Nuclear and Particle Physics with FLAIR –

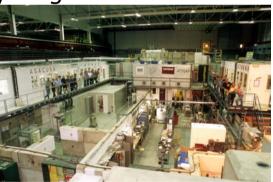
Facility for Low-energy Antiproton and Ion Research at FAIR

Dieter Grzonka, Forschungszentrum Jülich for the FLAIR community

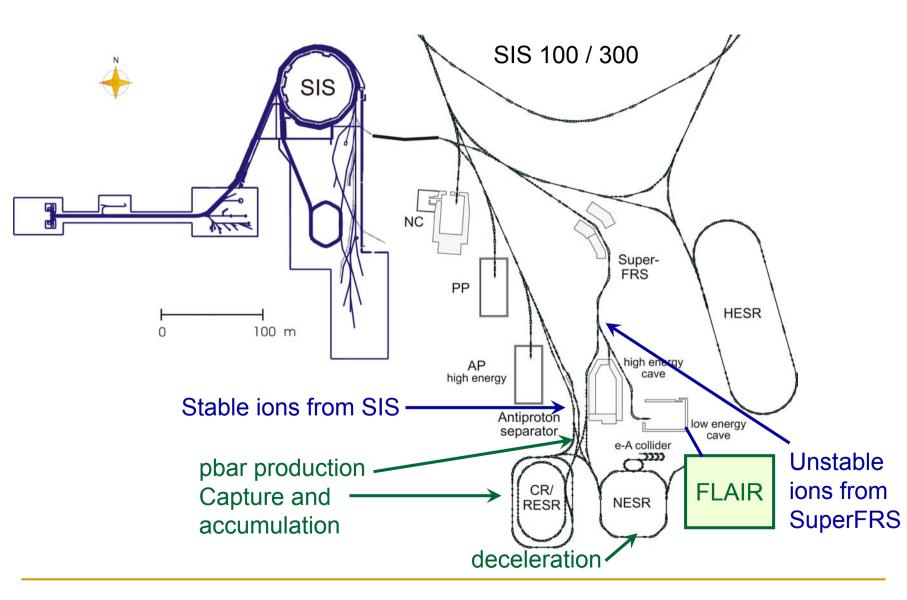
Low-energy Antiproton Facilities

LEAR @ CERN

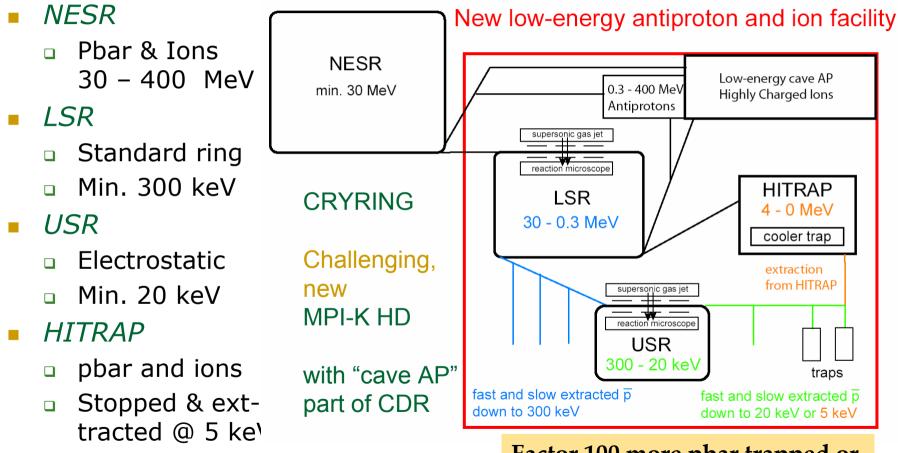
- 1982 1996
- Fast and slow extraction
- 105 MeV/c (5.6 MeV)
- Up to 10⁶ pbar/second DC, 10⁹ pbar/shot
- Trap (q/m), antiprotonic helium, protonium, nuclear radii, dE/dx (Barkas effect), ionization, 1st antihydrogen


AD @ CERN

- In operation since 2000
- Only fast extraction
- 100 MeV/c (5.3 MeV)
- 3x10⁷ pbar / 85 ns
- Cold antihydrogen, antiprotonic helium, dE/dx, ionization


Limitation

• 5 MeV is still to high for efficient stopping of antiprotons



FLAIR @ FAIR

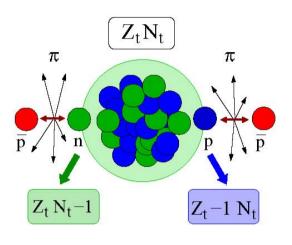
FLAIR – A Facility for Low-energy Antiproton and Ion Research @ FAIR

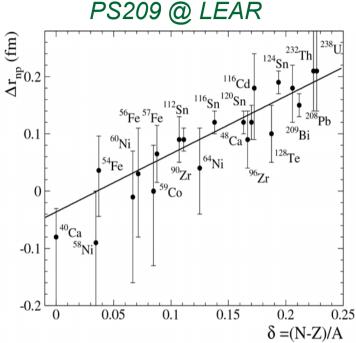
Factor 100 more pbar trapped or stopped in gas targets than now

FLAIR Physics Topics with Antiprotons

- Spectroscopy for tests of CPT and QED
 - Antiprotonic atoms (pbar-He, pbar-p), antihydrogen
- Atomic collisions
 - Sub-femtosecond correlated dynamics: ionization, energy loss, antimatter-matter collisions
- Antiprotons as hadronic probes
 - X-rays of light antiprotonic atoms: low-energy QCD
 - X-rays of neutron-rich nuclei: nuclear structure (halo)
 - Antineutron interaction
 - □ Strangeness –2 production
 - Medical applications: tumor therapy

Features of FLAIR

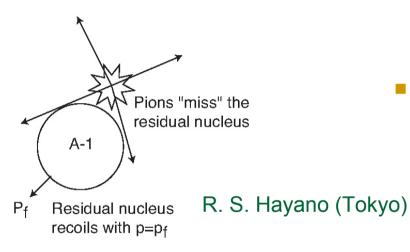

• Low-energy, high-brilliance beams for effective stopping


- High effective collision rates with USR: fully kinematic measurements
- Continuous beams: only possible @ FLAIR
- availability of radio-active ions offers synergies

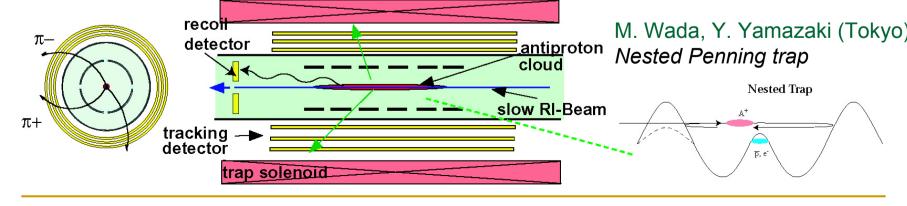
• High energies, high intensities, slow extraction

Nuclear Periphery with \overline{p} Atoms (DC)

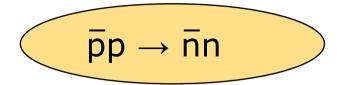
determination of the halo factor (f_{halo})



- Exotic atom formation -> cascade ->
 - Annihilation with outermost nucleons (<r>+ 2 fm)
- Measurement of neutron halo parameters
 - Radiochemical method, X-rays + model calculations
- Neutron diffuseness increases with neutron excess
- Extension to unstable nuclei interesting


A. Trzcinska, J. Jastrzebski et al. PRL 87 (082501) 2001

\bar{p} -RI in Traps for Nuclear Structure Study

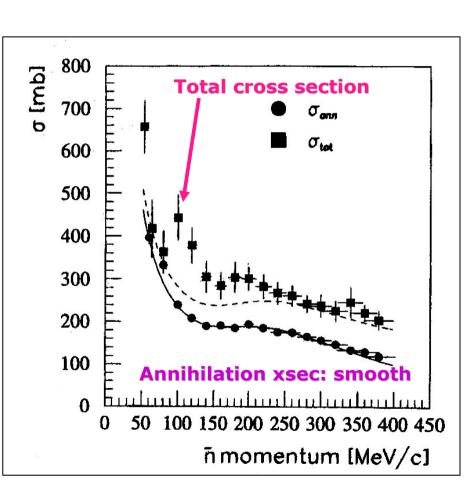

 p annihilates with outermost nucleon

- Momentum distribution of recoil nuclei
 - Wave function of outermost nucleon
- Charged pion multiplicity
 - Distinguish annihilation on p and n
 - Halo factors

Antineutron production and precision cross section measurements at low momentum

(OBELIX / LEAR)

anomaly in the elastic cross section


charge exchange cross section data inconsistent at low momentum

isospin dependence of $\overline{N}N$ annihilation

Total vs annihilation *np* cross sections

A dip-bump effect is observed in σ(np)_{TOT} at 65-80 MeV/c

- Regular and smooth trend of σ(np)_{ANN} in the same momentum region
- Impossible to find a set of parameters able to describe correctly at the same time both $\sigma_{\rm T}$ and $\sigma_{\rm ann}$
 - Bad fits of σ_T with ER expansions, of different kinds
- The elastic cross section is most likely responsible for the unexpected irregular trend of

Due to a $\overline{N}N$ bound state close to threshold?

 σ_{T}

I=0 vs I=1 interactions

From the ratio between $\sigma_T(\overline{p}p)$ and $\sigma_T(\overline{n}p)$ one can deduce the <u>contribution</u> to annihilation of the I=0 and I=1 sources of the NN interaction:

$$\mathsf{R} = \frac{\sigma_{\mathsf{T}}(\overline{\mathsf{p}}\mathsf{p})}{\sigma_{\mathsf{T}}(\overline{\mathsf{n}}\mathsf{p})} = \frac{\sigma_{\mathsf{T}}(\mathsf{I}=0) + \sigma_{\mathsf{T}}(\mathsf{I}=1)}{2\sigma_{\mathsf{T}}(\mathsf{I}=1)}$$

Strong dominance of the I=0 component at low momentum:

- σ_T(I=0)/σ_T(I=1):
 - (2.5±0.4) @ 70 MeV/c
 - (1.1±0.1) @ 300 MeV/c
- Effect explained as a manifestation of the coherence of meson exchanges in the central and tensor terms of the NN medium range force (Dover et al.)

For σ_{ann} the same rule is valid: $\sigma_{ann}(np) < \sigma_{ann}(pp)$

- σ_{ann}(I=0)/σ_{ann}(I=1):
 - (2.4± 0.4) @ 70 MeV/c

 σ (I=1) always lower than σ (I=0) BUT 1.5 @ ~ 700 MeV/c!

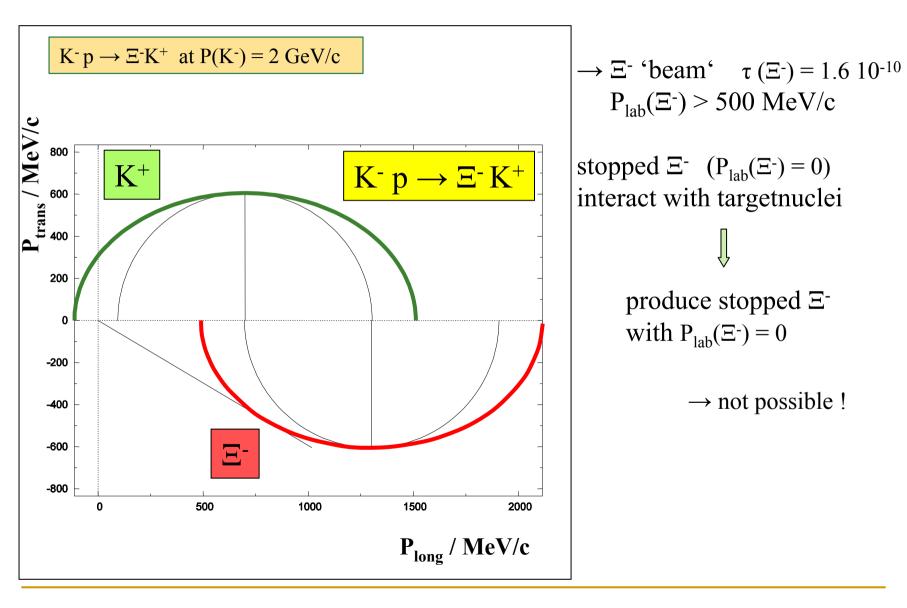
Study of baryon-baryon interaction

 \rightarrow understanding of the strong interaction

extensive data base detailed information

poor data base caculations rely on flavour SU(3) symmetry

studies limited to H-dibaryon search (H: [uu dd ss])

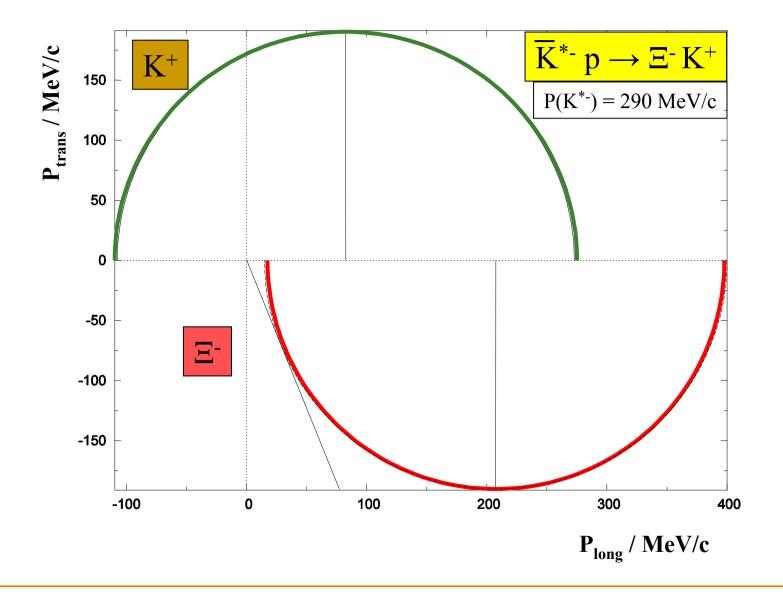

 Ξ – Production data: $K^{-}p \rightarrow \Xi K(\pi)$ properties of Ξ^{0} and Ξ^{-}

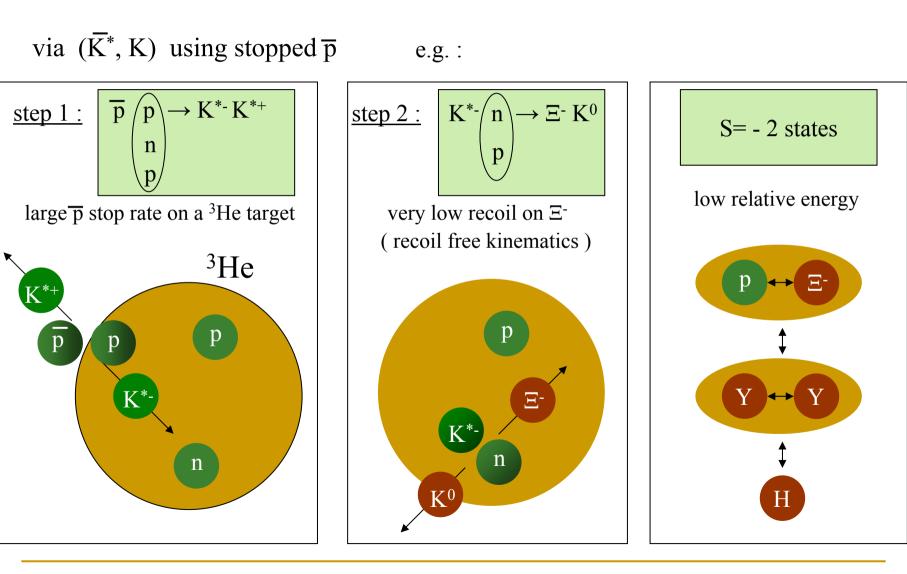
Heavy ion collisions \rightarrow multistrange yields (AGS, SPS, RHIC) (QGP)

 $\begin{array}{ll} \Sigma \ A \rightarrow \Xi(*) \ X & \text{spectrum of } \Xi \\ \text{WA89, CERN} & \text{excited states} \\ \gamma p \rightarrow K^+ K^+ \ \Xi^{-(0)} \ (\pi^-) \\ \text{CLAS} \ , \ JLAB \end{array}$

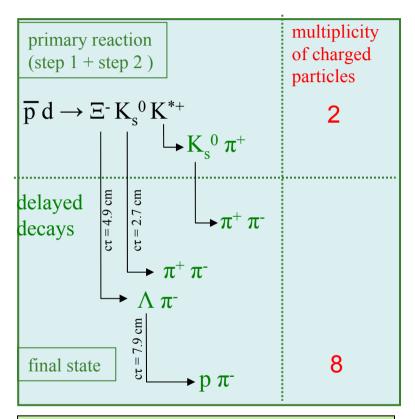
Studios on			
Studies on	Collaboration	reaction process (production/decay) $K^{\pm} + K^{\pm} + K$	sensitive mass range
H particle search	BNL E703 ^{77]} BNL E810 ^{86), 87), 104)}	$p + p \rightarrow K^+ + K^+ + X$ Si + Pb collision / $H \rightarrow \Sigma^- p, Ap\pi^-$	$M_H = 2.0 \sim 2.5~{\rm GeV}$
H-particle search	BNL E813	$K^- + p \rightarrow K^+ + \Xi^-, (\Xi^- d)_{atom} \rightarrow H + n$	$-15 < B_H < 80 \text{ MeV}$
	88) - 92), 103), 104), 106)	$r \rightarrow r \rightarrow$	
table taken from:	BNL E830 ¹⁰⁵)	$K^- + {}^3\text{He} \rightarrow K^+ + H + n$	
	BNL E836	$K^- + {}^{3}\text{He} \rightarrow K^+ + H + n$	$B_H=50\sim 380~{\rm MeV}$
T. Sakai, K. Shimizu, K. Yazaki	90) - 93), 103), 104), 106)	$K^- + {}^6\mathrm{Li} \rightarrow K^+ + H + X$	
Prog.Theo.Phys.Suppl. 137 (2000) 121	BNL E864 ^{104), 105)} BNL E885 ^{92), 94), 95), 104)}	Au + Pb collision $K^- + (p) \rightarrow K^+ + \Xi^-$,	
110g. 1100.1 hys.5uppl. 157 (2000) 121	DIAL F002	$K^- + (p) \rightarrow K^+ + \Xi^-$, $(\Xi^- A)_{\text{atom}} \rightarrow H + X$	
		$(= A)_{\text{atom}} \rightarrow H + A$ $K^- + A \rightarrow K^+ + X + H$	
most effective Ξ production	BNL E886 ^{96), 104)}	Au + Pt collision	
-	BNL E888	$p + A \rightarrow H + X / H \rightarrow An \text{ or } \Sigma^0 n,$	
via (K^-K^+) double strangeness exchange	97) - 99), 104), 106)	$H + A \rightarrow A + A + A$	$M_H < 2150 \text{ MeV}$
	BNL E896 ^{100), 104), 105)}	Au + Au collision / $H \to \Sigma^- p \to n\pi^- p$,	
	BNL E910 ¹⁰¹)	$H \rightarrow Ap\pi^- \rightarrow p\pi^-p\pi^-, H \rightarrow An \rightarrow p\pi^-n$ $p + A / H \rightarrow Ap\pi^-, H \rightarrow \Sigma^-p$	
$\Lambda\Lambda$ -hypernuclei production	BNL E910 BNL STAR ¹²⁵ , ¹⁰²	$p + A / H \rightarrow Ap\pi$, $H \rightarrow 2$, p Au + Au collision	
	KEK E176 ^{107) - 109), 115)}	$K^- + (pp) \rightarrow K^+ + H$	
		$K^- + p \rightarrow K^+ + \Xi^-, \Xi^- + (p) \rightarrow H$	
KEK E373 : 1.66 GeV/c K ⁻ \rightarrow emulsion	KEK E224 ^{110] - 115)}	$K^- + (pp) \rightarrow K^+ + H$	
	territe mater 116)	$K^- + (p) \rightarrow K^+ + \Xi^-, \Xi^- + (p) \rightarrow H$	
	KEK E248 ¹¹⁶⁾ Fermilab E791 ¹¹⁹⁾	$p + p \rightarrow K^+ + K^+ + X$	
1 11 1 1	rermiab E791	$H \rightarrow p + \pi^- + \Lambda, \Lambda \rightarrow p + \pi^-,$ $H \rightarrow \Lambda + \Lambda \rightarrow p + \pi^- + p + \pi^-$	
double-hypernucleus	Fermilab KTeV Collab.	$H \rightarrow A + A \rightarrow p + \pi^- + p + \pi^-$ $p + A/H \rightarrow p + \pi^- + A$	$M_{H} = 2194$
event	120)		$\sim 2231 \text{ MeV}$
e vont	Shahbazian et al. ⁷⁹⁾⁻⁸³⁾		
		$H \rightarrow \Sigma^- + p, \Sigma^- \rightarrow \pi^- n$	
		$H^+ \rightarrow p + \pi^0 + \Lambda, \Lambda \rightarrow p + \pi^-$ $H^+ \rightarrow p + \Lambda, \Lambda \rightarrow p + \pi^-$	
#6/ C	Alekseev et al. ⁸⁴⁾	$H^+ \rightarrow p + \Lambda, \Lambda \rightarrow p + \pi^-$ $n + \Lambda \rightarrow H + X / H \rightarrow p\pi^-\Lambda, \Lambda \rightarrow p\pi^-$	
#5 #4/2000	DIANA Collab. ¹¹⁷ , ¹¹⁸	$n + A \rightarrow H + X / H \rightarrow p\pi A, A \rightarrow p\pi$ $\bar{p} + Xe \rightarrow K^+HX, K^+K^+HX /$	
#5 #1 B		$H \rightarrow \Sigma^- + p$	
#1 A-1 #3	Condo et al. ⁷⁸⁾	$\bar{p} + A \rightarrow H + X / H \rightarrow \Sigma^- + p$	
	Ejiri et al. ⁸⁵⁾	$d \rightarrow H + \beta + \nu$, ¹⁰ Be \rightarrow ⁸ Be $+ H$,	$M_H < 1875.1~{\rm MeV}$
#2 11		$^{72}\text{Ge} \rightarrow ^{70}\text{Ge} + H + \gamma, \ ^{127}\text{I} \rightarrow ^{125}\text{I} + H + \gamma, \ ^{127}\text{I} \rightarrow ^{125}\text{I} + H + \gamma,$	
	CERN NA49 ¹²¹⁾	127 I \rightarrow 125 Te + $H + \beta^+ + \nu$ Pb + Pb collision / $H \rightarrow \Sigma^- p$, $Ap\pi$	
	CERN WA89 ¹²²⁾	$\Sigma^- + A \rightarrow X + H / H \rightarrow AA, N\Xi$,	
AGS E885 : 2 GeV K ⁻ : K ⁻ $p \rightarrow \Xi^-$ K ⁺		$H \rightarrow Ap\pi^-, \Sigma^-p, \Sigma^0n, An$	
$\Xi^{-12}C \rightarrow {}^{12}_{\Lambda\Lambda}B n$	CERN WA97 ¹²³)	Pb + Pb collision	
	CERN ALICE ¹²⁵	Pb + Pb collision	
scintillating fibre array	CERN OPAL ¹²⁴	Z^0 decay	

K⁻K⁺ double strangeness exchange using a K⁻ beam

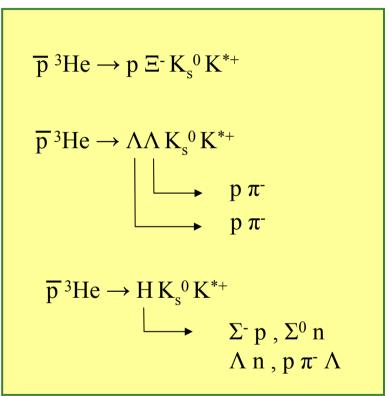

double strangeness exchange using \overline{p} p annihilation


(s, īs) ↑	annihilation channel	branching ratio	kaon momentum
$K^{-} = \overline{u} s$	$\overline{p} p \rightarrow K^+ K^-$	1 · 10-3	$P(K^{-}) = 780 \text{ MeV/c}$
$\overline{\mathbf{K}}^0 = \overline{\mathbf{d}} \mathbf{s}$	$\overline{p} p \to K^0 \overline{K}{}^0$	3 · 10-3	$P(\overline{K^0}) = 780 \text{ MeV/c}$
$K^{*-} = \overline{u} s$	$\overline{p} p \rightarrow K^{*_+} K^{*}$	1.5 · 10-3	$P(K^{*}) = 290 \text{ MeV/c}$
$\overline{\mathbf{K}}^{*0} = \overline{\mathbf{d}} \mathbf{s}$	$\overline{p} \ p \to K^{*0} \ \overline{K}^{*0}$	3 · 10 ⁻³	$P(\overline{K}^{*0}) = 290 \text{ MeV/c}$
	$\overline{p} p \to K \overline{K}^*$	1 · 10-3	$P(\overline{K}^*) = 620 \text{ MeV/c}$
$\overline{\mathbf{K}^*} \to \Xi K$ $P(\overline{\mathbf{K}^*}) = P_{\text{magic}}$ \downarrow $P(\Xi)_{\text{lab}} = 0$	$ \mathbf{H}_{\mathbf{A}}^{0.6} = \mathbf{H}_{\mathbf{A}}^{0.6$	9 0.95	0.6 0.5 0.4 0.3 0.2 0.1 0.8 0.85 0.9 0.9 0.95

 $m(\overline{K}^*) / GeV/c^2$


 $m(\overline{K}^*) / GeV/c^2$

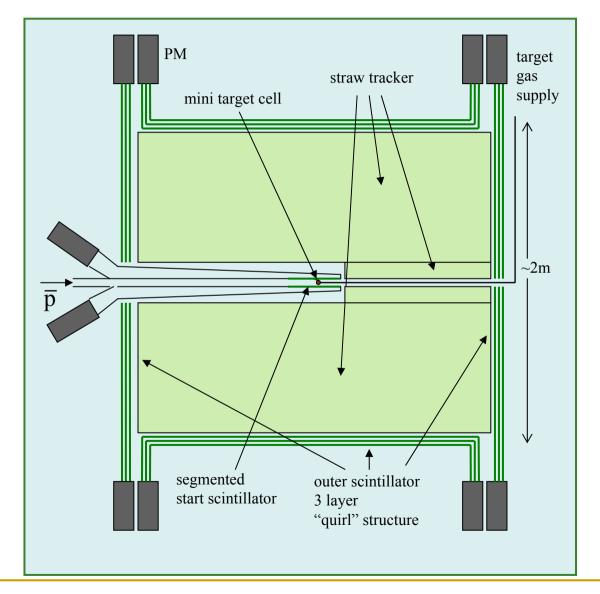
Kinematics of (\overline{K}^*, K) double strangeness exchange

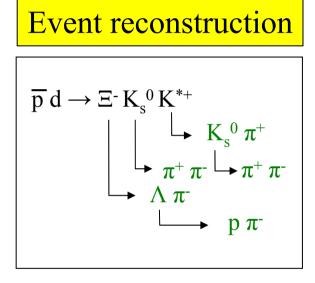

Ξ^{-} production

 \rightarrow reaction trigger = multiplicity increase

geometry \rightarrow event reconstruction

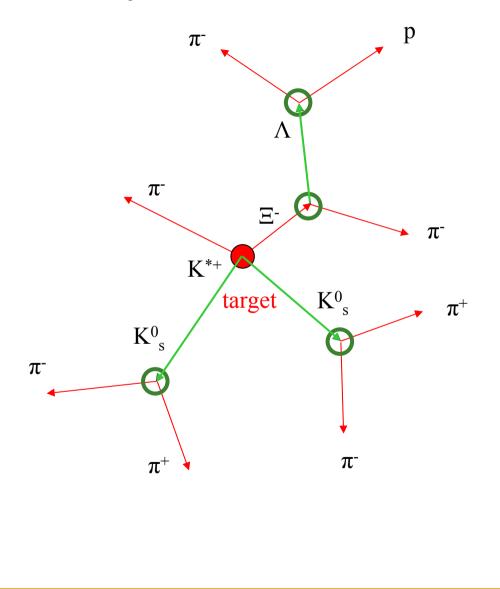
Ξ^{-} p interaction

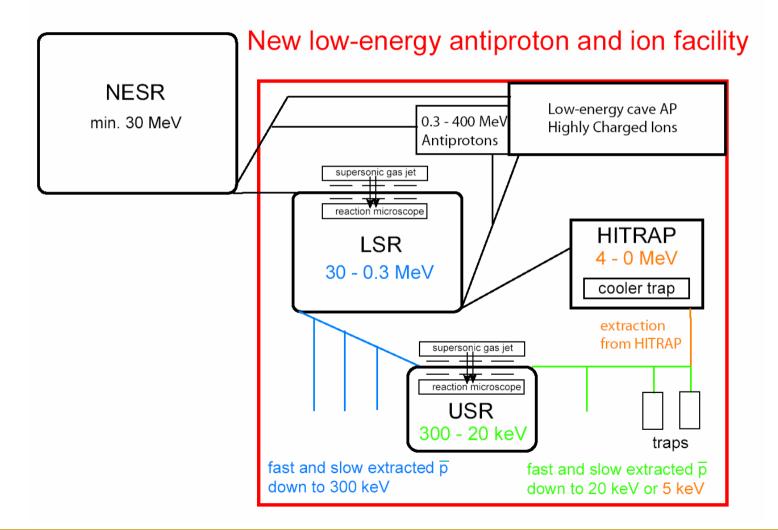

detector


plastic scintillator layer

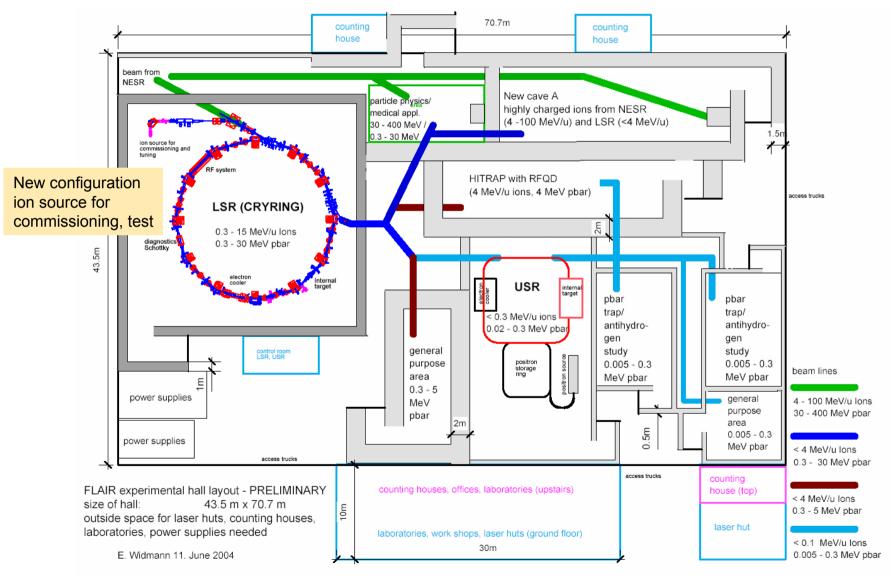
- 1. close to the target
- 2. \sim 1m distance
- → multiplicity trigger timing

3-d tracking detector straw tubes in different directions


→ tracks of charged particles decay vertices

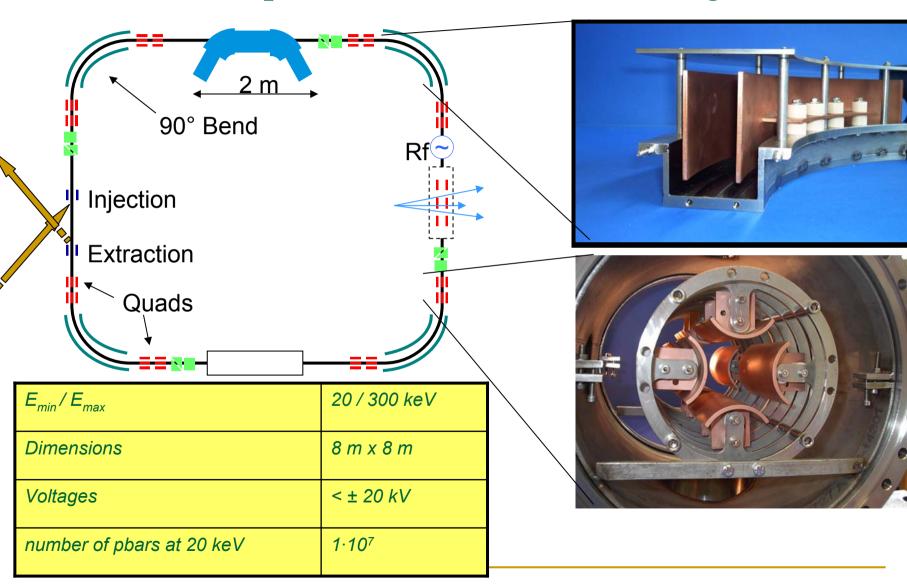


geometry


→ kinematical complete event reconstruction

FLAIR – A Facility for Low-energy Antiproton and Ion Research @ FAIR

Layout of FLAIR Hall



CRYRING and FLAIR

- Storage ring at Manne Siegbahn Lab, Stockholm
- Is to stop operation within ~2 years
- Perfect fit for FLAIR LSR:
 - Energy range, electron cooling, internal target, lowenergy injection from ion source for commissioning

USR: Ultra-low Energy Storage Ring for Antiprotons (under development at MPI-K Heidelberg)

Timeline and milestones

- 2004/5: technical report
 - Design for modifications of CRYRING
 - layout of hall and beam lines
- End 2005: agreement with Swedish funding agencies on contribution of CRYRING to FAIR needed
- End 2008: feasibility tests for USR finished, start of construction
- 2009: finish implementation of modifications of CRYRING

 2010: Hall finished move of CRYRING to FAIR Installation of USR Installation of experiments

2011 – 2012: commissioning and start of operation

FLAIR Community

- Austria (Vienna IMEP, TU)
- Canada (York)
- Denmark (Aarhus U, ISA)
- France (P. & M. Curie, Paris)
- Germany (GSI, Dresden, Frankfurt, Freiburg, München, Giessen, Heidelberg, Jülich, Mainz, Tübingen)
- Hungary (Budapest, Debrezen U, ATOMKI)
- Italy (Bologna, Firenze, Genova, Torino)

- Japan (Tokyo, Saitama (RIKEN))
- Netherlands (Amsterdam U, FOM)
- Poland (Warsaw U, Soltan Inst.)
- Russia (Moscow, St. Petersburg)
- Sweden (Stockholm U, Manne Siegbahn Laboratory)
- United Kingdom (Swansea)
- USA (Albuquerque, Harvard, pbar Medical, Texas A&M)

47 institutions, 14 countries