pb ⁻¹)	4.0	3.7
luminosity average (s ⁻¹ cm ⁻²)	0.95 (0.92÷0.98) • 10 ³¹	
acceptance (for Σ(1480))	0.000261	0.002220
σ _{total} (nb)	736	1045

Cross section errors

- 10% for efficiencies of 3 detectors
- 10% for delayed veto
- 20% for luminosity

$$\Rightarrow 0.9 \cdot 0.9 \cdot 0.9 \cdot 0.9 \cdot 0.8 \rightarrow -52 \%$$

1.1 \cdot 1.1 \cdot 1.1 \cdot 1.1 \cdot 1.2 \cdot +76 \%

Statistical error:
$$\pi^+$$
: **14 %**
 π^- : **4 %**
 \Rightarrow for pp \rightarrow pK⁺Y with π^+ : (**736** ± 103_{stat} - 383
 $+ 560$) nb
 $+ 560$) nb
 $- 543$
for pp \rightarrow pK⁺Y with π^- : (**1045** ± 39_{stat} + 794) nb

Cross section errors

- 10% for efficiencies of 3 detectors
- 10% for delayed veto
- 20% for luminosity

$$\Rightarrow \quad 0.9 \cdot 0.9 \cdot 0.9 \cdot 0.9 \cdot 0.8 \rightarrow -52 \%$$

1.1 \cdot 1.1 \cdot 1.1 \cdot 1.1 \cdot 1.2 \cdot +76 \%

Statistical error: 10 ÷ 20 %

Summary

- Y*(1475) observed in charge symmetric final states
- mass: (1475 ± 15) MeV/c²
- width: $(45 \pm 10) \text{ MeV/c}^2$
- NK decay mode not observed but an upper limit ?
- cross section for 2.83 GeV pp \rightarrow pK⁺Y^{*}(1475): ~ 1µb

