
 1

ANZOR KHELASHVILI, TEIMURAZ NADAREISNVILI 
(TSU,HEPI) 

 
PROBLEM OF ADDITIONAL SOLUTIONS IN THE 

NONRELATIVISTIC AND   RELATIVISTIC EQUATIONS 
I.Statment of problem in the Scrhrodinger equation. 
 

   From the demand, that Hamiltonian and 








∂
+

∂
∂−=

rr
ipr

1
 operators are 

Hermitian it follows, that [1.D.Blockincev, 2.V.Pauli, 3.A.Messia] 
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   Usually are considered regular potentials in the Schrodinger equation 
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Second term in (3) doesn’t obey (1) condition and is neglected usually Singular 
potentials 
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    Transition potentials 
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Theorem. For transition potentials (with – sign in front of V0) Schrodinger 
equation except standard solutions, may also have additional solutions. 
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At →r 0 from (6) we obtain 
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In the region 
                                                       0<P<1/2                          (9) 
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Both standard and additional solutions satisfy (!) condition (when P>1/2 only 
standard solutions stay!) 
    From (8) and (9) we obtain condition of exsitence of additional states 

                                                02)1( mVll <+                        (10) 
   In [4-H.Bethe; R. Jackiw.”Intermediate quantum mechanics”] is formulated 
very strong requirement- Kinetic Energy matrix elements should be finite! We 
show, that if we take “whole” wave function additional states sustain mentioned 
strong requirement! 
    Additional solutions satisfy also requirement, that [5.-L.Schiff.Quantum 
mechanics.] integral from particle coordinate probability density is  finite!  
 
Remark:  
 We think, that isn’t correct paragraph 35- “Falling on the center”in [6-L.Landau, 

E.Lifchitz. Quantum mechanics].where is considered behavior of r
uR =  at small 

distances  
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In (12)’ both terms are singular (second term is more singular!) and in [7- R. 
Newton  monograph] author notice: “If  P<1/2, then the second solution is 
irregular in sense, that it is dominant above first solution”. So R.Newton come 
very close to additional state problem, but don’t mentioned that they exist! In [6] 
potential is made regular by cutting off it at some small r0 and the limit 00 →r  is 
taken, which selects less singular  solution at 00 →r  and so additional solutions 
are neglected! But if we multiple (12)’ relation on r we get (7) relation, where we 
have, no singularity in the 0<P<1/2 region and as mentioned above stu  and addu  
are “equal in rights” members of (7) relation!                                                              
 
I I. Introduction of self-adjoint extension τ  parameter 
   It is well known, that for (4) and (5) type attractive potentials [8-
K.Case.Phys.Rev.80,797(1950); 9-K.Meetz.Nuovo Cimento 34, 690(1964); 10- 
A.Perelomov, V.Popov.TMF.vol 4 (1970)] in the Schrodinger equation is shown, 
that it isn’t enough to know potential and is necessary to introduce  one arbitrary 
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constant, which is equivalent to give boundary condition at the origin. Indeed, 
when 

                                             ( )2
0 2/12 +> lmV                           (11) 

As one can see from (8) P is complex, both stu  and addu  solutions have same 

behavior at the origin and for example for 2r
gV −=  at small distances one have [7, 8] 
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Once B is arbitrary constant. On the Mathematical language it means, that H is 
symmetric (Hermitian), but isn’t Self-adjoint operator and it is  necessary to 
introduce  1 parameter for self-adjont extension(to make  H Self-adjoint !)[11-
M.Reed,B.Simon:vol 2]. As was shown in [8] if B is fixed constant, then all 
eigensolutions form a complete orthonormal set, and E-eigenvalues are real! 
(Once such a properties have a  Self-adjoint H operator). But in this case we have 
“falling” on the center and energy isn’t bounded from below! 
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 In the region  

                                          ( )2
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based on the above mentioned paragraph of [7] , is neglected  addu  solutions. We 
notice above, that addu  solutions in the 0<P<1/2 region satisfy all stu  
requirements. So is necessary to preserve it! Then for arbitrary 1E  and 2E  levels 
ortogonality condition is 
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And for ortogonality right side of (14) is zero 
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   So, we get, that for ortogonality it is necessary to introduce self-adjoint 
extension τ  parameter 
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All levels have sameτ  parameter. From (7) and (14) we have:  
a) 0=adda ; )( −∞=τ We  keep only standard levels and they are orthogonal! 

b) 0=sta ;  )0( =τ  We keep only additional levels and they are orthogonal! 
c) When 0,−∞≠τ  then both levels exist at the same time! 
For some unknown reasons the Nature choose only standard levels yet! We think, 
that other cases are also possible! 
 
I I.I Model of Valent electron 
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This potential “naturally” appears for coulomb potential in the Klein-Gordon 
equation. Following [12-W.Krolikowski; Bulletin De L’ academics 
polonaise.Vol XVII.83(1979);13- A.A.Khelashvili,T.P.Nadareishvili, Bulletin of 
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Georgian Acad.Sci:Vol 164.no1(2001)] we obtain general solution of 
Schrodinger equation for (17) potential 
      ( ) );21,2/1(;21,2/1 2/2/1

2
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From (18) wave function behavior at small r and (7) we obtain     
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(18) Wave function at large r should vanish and we get 
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From (20) and (21) we get transcendental equation for E 
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E depends on τ  parameter. In Two cases is possible to solve (22) analytically 
a). −∞=τ . Then for standard levels determine condition is 
                            rnP −=+− λ2/1  ,...2,1,0=rn                          (23) 
b)  0=τ . Then for additional levels determine condition is 
                           rnP −=−− λ2/1      ,...2,1,0=rn                    (24) 
So in these two cases we have 
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Remark: For 00 <V  in (17) , we get Kratzer Molecular potential and we obtain for 
standard levels well known formula, but in this case isn’t fulfilled (10) condition  
and so we have no additional levels for Kratzer potential . 
   For alkaline metal atoms (Li,Na,K,Rb,Cs) is used (17) potential [14-S.Frish . 
Optical specra of atoms;15 –M.Eliashevich.Atomic and molecular 
spectroscopy].Spectra of this atoms is similar hydrogen atom spectra 
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Where R is Rydberg constant and n′ is effective principal number 

                                                       1+′+=′ lnn r                                      (27) 
And l ′ is defined from 
                                         08)1()1( mVllll −+=+′′                                         (28) 
For l ′ is taken only + sign in front of root (P)[14,15] 

                               0
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(26) Is just (25) for stE . So up to now wasn’t considered additional levels (- sign 
in front of root). Then in [14] the root is expand is expand for small 0V  
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l∆  is Rydberg correction (quantum defect) 
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For addE  we can’t take small 0V ,because .2)1( 0mVll <+ So for stE  at 00 →V  one 
get hydrogen atom spectra; addE  exist only for “strong” values of 0V ! 
Now we can rewrite (25) formula 
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It is clear, that  addst EE >  and when n  increase, addE  approach to stE  from 
below. 
We can write (32) in (30) form 
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From (34) and (8) P definition we get addE   existence condition 
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We see that if one knows stE  levels, we can find also addE  and we calculate for 
some alkaline metal atoms these levels. So it is expectable, that in the Model of 
Valent electron, beside the well known stE  levels, may also exist addE  and (22) 
transcendental equation levels (It depends on τ  self-adjoint parameter value). 
Remark: Our formalism works everywhere, where (17) potentials works: for 
excited (Rydberg) atoms, for alkaline isoelectronic ions and etc.   
  
I V . Singular (Spiked) Oscillator model 
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Use: Calogero model, Fractional statistics and anyons, Quantum Hall effect, Spin 
chains, Two dimensional QCD.  



 13

General solution is 
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    By using the same method as in model of valent electron, we obtain 
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For −∞=τ  and 0=τ  we get standard and additional levels     
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We can write (41) so 
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Again quantum defect is defined by   (34), for addE   existence one has (35) 
condition and 
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Remarks: 1. for  )(2
0 rW
r
V

V +−=  potential (where W is regular potential) we can 

define generally 
st
l∆  quantum defect by )2/1( +−=∆ lPst

l  as a deviation from 

W(r), because when ,00 =V then P=l+1/2 and 
st
l∆ =0. 

2. !n [16- K.Gupta;B.Basu-mallick; Phys.lett B 526,121(2002); Phys.Lett A; 
V311,87 (2003); Phys.Lett A323,29(2004)] is considered rational Calogero 
model for N particles 
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Ω,a   Are constants, ix  coordinate of i-particle. Ĥ  is a Hermitian operator. To 

determine whether Ĥ is self-adjoint , we have to look for square integrable of 
the equations 
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Where *Ĥ  is the adjoint of Ĥ . The domain ( )HDz
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contains all the elements of ( )HD ~

 together with elements of the form  
−+ Φ+Φ ize , where z is self-adjoint extension parameter. Eigenvalue equation 
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               a). 11 2ηπ +== zz                                   b). 22 2ηπ +== zz      (46) 

              )12(2 ++= νω nEn                                      )12(2 +−= νω nEn  
For N=2 we have such formal correspondence between (37) potential and 
Calogero Model 

gP →→ 4/; 2ων  and ω
ν

22
1

22
12

4
1 EPE

g
m −−→−+−  .So (39)  and (45) equations 

left sides are almost identical., but different are right sides .It was expectable, 
because we consider 3-dimensional case and the Calogero model is one 
dimensional. It is interesting, that (46) is similar our addst EE , .It should be 
mentioned, that  (45) equation is obtained by general mathematical theory of 
Self-adjoint operators [11] and our (39) by alternative quick and simple 
procedure, leading to the same results –so called “Pragmatic approach” [17-
J.Audretsh; J.Phys. A34,235(2001)].The point is that we demand ortogonality of 
different states and by self –adjoint extensions of operators is reached 
ortogonality. It should be mentioned also, that in (39) and (45) equations for 

−∞≠ ,0τ    and 21 , zzz ≠  energy   levels have nonequispaced nature!    
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3.In N dimensional case one have  
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As we see from (48) with increasing of N, is increasing restrictions on 0V  from 
below. For example when 0=l     

                                      02
4

)3)(1( mVNN <−−
 

When N>3, for 0=l , 0V isn’t small (For N=3 it is possible). High dimensions 
are considered in many body problems in so called “Hypersperical formalism” 
and also now is very popular extra dimensions problems. 
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 V . Modification of Van-Roen-Weiscof Formula. 

Decay widths are
2)0(~ sRΓ , for 0=l states, 

2/ )0(~ pRΓ  for 1=l , 
2// )0(~ DRΓ for 2=l states and etc when V is regular. But for 0

2

0
lim VVr
r

−→
→  

potentials it is shown [7], that )0(sR is divergent. So it is necessary that to 
modify Van-Roen-Waiscof formula. We solve this problem.  
a).Hypervirial theorem 
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 This is Generalized Virial or Hypervirial Theorem. In the literature is considered 

only )2( lqrf q −≥=  and Schrodinger equation case, when 
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[18-C.Quigg;J.Rosner.Physics Reports 56,167(1979);19-H.Grosse.,A.Martin. 
Physics Reports 60,341(1980);] So (51) is most general and powerful relation!  
b). Wave function at the origin 
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When  lq 2−= , noticing that  ),(
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Remark: (58) is a generalization of [20-A.Khare.Nuclear Physics B152(1979)] 
article formula, where is considered only Schrodinger equation A=2m(E-V). 
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In this case is very difficult to obtain something for whole (60) function. and we 

consider only )( −∞=τstu  and )0( =τaddu cases. 
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 We take now   
Prf 21�=  - for standard and + for additional states. 

[ ] 2221222 )21()21()1(2)1()21(2)21(24 −±±± −+±+−+±+′−±−= PPP
l rPPPllllPArArPaP (62) 

c).Modification of Van-Roen-Weiscoff formula )0( =l  
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For Schrodinger equation 2/124/1 0 <−= mVP . In (63) is infinite, but 
P
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finite (P<1/2) and 
sta0  is finite! For 00 =V  (Case (54)) in Weiscoff formula 

2

0 )0(stR is considered, which is (57) relations left side for 0== ql . We assume: 

For (59) case in Weiscoff formula we take regularized  
2
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[(62) relation left side!]         
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Remarks: 1. For 0≠l  we have more complicated calculations and we get 
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Where 
)(lR denotes l  order derivation. 

2. For 2/1,00 +== lPV  and from (65)    )0()0( )(
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2),(
,

l
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stl RR =  is finite! 

3. For additional states PP −→  change should be done in (64) and (65). 
VI. Two- body Klein-Gordon equation 
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 M=2m+E –total mass        (66) 
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In this case Transition potentials is 

                 00
lim VVr
r

±→
→   ( )00 >V                                                             (67) 

And one has additional levels. For example for r
V

V 0−=  we obtain [13] 
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For ),( −+ ππ systems Coulomb interaction have some meaning and addM  can be 
founded in experiments!  (We find also addM  for Hulten potentials.). addM  States 
existence condition is  
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1). Nonrelativistic limit. 
a).  0;0 ≠= rnl                    10 0 <<V  
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In 
2

0V order we have Balmer formula for standard levels 

and addstaddst MMMM ,3,2,2.1 ; == , so it is impossible to distinguish standard 
and additional levels in 2

0V order (it is possible only by rn  nodes!) and in 4
0V order 

distinction is obvious. 

b). 0== rnl  
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c). 0≠l  
For stM  we have no restriction from below, while for addM is restricted by (69) 
relation from below. So we can expand only standard levels! Physically it means, 
that additional levels may appear only in “strong” fields, this means, that this 
case is relativistic and isn’t possible nonrelativistic consideration! 
 
 VII. Problem of additional solutions for high spins 

1). One body Dirac equation. 

                     0)(/ =−+−⋅+′ FVmEGrG χ                              (75) 

                    0)(/ =−−+⋅−′ GVmEFrF χ                              (76) 

                    ϕ⋅−+= VmEG                                                            (77) 
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At small r we get 
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P

r
±

2
1

~ϕ ;
2

0
2 VP −= χ                                   (80) 

In (80) relation is possible P<1/2 and as if one have additional solutions, but from 
(77) we see 

                                        
PP

r
rr

r
V

VG −−

→
==⋅− 2

1
0

0
~ ϕ                                   (81) 

 G is divergent (isn’t fulfilled 0→G  fundamental condition) and so we have 
no additional levels! 
2).Breit equation 
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                      (82) 
There are no additional levels! 
3).Proca equation 
One have two cases [8, 21-V.S.Popov.Nucl.Phys.vol14.(1973)] 
a). jl = ,    or 1,0 == jl . In this case Proca equation is reduced to Klein-Gordon 
equation and so for (67) transition potentials additional levels exist! 
b). 1,1 ≥±= jjl  .at small r one have [8,21] 

                                                  0)( 2,12,1
//

2,1 =+ urfu                                      (83)      

                                  22,1
)1()(

)1(
r
JJrV

r
JJ

f +−′
+

= m                                    (84) 

Here 1u  corresponds 1+= Jl  and 2u to .1−= Jl From (84) is clear, that for 
ngrV =  potentials for 0≠n  one have “falling” onto center! In this case transition 

potential is logarithmic potential (n=0) rVV ln0=  and for 1+= JL    
( ) 2/1)1(2/1 0

2 >+++= VJJJP  and we have no additional states and for 
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1−= JL    ( ) 2/1)1(2/1 0
2 <+−+= VJJJP  and for 0)1( VJJ <+  additional states 

exist!   
 
 VIII. Concluding remarks. Summary 
1.Divergence of full wave function at origin )0(ψ is necessary condition of 
existence of additional states, but not sufficient! Indeed  for Schrodinger,Klein-
Gordon equations we have additional states and )0(ψ is infinite, but for Dirac 
and Breit equations )0(ψ are also infinite, but one have no additional states or 
in other words we can say: if additional states exist, then without fail )0(ψ is 
divergent for standard and additional states! 
2. It is necessary to investigate more carefully dependence of additional states 
on space dimension. In [22-B.Basu-mallick Phys. Rev.B62,99927; Int.J.Mod. 
Phys.B16.1875 (2002)] is noticed ,that in one dimensional Calogero model ν  
parameter is given by 

                                                   [ ]g411
2
1 +±=ν  
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Here new moment is, that – sign is taken in front of root (as we take –sign in 3-
dimensional case!).in original article [23-F.Calogero.J.math.Phys.2191(1969)] 
–sign is neglected! 
In one dimensional Dirac equation, we think additional states exist and this 
question is considered in [24-A.S.De Castro.Annalys.Phys.311,170 
(2004)],where author don’t say directly that additional states exist! Now we 

have no G
r

′2
term in Dirac equation and it isn’t necessary (77) transformation. 

3. We think, that additional solutions exist also in no stationary problems [25- 
V.Dodonov.phys.Rev A57,2851 (1997), B.Samsonov.quant-.ph/0401093]  

                                              
22 )(/ rtkrgV +−=  

4.Our main result: We show, that for  0
2

0
lim VVr
r

−→
→  ; ( )00 >V  potentials in the 

region ( ) 0
2 22/1 mVl >+   (no “falling onto center!) it is necessary to keep 

second additional solution in the 0<P<1/2 interval (We have our variant of 
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Landay mentioned paragraph!) and it is also necessary to introduce  self-adjoint 

extension τ  parameter add

st

a
a

−=τ
. 

                                          We have two possibilities 
 
1).It should be found another strong requirement in the quantum mechanic 
mathematical formalism, which “destroys” additional states! 

2) We should admit, that in the region ( ) 0
2 22/1 mVl >+  H isn’t self-

adjoint,it is necessary it extension by introducing τ  parameter. Finally we can 
say, that well known problem in the “opposite” region ( ) 0

2 22/1 mVl <+ , take 
place also in our region and it stay open the following questions: Why the 
NATURE ”select” only standard states )( −∞=τ ?!Is it possible to discover 
additional solutions in future experiments?! 
  

                           
  


