WASA at CELSIUS and η' Decays with WASA@COSY

Magnus Wolke Institut für Kernphysik Forschungszentrum Jülich

WASA at CELSIUSExperimental TechniqueStudies of η Decays $\pi\pi$ ProductionExperimental Programme

η^\prime Decays with WASA at COSY

Charge Symmetry and Light Quark Masses

Scalar Couplings

Pseudoscalar Singlet-Octet Mixing

QCD Anomalies

Glue Content

Transition Form Factor

Caucasian-German School and Workshop on Hadron Physics Tbilisi, Aug 30 - Sep 4, 2004

The CELSIUS Cooler Ring

Pellet diameter 25 - 35µm

Pellet frequency 5 - 12kHz

Pellet-pellet distance 9 - 20mm

Effective target thickness $> 10^{15}$ atoms/cm²

WASA detector

Event identification

$pp \rightarrow pp + \gamma s$

$T_p = 1360 \,{\rm MeV}$

Event identification

$$pp \rightarrow pp(\eta)\pi^+\pi^-\pi^0$$

 $\downarrow \gamma'$

M. Jacewicz, PhD thesis, 2004

 $\sigma(pp \rightarrow pp\pi^+\pi^-\pi^0) / \sigma(pp \rightarrow pp\eta \rightarrow pp\pi^+\pi^-\pi^0) \approx 4$

 $\sigma(pp \rightarrow pp\pi^{+}\pi^{-}\pi^{0}) / \sigma(pp \rightarrow pp\pi^{0}\pi^{0}\pi^{0}) \approx 3 \neq 8$

statistical model prediction, J. Bartke, Herceg-Novi (1970)

 $pp \rightarrow pp \pi^+ \pi^-$ Invariant Mass Distributions

 $Q = 64.4 \,\text{MeV} \,(T_p = 750 \,\text{MeV})$

 $\cos \delta_{\pi+\pi^-}$

preliminary results

Analysis: M. Bashkanov, H. Clement, T. Skorodko, University of Tübingen

preliminary results

 $T_p = 1300 \,\text{MeV} (Q = 286 \,\text{MeV})$

CELSIUS WASA preliminary $pp \rightarrow pp \pi^0 \pi^0$

Analysis: M. Bashkanov, H. Clement, T. Skorodko, University of Tübingen

preliminary results

CELSIUS WASA preliminary $pp \rightarrow pp\pi^0\pi^0$ correlation function $M(\pi^0\pi^0)/M(\pi^+\pi^-)$

Analysis: M. Bashkanov, H. Clement, T. Skorodko, University of Tübingen

CELSIUS/WASA Experimental Programme

until middle of 2005

Production Experiments

 $pd \rightarrow {}^{3}He\pi\eta$ $pd \rightarrow {}^{3}He\omega$ $pd \rightarrow {}^{3}He2\pi^{0}$ $pd \rightarrow p\Lambda\Theta^{+}$ $pd \rightarrow pd\eta$

 $pn \rightarrow NNX$

π-η interaction
ω production dynamics
π-π dynamics
pentaquark search/dynamics
η-d interaction,
η production dynamics
quasifree procuction

Not so rare η Decays

tagging: $pd \rightarrow {}^{3}He\eta$

$$\begin{split} \eta &\to \pi^{+}\pi^{-}\pi^{0} & \text{isospin violation} \\ \eta &\to \gamma \gamma^{*} \to \gamma e^{+}e^{-} & \eta \text{ transition form factor} \\ \eta &\to \pi^{+}\pi^{-}\gamma^{*} \to \pi^{+}\pi^{-}e^{+}e^{-} \text{ CP violation test} \\ \eta &\to \pi^{0}\gamma\gamma & \text{higher order ChPT terms} \end{split}$$

 $\eta \text{ Tagging in } pd \rightarrow {}^{3}HeX$

Monte Carlo

Charge Symmetry Breaking

- Difference between u- and d-Quarks -

Origin:	• Mass Difference m _d - m _u
	• Electromagnetic Energy Differences (charge, magnetic moments)
Approaches:	• Meson Masses (mass formulae, Coulomb estimates)
	Meson Production
	• Meson Decay

π - η Mixing In Hadronic η' Decays

H. Machner, A. Magiera, Workshop FEMC04, Jülich, 26-29 Jan 2004

Charge Symmetry Breaking

$(m_d - m_u)$ and $\pi - \eta$ Mixing

SU(3) singlet and octet representations

bare states without CSB

 $|\eta_{0}\rangle = \frac{1}{\sqrt{3}} (u\overline{u} + d\overline{d} + s\overline{s})$ $|\eta_{8}\rangle = \frac{1}{\sqrt{6}} (u\overline{u} + d\overline{d} - 2s\overline{s})$

$$|\tilde{\pi}^{0}\rangle = \frac{1}{\sqrt{2}}(u\overline{u} - d\overline{d})$$

 $|\tilde{\eta}\rangle = \cos\theta_{PS} |\eta_{8}\rangle - \sin\theta_{PS} |\eta_{0}\rangle$

$$|\tilde{\eta}'\rangle = \sin\theta_{\rm PS} |\eta_{\rm 8}\rangle - \cos\theta_{\rm PS} |\eta_{\rm 0}\rangle$$

octet-singlet mixing angle $\theta_{PS} = -20^{\circ} (PDG, P \rightarrow \gamma \gamma)$

$$\left\langle \tilde{\pi}^{0} \right| H_{m} \left| \tilde{\eta} \right\rangle = \left\langle \frac{1}{\sqrt{2}} (u \overline{u} - d \overline{d}) \right| m_{d} d \overline{d} + m_{u} u \overline{u} + m_{s} s \overline{s} \left| \frac{1}{\sqrt{3}} (u \overline{u} + d \overline{d} - s \overline{s}) \right\rangle$$
$$= \frac{1}{\sqrt{6}} (m_{u} - m_{d})$$

 $\Rightarrow \pi^0, \eta$ *mixtures of isospin eigenstates*

$(m_d - m_u), \pi - \eta$ Mixing and η' Decays

 π^{0} , η *mixtures of isospin eigenstates*

 $|\pi^{0}\rangle = \cos\theta_{\pi\eta} |\tilde{\pi}^{0}\rangle + \sin\theta_{\pi\eta} |\tilde{\eta}\rangle$

 $|\eta\rangle = -\sin\theta_{\pi\eta} |\tilde{\pi}^0\rangle + \cos\theta_{\pi\eta} |\tilde{\eta}\rangle$

D.J.Gross, S.B.Treiman, F.Wilczek, Phys. Rev. D19 (1979) 2188

$$\frac{\sin \theta_{\pi \eta}}{\hat{m}} = \frac{\sqrt{3}(m_{d} - m_{u})}{4(m_{s} - \hat{m})}$$
$$\hat{m} = (m_{u} + m_{d}) / 2$$

 $\eta' \rightarrow \pi \pi \pi$ forbidden $\eta' \rightarrow \eta \pi \pi$ allowed

by isospin invariance

$$R_{1} = -\frac{\Gamma(\eta' \to \pi^{0}\pi^{0}\pi^{0})}{\Gamma(\eta' \to \eta\pi^{0}\pi^{0})} - \frac{\Gamma(\eta' \to \eta\pi^{0}\pi^{0})}{\Gamma(\eta' \to \eta\pi^{0}\pi^{+}\pi^{-})} - \frac{\Gamma(\eta' \to \eta\pi^{+}\pi^{-})}{\Gamma(\eta' \to \eta\pi^{+}\pi^{-})} - \frac{\Gamma(\eta' \to \eta\pi^{+}\pi^{-})}{\Gamma(\eta' \to \eta\pi^{+}\pi^{-})}$$

D.J.Gross, S.B.Treiman, F.Wilczek, Phys. Rev. D19 (1979) 2188 G.Ecker, G.Müller, H.Neufeld, A.Pich, Phys. Lett. B477 (2000) 88

$$R_i = \mathbf{P}_i \sin^2 \theta_{\pi\eta}$$

 P_i = Ratios of Phase Space Volumes P_i = 14.0, P_2 = 15.2

Charge Symmetry Breaking

 $\eta' \rightarrow \pi^0 \pi^+ \pi^-$

Existing Data $\pi - \eta$ Mixing from η' Decays

GAMS-2000

D.Alde et al., Z. Phys. C 36 (1987) 603 F.Binon et al., Phys. Lett. B 140 (1984) 264

 $R_{I} = \frac{\Gamma(\eta' \to \pi^{0}\pi^{+}\pi^{-})}{\Gamma(\eta' \to \eta\pi^{+}\pi^{-})} < 0.11$

π - η Mixing In Hadronic η' Decays with WASA@COSY

H. Machner, A. Magiera, Workshop FEMC04, Jülich, 26-29 Jan 2004

$\sin \theta_{\pi\eta}$ *Literature:*

0.023 ± 0.002	$\eta^\prime \to 3 \pi^{\scriptscriptstyle 0}$ / $\eta 2 \pi^{\scriptscriptstyle 0}$	F. Binon et al. (GAMS-2000), PL B 140 (1984) 264
≈ 0.010	Meson Masses, Dashen's Theorem	A.J. Gross, S.B. Treiman, F. Wilczek, PR D 19 (1979) 2188
0.010	Meson and Baryon Masses, Dashen's Theorem	J. Gasser, H. Leutwyler, Phys. Rep. 87 (1982) 77
0.034 ± 0.013	Radiative Decays, Anomalous Ward Identities	B. Bagchi, A. Lahiri, S. Niyogi, PR D 41 (1990) 2871

η' Tagging: $pp \rightarrow pp\eta'$

Beam Momentum: 3350MeV/c

Cross Section: 300 nb *A. Khoukaz et al.* (*COSY-11*), *Eur. Phys. J. A* 20 (2004) 345

y

A View on the Scalars II

A. Abdel-Rehim, D. Black, A. H. Fariborz, J. Schechter, Phys. Rev. D67 (1003) 054001

effective chiral Lagrangian including scalar nonet: $\sigma(560), \kappa(900), f_0(980), a_0(980)$

for $\eta': a_0, f_0$ propagators closer to mass shell

Hadronic Decays of the η'

	Branching Ratio	Existing Data	Count Rate Estimate WASA@COSY per day
$\pi^{+}\pi^{-}\eta$	44.3 ± 1.5 %	388 / <mark>8090</mark>	18000
$\pi^0\pi^0\eta$	20.9 ± 1.2 %	4 / 5400	14500
$3\pi^0$	$5.56 \pm 0.26 \times 10^{-3}$	≈ 70	145
$\pi^+\pi^-\pi^0$	< 5 %		(2700)
$ ho^{0}\pi^{0}$	< 4 %		(2100)
$2\pi^+2\pi^-$	< 1 %		(260)
$4 \pi^0$	$< 5 \times 10^{-4}$		(8)

Experimental Conditions

Luminosity	1×10^{32} cm	$n^{-2} s^{-1}$
Efficiency	present WAS including rec	SA setup construction efficiency
Tagging	$pp \rightarrow pp\eta'$	3.350 GeV/c (Q = 45 MeV)
Cross Section	300 nb	

Radiative Decays

1717 = 19, > sin@ + 19, > cos @

Bull. Frère, Tytagent PL 8 365 (96) 36

Axial Current "Anomaly"

$$J_{\mu}A_{s}^{A} = \frac{2}{16} \left(m_{\mu}\bar{u}iY_{s}u + m_{d}\bar{d}iY_{s}d - 2m_{s}\bar{s}iY_{s}s \right)$$

 $\partial_{\mu}A_{o}^{A} = \frac{2}{\sqrt{3}} \left(m_{\mu}\bar{u}iY_{s}u + m_{d}\bar{d}iY_{s}d + m_{s}\bar{s}iY_{s}s \right)$
 $+ \frac{4}{\sqrt{3}} = \frac{2}{\sqrt{3}} \left(\frac{4}{\sqrt{3}} - \frac{2}{\sqrt{3}} \right)$
 $+ \frac{4}{\sqrt{3}} = \frac{2}{\sqrt{3}} \left(\frac{4}{\sqrt{3}} - \frac{2}{\sqrt{3}} \right)$

Completings of 2 to
$$\partial_{\mu} A^{\mu}$$
 (0) $\partial_{\mu} A^{\mu}_{s} | z' > = m_{z'}^{2} f_{s'} \sin \Theta$
(0) $\partial_{\mu} A^{\mu}_{s} | z' > = m_{z'}^{2} f_{s'} \cos \Theta$

ma= my = 0 => matrix element of strong anomaly over vacuum

$$T' \eta \rightarrow \gamma \gamma = \frac{m_{\eta}^{2}}{36\pi^{3}} d^{2} \frac{5\ln\theta}{f_{0}} + \frac{2T\cos\theta}{f_{0}} \Big)^{2}$$

$$T'(\eta \rightarrow \gamma \gamma) = \frac{m_{\eta}^{2}}{36\pi^{3}} d^{2} \left(\frac{\cos\theta}{f_{0}} - \frac{2TT\sin\theta}{f_{0}}\right)^{2}$$

still needed: $T(P \rightarrow VX) = \frac{K}{5} g_{VPY}^{2} \left(\frac{m_{p}^{2} - m_{y}^{2}}{m_{p}}\right)$ $g_{VPY}^{2} \propto \frac{\cos \Theta}{4f_{5}} \left(VZ \cos \Theta_{V} - \sin \Theta_{V}\right) - \frac{\sin \Theta}{2VZ f_{0}} \sin \Theta_{1}$

851' ~

Radiative Decays of the η^\prime

	Branching Ratio	Existing Data	Count Rate Estimate WASA@COSY per day
$ ho^{0}\gamma$	29.5 ± 1.0 %	1300 + 7000	44000
ωγ	3.03 ± 0.31 %	≈ 160	1200
γγ	2.12 ± 0.14 %	2767	17100
π [°] γγ	$< 8 \times 10^{-4}$		(250)

Experimental Conditions		
Luminosity	$1 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	
Efficiency	present WASA setup including reconstruction efficiency	
Tagging	$pp \rightarrow pp\eta' 3.350 \text{ GeV/c} (Q = 45 \text{ MeV})$	
Cross Section	300 nb	

Glue Content of the η^\prime

$$\begin{split} & \textit{E.Kou,} \\ & \text{Phys. Rev. D63 (2001) 054027} \\ & |\eta > = X_{\eta} \ | \textit{u} \, \vec{u} + \textit{d} \, \vec{d} > / \sqrt{2} + Y_{\eta} \ | \textbf{ss} > & \text{Phys. Rev. D27 (1983) 1101} \end{split}$$

 $|\eta'\rangle = X_{\eta'} |u\bar{u} + d\bar{d}\rangle / \sqrt{2} + Y_{\eta'} |s\bar{s}\rangle + Z_{\eta'} |g|uonium\rangle$

IV $\eta' \rightarrow \gamma \gamma$ $\Gamma = (0.20 \pm 0.016) \text{ MeV}$

 $\eta' \rightarrow \pi^+ \pi^- \gamma$

Evidence for Box Anomaly?

⇐ M.Acciarri et al. (L3), Phys. Lett. B 418 (1998) 399

$$\xi = 0$$
 (CL = 37%)

 $(\xi=0.4,\, \phi=3.14 \Rightarrow CL=3\%)$

$$BW(\rho) = \frac{1}{(m_{12}^2 - m_{\rho}^2) - i m_{12} \Gamma_{\rho}} + \frac{\xi}{m_{\eta'}^2} \exp(i\phi)$$

A. Abele et al. (Crystal Bacreshal Barreshal B

Barrel data are snown as crosses together with the result of the lit

expected counting rate WASA@COSY \approx 130 events/day (BR = 0.9×10⁻³)

experimental conditions and background

for η: J. Stepaniak et al., Phys. Scripta T99 (2002) 133

 $e^{\pm} \leftrightarrow \mu^{\pm}, \pi^{\pm}$ misidentification $\approx 10^{-3}$ $I^{+}I^{-}$ mass resolution $\approx 2.5\%$ admixture $pp \rightarrow pp\pi^{0}\pi^{0} \rightarrow ppe^{+}e^{-}\gamma(\gamma) < 1\%$ admixture $pp \rightarrow pp\eta' \rightarrow pp\gamma\gamma \rightarrow pp\gamma e^{+}e^{-}$ negligible

Physics Issues In **η'** Decays

Charge Symmetry Breaking Pseudoscalar Nonet Parameters Nature of the η' QCD Anomalies Scalar Meson Exchange Tests of ChPT Predictions

