HADRONIC ATOMS

D. Gotta

Institut für Kernphysik, Forschungszentrum Jülich

1. Caucasian-German School and Workshop on Hadron Physics Tbilisi, 30.8.-2.9.2004

ORDERS OF MAGNITUDE

$V_{Coulomb} = -Ze^2/r$						
binding energies		$B_n = -m_{red} c^2 \alpha^2 \cdot Z^2 / 2n^2$				
radii		$a_n = (hc / m_{red}c^2 \alpha) \cdot (n^2/Z)$				
		m / MeV/c²	B _{n=1} ∕ keV	"Bohr" radius /fm		
atomic	ер	0.5 11	0.0136	0.5 · 10 ⁵	capture	
	μp	105	2.5	279		
\downarrow	πρ	140	3.2	216	atomic 🗸 cascade	
•	₽ ₽	938	12.5	58		
"nuclear"	< r _p >			0.8	hadronic interaction	
dimensions				particl	e-nucleus scattering at "rest"	
					elastic <u>and</u> inelastic	

ATOMIC CASCADE

isolated antiprotonic hydrogen

 $\varepsilon > 0$ (<0) = attractive (repulsive) interaction

EXOTIC HYDROGEN

pressure dependence of line yields

Stark-mixing \Rightarrow small line yields Y

strong annihilation \Rightarrow $Y_{2p-1s} \approx Y_{3d-2p} / 100$ $\approx 2 \text{ GeV/c}^2 \text{ per annihilation } \Rightarrow \text{ high background}$ $\overline{p}p \rightarrow n\pi^+ + n\pi^- + m\pi^0$ $\ge 2\gamma$

ATOMIC CASCADE

exotic hydrogen not an isolated system !

collisions with H₂

PRINCIPLE of **SET-UP**

L. Simons, Physica Scripta 90 (1988), Hyperfine Int. 81 (1993) 253 🥏

DEGRADERS and **CRYOGENIC TARGET**

inside

CYCLOTRON TRAP II

super-conducting split coil magnet

Set-up PS207 LEAR

9

Spherically curved Bragg crystal

radius of curvature 2985.4 mm

Large - Area Focal Plane Detector

PSI experiment R-98.01 (PIONIC HYDROGEN)

2 × 3 CCD 22 array with frame buffer

pixel size $40 \ \mu m \times 40 \ \mu m$ $600 \times 600 \ pixels \ per \ chip$ frame transfer $\approx 10 \ ms$ data processing 2.4 s operates at $-100 \ C$

 $\Delta E \approx 150 \text{ eV} \quad @ 4 \text{ keV} \\ \varepsilon_{\chi} \approx 90\%$

N. Nelms et al., Nucl. Instr. Meth 484 (2002) 419

PION MASS

PSI experiment R-97.02

15 counts per hour per line

Peak / background ≈ 50

statistics accumulated≈ 10000 per line

excpected $\Delta m / m < 2ppm$

final analysis presently going on

ANTIPROTONS

antinucleon - nucleon interaction

meson exchange

annihilation

THEORETICAL DESCRIPTION

 $V_{Coulomb} + U_{hadronic}$ $U_{hadronic} = meson exchange + annihilation scattering: <math>\bar{p}p < -> \bar{p}p$ $\bar{p}p -> mesons$ $\bar{p}p < -> \bar{n}n$ $NN \xrightarrow{G-parity}{--> \bar{N}N} \qquad U \propto a \rho(r)$ $Re \ U_{hadronic} \rightarrow \pi, \rho.... \qquad Im \ U_{hadronic} \sim 10 \ GeV$

 $\epsilon, \Gamma <-->$ medium + long-range part of NN interaction

Buck, Dover, Richard, Ann. Phys. (NY) 121 (1979) 47

PROTONIUM

predicted hyperfine splitting

J. Carbonell, G. Ihle, J.-M. Richard, Z. Phys. A 334 (1989) 329

d state

strong interaction negligible

p state

spin-orbit interaction

s state

spin-spin interaction

 \overline{p} meanfree pathlength in nuclear matter \approx 1.2 fm

PROTONIUM

s- and p-state strong interaction effects

LEAR experiment PS207

PROTONIUM 2p state

LEAR experiment PS207

D. Gotta et al., Nucl. Phys. A 660 (1999) 283

Antiprotonic DEUTERIUM

s- and p-state strong interaction effects

LEAR experiment PS207

Antiprotonic HELIUM

isotope effects

LEAR experiment PS175

M. Schneider et al., Z. Phys. A 338 (1991) 217

	spin average	ε/eV	Γ/eV
•	<mark>p</mark> ³He 2p	- 17± 5	25 ± 9
•	<mark>p</mark> ⁴He 2p	- 18±2	45±5

single - nucleon annihilation ?

$$\Gamma_{A(Z,N)} \propto Z \cdot \Gamma_{\overline{p}\,n} + N \cdot \Gamma_{\overline{p}\,p}$$

ANNIHILATION STRENGTH

VS.

atomic weight

saturation ?

K. Protasov et al., Eur. Phys. J. A 7 (2001) 429

pion - nucleon interaction

low-energy approach of **QCD**

= χPT chiral perturbation theory

"ideal" world	$m_u = m_d \ (= m_s) = 0$		CHIRAL SYMMETRY $(S = \frac{1}{2})$		
\Rightarrow	$m\left(\pi^-=/d\bar{u}\right)=0$				
	$F_{\pi} = 0$	<i>no</i> π decay			
real world	$m_{\pi} > 0$	but small	$m_{\pi} \approx m_{ ho}$ / 7		
χΡΤ	expansion	at chiral limit	$m_{quark} \rightarrow 0$		
	order parame	eters	momenta guark mass difforance m m		
		and	α _{elmag.}		
system	theory	experim	ient		
ππ	best	DIRAC	CERN difficult - % accuracy ?		
π Ν	2 nd best	PIONIC	CHYDROGEN PSI ≤%!		
KN n	m _s >> m _u , n	n _d DEAR	DA PNE started		
low-energ	y theorems	\leftrightarrow	scattering length a		
			πN Heavy-Baryon χPT		

PIONIC HYDROGEN

$$\begin{split} \mathcal{E}_{1s} & \propto a_{\pi^{-}p \to \pi^{-}p} \\ & \propto a^{+} + a^{-} \end{split}$$
$$\begin{split} \Gamma_{1s} & \propto (1+1/P)(a_{\pi^{-}p \to \pi^{0}n})^{2} \\ & \propto (1+1/P)(a^{-})^{2} \end{aligned}$$
$$\begin{split} PANOFSKY \ ratio P \\ & \pi^{-}p \to \pi^{0}n/\pi^{-}p \to \gamma n = 1.546 \pm 0.009 \\ & J. \ Spuller \ et \ al., \ Phys. \ Lett. \ 67 \ B \ (1977) \ 479} \end{split}$$

LOW-ENERGY πN INTERACTION

 F_{π} pion decay constant

GOAL

precise determination of

 πN isospin scattering lengths $a^+ \& a^-$

 πN coupling constant $f_{\pi N}^2$

πp <u>not</u> an isolated system !

CASCADE - COLLISIONAL PROCESSES $\pi p + H_2$

1. Stark mixing

 "dangerous" processes
 2. [(πpp)p]ee – molecule formation ("DH") ? significant radiative decay modes ?

 ε had

MOLECULAR POTENTIALS

potential curves scaled from Sharp, Atomic data 2 (1971)119

 πp <u>not</u> an isolated system !

CASCADE - COLLISIONAL PROCESSES $\pi p + H_2$

1. Stark mixing

2. $[(\pi pp)p]ee - molecule formation (,,DH")$?

3. Coulomb - de-excitation non radiative process $n_i \rightarrow n_f$ + kinetic energy Doppler broadening $\frown \Gamma_{had}$

Coulomb de-excitation $(\pi^-H)_n + H = H \rightarrow (\pi^-H)_{n-1} + H + H + kinetic energy$

A. Badertscher et al., Eur. Phys. Lett. 54 (2001) 313

"environment independent"

determination

of

HADRONIC EFFECTS

STRATEGY

study of the atomic cascade ↔ collisional effects vary with density !

novel calibration method hydrogen-like πA

πH(3p-1s) - density dependence

PSI experiment R-98.01 (PIONIC HYDROGEN)

mixture H₂ / ¹⁶O₂ (98%/2%) 1.2 bar @ T = 85K ≈ 4 bar equivalent density πΗ / πO energy calibration simultanuously

 H_2 2 bar @ T = 20K ≈ 28.5 bar equivalent density

 H_2

1 bar @ T = 17K

LH,

first time

πO mixture ⁴He / ¹⁶O₂ / ¹⁸O₂ (~80%/10%/10%)

2 bar @ T = 86K

33

πH(3p-1s)

no density dependence identified

previous experiment H.-Ch.Schröder et al. Eur.Phys.J.C 1(2001)473

ε_{1s} in agreement with previous experiment

Π.

ll a

PEAK / BACKGROUND !

ll b

MEASURED LINE SHAPE	= R ⊗	L	$\otimes \Sigma \mathbf{D}$	
	crystal resolution	Γ _{1s} ↑	Doppler broadening Coulomb de-excitation	
	ECRIT	πH	muonic hydrogen	

RESOLUTION FUNCTION

novel method

helium-like electronic atoms

RESPONSE FUNCTION II

Electron Cyclotron Resonance Ion Trap cyclotron trap + hexapole magnet

D. Hitz et al., Rev. Sci. Instr., 71 (2000) 1116

PSI ECRIT and **CRYSTAL SPECTROMETER**

D.F.Anagnostopoulos et al., Nucl. Instr. Meth. B 205 (2003) 9; subm. to Nucl. Instr. Meth. B 8/2004

PEAK-TO-BACKGROUND ratio improved by one order of magnitude !

FIRST (2002) ECRIT RESULTS and HADRONIC WIDTH

R-98.01	$\Gamma_{1s} \approx 800 \pm 30 \text{ meV}$	(3-4%) preliminary
	with forthcoming ECRIT measurements	(→ 2.5% - 3%)

πN SCATTERING LENGTHS

πH - hadronic shift ϵ_{1s} & πN s-wave isospin scattering lengths

Deser formula \rightarrow incl. Coulomb - strong-int. interference

$$\epsilon_{1s} = -2\alpha^3 \mu_c^2 \mathcal{A} (1 - 2\alpha \mu_c (\ln \alpha - 1) \mathcal{A}) + \cdots$$

$$2^{nd} \operatorname{order} \chi PT$$

$$\mathcal{A} = a_{0+}^{+} + a_{0+}^{-} + \epsilon$$

$$= \frac{1}{8\pi (m_p + M_{\pi^+}) F_{\pi}^2}$$

$$\times \left\{ m_p M_{\pi^+} - \frac{g_A^2 m_p M_{\pi^+}^2}{m_n + m_p + M_{\pi^+}} + m_p \left(-8c_1 M_{\pi^0}^2 + 4(c_2 + c_3) M_{\pi^+}^2 + -4e^2 f_1 - e^2 f_2 \right) \right\},$$

O(δ^2) in $\delta = q$, $\alpha = 1/137$, (m_d-m_u)

LECs f_1 , f_2 , c_1 contribute to isospin breaking in $O(\delta)$

accuracy of prediction O(10%)

V.E. Lyubovitskij & A. Rusetsky, Phys. Lett. B 494(2000)9

V.E. Lyubovitskij et al., Phys. Lett. B 520(2001)204

46

πN scattering lengths a $^\pm$

- - HBχPT 3rd order Fettes, Meissner, Steininger NP A640(1998)199

 πN coupling constant $f_{\pi N}^2$

48

πD - hadronic shift ϵ_{1s} & πN s-wave isospin scattering lengths

 $d \approx p + n$ corrections! $a_{\pi - p} + a_{\pi - n} = (a_{1/2} + 2a_{3/2})/3$ = 2 a^+ isoscalar scatt. length

 $\frac{\epsilon_{1s}}{B_{1s}} = -\frac{4}{r_B} \Re a_{\pi^- d}^{had} \qquad \text{Deser formula}$

 $\Re a_{\pi d} = -0.0261 \pm 0.0005 / m_{\pi}$

 $\begin{array}{c} \downarrow \\ \Re a_{\pi d} \leftrightarrow a^{\pm} \end{array}$

$$\Re a_{\pi^- d}^{had} = 4 \frac{M + m_{\pi}}{2M + m_{\pi}} a^+ + SS + DS + HC + AB$$

D. Chatellard et al., NPA 625(1997)855 P. Hauser et al., PRC 58(1998)R1869

calculations

Beane, Bernard, Lee, Meissner, PR 57 (1998) 424

Ericson, Loiseau & Thomas, PR C 66, 014005 (2002) Beane, Bernard, Epelbaum, Meissner, Phillips NPA 720 (2003)399 Rusetski et al., in progress

PIONIC DEUTERIUM

final approach to

COULOMB DE-EXCITATION

muonic hydrogen

MUONIC HYDROGEN

to quantify Coulomb de-excitation

kaon - nucleon interaction

low-energy approach of QCD - χPT including the "heavy" light **s quark**

no dedicated kaon facility in the world

KEK experiment PS-E-228

first unambiguous observation of K⁻H X-rays

Fig. 8. The set-up of the kiewic hydrogen experiment of KIK (from [210]). Know me stepped in hydrogen gas cooled to 100 K at a presence of 4 bar.

π/ K= 90

trigger on decay products necessary

M. Iwasaki et al., Phys. Rev. Lett. 78 (1997) 3067 T. M. Ito et al., Phys. Rev. C 58 (1998) 2366

DEAR collaboration (a) $e^+ e^-$ collider **DA** Φ **NE**

55

SUMMARY

LIGHT PIONIC ATOMS

		$\Delta \varepsilon_{1s}/\varepsilon_{1s}$	$\Delta\Gamma_{1s}/\Gamma_{1s}$	χΡΤ
πH	D. R-98.01	0.2%	1% (2005)	a⁺ , a⁻ , f_{πN}
πD	D. Chatellard et al. (1994) P. Hauser et al. (1998)	2%	12%	$\pi^- p \leftrightarrow \pi^- n$ isospin breaking (1-2%)
π ³ He	I.Schwanner et al. (1979) NP A 412 (1984) 253	10%	25%	π^{3} He ± π T
πT				⇒ a⁺ , a [−]

LIGHT KAONIC ATOMS

		$\Delta \varepsilon_{1s}/\varepsilon_{1s}$	$\Delta\Gamma_{1s}/I$	- 1s		
KH	DEAR	25%	40%		a _{Kp}	
	SIDDHARTA	fe	₩ % ≥2006		χPT includ	ding s quarks
KD	SIDDHARTA	fe	W % planned	d	a _{Kn} isospin ar	nplitudes a ₀ , a ₁
K⁴He		25%	<mark>60%</mark>	no plans	puzzling	111
K	AON	#EHF	\rightarrow	NO	AK	58

LIGHT ANTIPROTONIC ATOMS

AD / FLAIR GSI ?

PROTONIUM ground state

M. Augsburger et al., NP A 658 (1999) 149

60

fight (for survival) at PSI

prepare for FLAIR