

Toast given by: Markus Büscher Forschungszentrum Jülich Germany

The Accelerator: COSY-Jülich

COSY (<u>Co</u>oler <u>Sy</u>nchroton) at FZ-Jülich:

- (polarized) p & d beams
- phase-space cooling
 electron & stochasting cooling
- p = 0.30 3.70 GeV/c
 - pp \rightarrow pp X (m_X \leq 1.1 GeV/c²)
 - dd $\rightarrow \alpha X \ (m_X \le 1.03 \ GeV/c^2)$
 - $pp \rightarrow pK^{\star} \, Y^{\star} \; (m_{Y^{\star}} \leq 1.5 \; GeV/c^2)$
- internal & extracted beams

The detector: WASA

-frozen pellet target ($\mathcal{L} \sim 10^{32} \text{ cm}^{-2} \text{s}^{-1}$)

-cluster jet target ($\mathcal{L} \sim \text{few} \cdot 10^{31} \text{ cm}^{-2} \text{s}^{-1}$) -polarized target ($\mathcal{L} < 10^{30} \text{ cm}^{-2}\text{s}^{-1}$)

The proposal (fall 2004)

here: Isospin

Other symmetries (C, CP, ...): talk my M.Wolke on η , η ' decays

Isospin violation (C. Hanhart, V. Hejny)

Isospin is an approximate symmetry of QCD
 ⇒ quark-mass differences, m_u ≠ m_d
 ⇒ different el.-magn. corrections, q_u ≠ q_d

- Isospin violation (IV) is an experimental handle on these effects
- Recent precision measurements \Rightarrow np \rightarrow d π^{0} : $A_{fb} = (17.2 \pm 8 \pm 5.5) \cdot 10^{-4}$ $A_{A.K.Opper\ et\ al.,\ PRL\ 91,\ (2003)\ 212302$
 - \Rightarrow dd $\rightarrow \alpha \pi^0$ at IUCF
 - $\sigma_{tot} \text{ (Q} \approx 1.4 \text{ MeV)} = 12.7 \pm 2.2 \text{ pb} \\ \sigma_{tot} \text{ (Q} \approx 3.0 \text{ MeV)} = 15.1 \pm 3.1 \text{ pb}$

direct measurement of (IV-amplitude)²

Understanding IV ... ?

- Various terms contribute to IV:
 - ⇒ Coulomb isospin mixing
 - \Rightarrow IV in π N scattering (leading in np $\rightarrow d\pi^0$, suppressed in dd $\rightarrow \alpha \pi^0$)
 - \Rightarrow isospin mixing of mesons (π - η , ρ - ω)
 - \Rightarrow heavy meson exchange
 - $\Rightarrow \Delta$ excitations
 - ⇒ ...
- $\boldsymbol{\cdot}$ Large theory collaborations study IV in terms of χPT
 - \Rightarrow disentangle all contributing terms (no dominant one in dd $\rightarrow \alpha \pi^{0}$)
- First questions:
 - \Rightarrow strength of *p*-waves in dd $\rightarrow \alpha \pi^0$ (parameter free)
 - (IUCF data close to threshold are consistent with s-wave)
 - \Rightarrow contributions from the Δ ?

IV with WASA@COSY

•What's next:

- \Rightarrow study *p*-waves further above threshold (here: $Q \approx 60 \text{ MeV}$)
- \Rightarrow lowest partial waves: ${}^{3}P_{0} \rightarrow s, {}^{5}D_{1} \rightarrow p$
- ⇒ however: due to the symmetry in initial state, s- and p-waves do not interfere in an unpolarized experiment
 - *s*-*d*, *p*-*p* interference have same energy and angular dependence \rightarrow hard to disentangle
- ⇒ at least single (beam or target) polarization experiment needed

• Furthermore:

- \Rightarrow at $Q \approx 170$ MeV contributions from \triangle resonance will be enhanced
- \Rightarrow best observable should be π^0 in *p*-wave
- ⇒ again: polarization helpful

• Measurement of differential cross sections in dd $\rightarrow \alpha \pi^0$ at:

- $p_d \approx 1.2 \text{ GeV/c}$: development of p-waves
- $p_d \approx 1.6 \text{ GeV/c}$: contribution of Δ resonance to IV
- (p_d \approx 2.35 GeV/c: sign of real part of $\eta\alpha$ scattering length)

 \rightarrow

- Low cross sections require high luminosities $\approx 10^{32}$ cm⁻²s⁻¹
 - ⇒ Pellet target
 - \Rightarrow High (polarized!) beam intensities $\geq 10^{10}$ deuterons
 - ⇒ Estimated beam time ~3 months for full program

dd $\rightarrow \alpha$ ($\pi^{0}\eta$) vs. dd $\rightarrow \alpha$ π^{0}

More $a_0 - f_0$ mixing ...

Determine the (KK) contents of the a_0/f_0 mesons!

Evidence that the $a_0(980)$ and $f_0(980)$ are not elementary particles V. Baru^{a,b}, J. Haidenbauer^b, C. Hanhart^b, Yu. Kalashnikova^a, A. Kudryavtsev^a ^a Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117259 Moscow, Russia ^b Institut für Keraphysik, Forschungszentrum Jälich, D-52425 Jälich, Germany Received 18 August 2003; received in revised form 26 January 2004 Editor: J.-P. Blaizot Physics Letters B 586 (2004) 53-61 The knowledge of g_{KK} allows one to calculate $W_{a0/fo}$: $W_{a0(f0)} = \int_{-50}^{50} \text{MeV} w_{a0(f0)}(E) dE.$ $w(E) = \frac{1}{2\pi} \Gamma_P + [\tilde{g}_{K\bar{K}}]\sqrt{mE}\Theta(E)$ $\times [(E - E_f - \frac{1}{2}[\tilde{g}_{K\bar{K}}]\sqrt{-mE}\Theta(-E))^2 + \frac{1}{4}(\Gamma_P + [\tilde{g}_{K\bar{K}}]\sqrt{mE}\Theta(E))^2]^{-1}$ $W_{a0/f0}$ "measures" the admixture of mesonic (KK) components in the a_0/f_0 mesons $W_{a0/f0} = 0.7$ corresponds to a "bare" qg state

Current data: $W_{a0} = 0.24 \dots 0.49$ and $W_{f0} = 0.14 \dots 0.23$

large uncertainties but the a_0/f_0 seem to have a significant mesonic component

"exotic hadrons" := not (qq or qqq)

"(genuine) exotic":

quantum numbers exclude q<u>a</u> or qqq obvious candidates, e.g. Hybrids (J^{PC}=0⁺⁻), Pentaquark (S=+1)

"cryptoexotic":

quantum numbers compatible with $q\underline{q}$ or qqqinterpretation model dependent, e.g. $a_0/f_0(980)$ ($J^{PC}=0^{++}$)

... both are equally important!

Pentaguark Θ^+ (also) at WASA

 $pK^0 \rightarrow p \pi^0 \pi^0$

1.50 RV25

γγ γγ

pπ

1.45

14

1.55

FWHM

~4.5 MeV

1.60 *1E+03

m.buescher@fz-juelich.de

The $\Lambda(1405)$ (A. Gillitzer)

Photon induced $\Lambda(1405)$ and $\Sigma(1385)$ production: $p(\gamma, \mathcal{K}^*\pi)\Sigma$ reaction at SPring-8/LEPS

No pp data! No data for $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$!

A new hyperon?

ANKE:

 $p(2.83 \text{ GeV})p \rightarrow pK^{+}\pi^{+}\Sigma^{-}$

WASA:

Neutral decay channels, e.g.

pp → pK⁺Y*(1475)
?
$$^{Λπ^{0}}$$

pπ⁻π⁰

Is it a
$$\Lambda$$
(I=O) or a Σ (I=1)?
 Λ (1475) $\rightarrow \Lambda \pi^0$
 Σ (1475) $\rightarrow \Lambda \pi^0$

Hadrons in the nuclear medium

- model predictions: $\Lambda(1405)$ is a <u>K</u>N bound state $\Lambda(1405)$ dissolves in nuclear matter
 - naive expectation: $\langle r^2 \rangle_{KN} > \langle r^2 \rangle_{aaa} \Rightarrow \sigma_{abs}$ larger for "molecular" state
- measure $pA \rightarrow \Lambda(1405)X$ as fct. of A (semi-exclusive)
- compare with $pA \rightarrow \Sigma(1385)X$

Potential model based on $\Lambda(1405)$

Summary ...

Spare foils ...

The light scalar resonances

The $a_0/f_0(980)$ at COSY

Reaction	Where?	Result	Goal
pp → pp K⁺K⁻	COSY-11 ANKE	a ₀ ⁰ /f ₀ contribution??	
$pp \rightarrow d K^{+} \underline{K}^{0}$	ANKE	a ₀ ⁺ channel dominates	
\rightarrow d $\pi^+\eta$	WASA		First "simple" experiment for WASA (≥2006)
$pn \rightarrow d K^{+}K^{-}$	ANKE	(Feb. 2004)	
\rightarrow d $\pi^0\eta$	WASA		Angular asymmetries a ₀ -f ₀ mixing
$pd \rightarrow {}^{3}He K^{+}K^{-}$	MOMO	a ₀ ⁰ /f ₀ contribution??	
$\rightarrow {}^{3}H \ K^{+}\underline{K}^{0}$			
$dd \rightarrow {}^{4}\text{He} \ \text{K}^{+}\text{K}^{-}$	ANKE	Winter '04/05?	
\rightarrow ⁴ He $\pi^0\eta$	WASA		Isospin violation a ₀ -f ₀ mixing

First Results on the a_0^+

 $p p \rightarrow d K^{+}K^{0}$ (ANKE) K⁺ O proton 0 10 10 deuteron do/dΩ [nb/sr] 0 -*k*/2 n proton (beam) K° ℃ 2 Fit: $[(K\underline{K})_{\rho}d]_{s} + [(K\underline{K})_{s}d]_{\rho}$ 0.5 0.5 0 1 0 1 -1 0 cos (pk) cos (kq) | cos (pq) | 1.5 1.5 Q = 46 MeV 🗔 dσ/dm [μb/GeV] 1 $\sigma(pp \rightarrow da_0^+ \rightarrow dK^+\underline{K}^0) =$ $83\% \cdot \sigma_{tot}$ 0.5 0.5 $\sigma_{\text{tot}}(pp \rightarrow dK^{\text{+}}\underline{K}^{\text{0}})$ = $(38 \pm 2_{stat} \pm 14_{sys})$ nb 1.02 1.04 1.00 2.4 2.42 2.44 0.98 2.36 2.38 $M(K^+\bar{K}^0)$ [MeV] $M (d\bar{K}^0)$ [MeV] V.Kleber et al., PRL 91, 172304 (2003) nucl-ex/0304020

$p(2.65 \text{ GeV})p \rightarrow dK^+\overline{K}^0 \text{ at ANKE}$

•K⁺d coincidence measurement •Identification of pp \rightarrow dK⁺X events via TOF, ΔE and particle momenta •Identification of pp \rightarrow dK⁺K⁰ events via dK⁺ missing mass

$$\sigma_{tot}(pp \rightarrow dK^{+}\underline{K}^{0}) =$$
(38 ± 2_{stat} ± 14_{sys}) nb

a_0/f_0 mixing in pn interactions

26

 \gg Look, e.g., for angular asymmetries around 90° in pn \rightarrow d+Meson reactions

m.buescher@fz-juelich.de

g_{a_0KK} and g_{f_0KK}

Parameters and results for the a_0 meson.

Ref.	M_R	$\Gamma_{\pi\eta}$	$\bar{g}_{K\bar{K}}$	W_{a_0}
[18]	1001	70	0.224	0.49
[19]	999	146	0.516	0.29
[20]	1003	153	0.834	0.24
[20]	992	145.3	0.56	0.29
[21]	984.8	121.5	0.41	0.36

Parameters and results for the f_0 meson.

Ref.	M_R	$\Gamma_{\pi\pi}$	$\bar{g}_{K\bar{K}}$	W_{f_0}
[22]	969.8	196	2.51	0.17
[23]	975	149	1.51	0.23
[21]	973	253	2.84	0.14
[24]	996	128.8	1.31	0.21

S. Teige, et al., PR D 59 (2001) 012001: π p data from BNL

D.V. Bugg, et al., PR D 50 (1994) 4412: analysis of pp data from CB

N.N. Achasov, A.N. Kiselev, PR D 68 (2003) 014006: analysis of KLOE data

A. Antonelli, hep-ex/0209069: Radiative ϕ decays (KLOE)

M.N. Achasov, et al., PL B 485 (2000) 349: Radiative & decays (SND) R.R. Akhmetshin, et al., PL B 462 (1999) 380: Radiative & decays (CMD-2) A. Antonelli, hep-ex/0209069: Radiative & decays (KLOE) N.N. Achasov, V.V. Gubin, PR D 63 (2001) 094007: Rad. & decays (SND, CMD-2)

