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Abstract

Modern theory of strong interactions between nucleons is constructed within the

framework of Chiral Perturbation Theory. In this case, chiral symmetry dictates the

structure of the interaction operators, and its intensity is determined by the low-energy

parameters of the theory, which must be extracted from experimental data. One of the

key parameters of this theory is the contact (NN)2π term, which is included into the

pion production NN → NNπ near the threshold, hydrogen combustion pp → de+νe,

µ−-meson capture by deuteron µ−d → nnνµ, and others. Among other processes of

single-pion production, the reaction pn → {pp}sπ− is the most preferable for deter-

mination of the contact interaction. Consequently, the main task of the thesis was to

obtain new polarization data on this process.

In this regard, a program was proposed at the ANKE facility located on the COSY

synchrotron (Jülich, Germany), including the measurement of the differential cross

section and the vector analyzing power, as well as the spin-correlation coefficient Ax,x for

the process np→ {pp}sπ− at the energy of 353 MeV. The results of these experiments,

as well as the joint partial-wave analysis of pp → {pp}sπ0 and pn → {pp}sπ− data,

make the basis of the thesis.
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Chapter 1

Basic concepts of chiral perturbation theory

of strong interactions

The modern elementary particles theory, commonly called the Standard Model

of fundamental forces, is based on the principle of local gauge invariance under

SUc(3) × SUL(2) × UY (1) transformations, where the indices c, L and Y are color,

left chirality and weak hypercharge, respectively. The Standard Model combines the

theory of electroweak interactions, which describes the interactions between quarks and

leptons through the exchange of photons and gauge bosons, and the quantum chromo-

dynamics (QCD), which describes the strong interactions of quarks and gluons through

the exchange of gluons. The predictions of the Standard Model for visible matter are

reliably confirmed by experiment, except for a few cases, which are currently being

analyzed.

While electroweak interactions can be described with this theory in a broad interval

of energies, direct application of QCD as a theory of interaction between quarks and

gluons is limited to high energies and high transferred momenta Q. QCD is based on

the color gauge group SUc(3) and, therefore, is a nonlinear (non-Abelian) gauge field

theory. The non-Abelian nature of the theory results in the asymptotic freedom of

QCD, i. e., the coupling constant of strong interactions αs(Q2) decreases logarithmi-

cally as the square of the transferred momentum increases Q2 → ∞, αs(Q2) ∼ /lnQ2,

or, equivalently, decreases at small distances r ∼ 1/Q between interacting color ob-
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jects, αs(r) ∼ 1/lnr. However, this same property of the theory leads to an increase

of the running coupling constant αs(Q2) at small transferred momentum, i. e., at large

distances, which leads to quark confinement, and thus the formation of colorless ob-

jects, hadrons. In the perturbation theory framework, such an increase is unbounded.

Consequently, the construction of the theory of strong interactions as a perturbation

theory with expansion with respect to the coupling constant αs(Q2) is possible only

at high energies. In the low-energy regions, QCD, as the theory of quarks and gluons,

is applicable when using nonperturbative methods, such as lattice calculations. How-

ever, the applicability of these methods is rather limited by computer processing power.

Therefore, instead of using QCD for calculations related to NN interactions, various

phenomenological potentials based on meson exchange have long been used in prac-

tice [1–5]. At the same time, there is no connection between these phenomenological

theories and QCD.

1.1 Chiral symmetry of QCD and its spontaneous breaking

A breakthrough in constructing the theory of nuclear interactions happened with

the introduction of the concept of chiral effective field theory for low-energy QCD [17].

This effective theory is based on a phenomenon called spontaneous breaking of the

chiral invariance of QCD [18].

If we confine ourselves to u and d quarks, i. e., exclude strange and heavy quarks

from consideration, then the masses of the current quarks are small (mu = 4 MeV,md =

6 MeV) as compared to the characteristic scale of QCD M ∼ 1 GeV [18]. Therefore,

the approximation by zero quark masses mq = 0, i. e., chiral limit, is expected to be

reasonable. Let us consider the QCD Lagrangian

LQCD = Lquarks + Lgluons =
∑
f

ψf (iγ
µDµ −M)ψf +

1

4
Gµν,aG

µν
a , (1.1)

where the summation is carried out over quark flavors f , Lorentz indices µ, ν =

0, 1, 2, 3 and color indices a; γµ are the Dirac matrices, Dµ = ∂µ − ig λa
2
Aµ,a is the

gauge-covariant derivative, which includes the interaction of quarks with a gluon field
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Aµ,a, Gµν,a is the gluon field tensor; M is the quark mass matrix. If we set mq = 0 in

the QCD Lagrangian (1.1) and use the well-known property of the matrix elements of

the Dirac gamma-matrixes γµ: ψγµψ = ψLγ
µψL + ψRγ

µψR, where ψL = 1
2
(1 − γ5)ψ

and ψR = 1
2
(1 + γ5)ψ are the left and the right quark fields, then the quark term of the

QCD Lagrangian (1.1) can be rewritten in the following form:

L0
QCD =

∑
f

(ψfRiγ
µDµψfR + ψfLiγ

µDµψfL). (1.2)

This expression shows that in the chiral limit, the left and right components of massless

quarks do not mix in the Lagrangian, but participate in it additively and equitably,

and that the Lagrangian is the sum of the contributions of the left and right quarks

LQCD = LL + LR. The isospin symmetry SU(2) is expanded to independent isospin

symmetries separately for left and right quarks SUL(2) × SUR(2). This symmetry is

called the chiral invariance of the strong interactions. Mathematically, this symmetry

is equivalent to vector – axial vector symmetry SUV (2)× SUA(2).

Thus, according to the obtained Lagrangian, the hadronic world should be divided

into the worlds of left and of right quarks. Or, according to the chiral symmetry

of the QCD Lagrangian (1.1), (1.2), in the world of hadrons, along with the well-

known isotopic multiplets (SUV (2)-symmetry), there should also exist mirror multiplets

(SUA(2)-symmetry), which contain the same states with the same masses and angular

momentum, but opposite spatial parity P . However, mirror multiplets in the hadron

spectrum are not observed in nature. Such a situation, when the symmetry exists at

the level of the Lagrangian, but is absent in the physical states resulting from this

Lagrangian, is called spontaneous symmetry breaking.

According to Goldstone’s theorem [19], each spontaneously broken continuous sym-

metry corresponds to appearance of massless bosons (called Nambu-Goldstone bosons)

with quantum numbers of the broken-symmetry generators. In the case of the broken

SUA(2) symmetry, these quantum numbers coincide with the quantum numbers of the

isotriplet of pions JP = 0−, T = 1. Strictly massless strongly interacting particles do

not exist in nature, at the same time pions have an unusually small mass, 135−140 MeV,

which is much smaller than the typical hadron mass ∼ 1 GeV. According to Nambu’s
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conjecture [20], the pions are pseudo-Goldstone bosons. This hypothesis played a de-

cisive role in describing the low-energy interactions of pions with pions and nucleons.

Before the discovery of QCD, this approach was called the theory of partial conservation

of the axial current [21].

1.2 Low energy effective field theory

Weinberg, in his fundamental works [6–8], formulated the principles of Chiral Per-

turbation Theory (χPT), which is a low-energy effective theory of QCD. Instead of

the original QCD Lagrangian, written in terms of quark and gluon fields, an effective

Lagrangian Leff is introduced in terms of the hadron fields – mesons and nucleons.

Thus, instead of the true degrees of freedom of quarks and gluons, at low energy, ef-

fective degrees of freedom – pions and nucleons – are introduced. The effective chiral

Lagrangian is the Lagrangian of the most general form, which satisfies all the symme-

tries of the initial Lagrangian, including the (broken) chiral symmetry of QCD. As a

result, the Lagrangian Leff includes spatial derivatives of pion fields. The presence of

these derivatives in the Lagrangian leads to the fact that the intensity of the interaction

of pions with hadrons is proportional to the momentum of the π meson Q, and this

interaction disappears in the limit of zero momenta Q −→ 0. Therefore, for small Q,

the perturbation theory expansion in powers of the pion momenta becomes possible.

The separation of scales in hadron physics is decisive in the construction of χPT. In

the hadron spectrum, there is a large gap between the masses of pseudoscalar mesons

(pions) and vector mesons ρ(770) and ω(782). Therefore, it is natural to assume that

the pion mass determines a soft scale, Q ∼ mπ, which goes to zero mπ = 0 in the chiral

limit. The pion mass or the momentum of the particular hadronic process should be

compared with the scale Λχ of the order of ∼ 1 GeV. This scale is usually given in the

form Λχ ∼ 4πfπ, where fπ = 93 MeV is the constant that characterizes the probability

of a weak pion decay π → µ+ ν.

The radical difference of χPT from the phenomenological models of NN interactions

is that χPT is closely related to QCD. This connection is due to the requirement of
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preserving all the symmetries of the original basic theory in an effective theory. The

perturbation theory expansion is performed with respect to positive powers ν of the

ratio (Q/Λχ)ν , where Q is the typical 3-momentum of a particular hadronic process,

and Λχ is the typical hadronic scale. The minimum number ν = Nmin is the leading

order (LO), ν = Nmin + 1 is the next-to-leading order (NLO), and so on.

The order of the expansion ν corresponding to a particular Feynman diagram is

related to the structure of this diagram as follows [22]:

ν = −2 + 2A− 2C + 2L+
∑
i

∆i ; (1.3)

here ∆i = di + 1
2
ni − 2 is the chiral dimension, di is the number of derivatives (pion

masses) and ni is the number of nucleon fields involved in vertex i; A is the number of

nucleons, C is the number of separate connected components and L is the number of

loops in the diagram. The leading order is the lowest order ν = 0. The NLO occurs at

ν = 2, since all contributions for ν = 1 disappear due to the conservation of parity and

time reversal invariance.

Modern chiral effective theory of hadrons is formulated as a successive expansion

of observables in terms of particle momenta and quark masses (or masses of Goldstone

bosons), not only in the tree approximation but also with allowance for loop corrections.

The physical basis of the theory is the fact that the spectrum of Goldstone bosons is

separated by a gap from the spectrum of other hadrons in the limit of vanishing (or

sufficiently small) quark masses. Chiral effective theory, which is applicable in the

region |p|/Λch << 1, is a self-consistent theory rather than a phenomenological model.

The theory ceases to work at sufficiently high momenta |p| ∼ Λch.

Chiral symmetry dictates the structure of the operator of each term in the effective

Lagrangian. Furthermore, the contributions of heavy mesons and nucleon resonances,

which are not explicitly taken into account in chiral effective theory, are integrated into

the parameters of the theory called low energy constants (LEC). The numerical values

of these constants are not fixed by the chiral symmetry. Theoretical calculation of these

coefficients would be equivalent to solving low-energy QCD problems. Recent lattice

QCD calculations have made it possible to give a theoretical estimate of the LECs for
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Figure 1.1: Hierarchy of nuclear forces in χPT. Solid lines represent nucleons, dashed lines represent

pions. Small dots, large dots, squares and diamonds denote vertices of index ∆ = 0, 1, 2, 4,

respectively [22].
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single- and two-nucleon diagrams [23], while such calculations for diagrams involving

more than two nucleons are beyond modern computing power. Since these LECs cannot

be calculated in theory, they must be extracted from experimental data.

When performing calculations in χPT, the sum over the expansion powers ν is lim-

ited by a specific number ν = n. By increasing n, it is possible to systematically reduce

the calculation error. Thus, chiral effective theory makes it possible to perform calcu-

lations with accuracy control. This is a fundamental difference from phenomenological

models of nucleon interactions. Another difference is that the two-nucleon and three-

nucleon forces in χPT are mutually consistent since they are built on a unified basis.

In the past two decades, significant progress has been made in the application of χPT

to nuclear systems [24], [22].

1.3 Three-body forces

The study of three-body forces began more than half a century ago with the con-

struction of the Fujita-Miyazawa model of forces in [25]. This model describes the

process of two-pion exchange with the excitation of the ∆-isobar in the intermediate

state (see Fig. 1.2).

The manifestation of three-body forces in elastic pd-scattering was found in [26],

where it was shown that the Fadeev calculations of the differential cross section at large

scattering angles (∼ 100◦−120◦) based only on two-body forces differ significantly from

the experimental data; however, the inclusion of three-body forces makes it possible to

reach agreement with the experiment.

According to [27], within the framework of the Hamiltonian approach for the three-

nucleon system, the following theorem is true under very broad assumptions about the

two-body Hamiltonians Hij. If a three-body Hamiltonian H(Vij) =
∑A=3

i=1 ti+
∑A=3

i<j Vij

contains only two-particle interaction potentials Vij and no three-body forces, then

the three-body potentials Vijk can appear in another (unitarily equivalent) three-body

Hamiltonian H ′ = H(Vij) +
∑A=3

i<j<k Vijk that describes the same three-body system

with different two-body interaction potentials Vij, which are related to Vij via a unitary
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Figure 1.2: The Fujita-Miyazawa three-nucleon force.

transformation. The reason for this is that the unitary transformation connecting two

two-body interaction potentials that are equivalent on-shell but different in the off-shell

region generates three-body forces. Both three-body Hamiltonians, H and H ′, have the

same discrete spectra and lead to identical scattering matrices.

The theorem [27] implies that three-body forces cannot be determined independently

of two-body interactions. Thus, any models for three-nucleon forces must be consistent

with the two-nucleon NN− interaction potential, if both two- and three-body forces

are used together. A similar requirement is also valid for pair electromagnetic meson

exchange currents (MEC), which are analogous to three-body forces. Indeed, the MECs

for a system of nucleons depend on the properties of the two-nucleon strong-interaction

potential. This dependence occurs due to the conservation of the electromagnetic cur-

rent Jµ(q), which can be written in momentum space as q · J = [H, J0], where q is

the transferred four-momentum, J0 is the time component of the current, and H is the

total Hamiltonian of the system. The relation shows that the electromagnetic current

Jµ(q), which contains the MECs, is closely related to the NN interaction included in

the Hamiltonian H. Within the framework of χPT for nuclear forces and currents, this

requirement for the conservation of the electromagnetic current is satisfied in a natural

way, but it presents a serious problem for phenomenological models.
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1.4 Meson exchange currents and three-body forces in χPT

1.4.1 Goldberger-Treiman relation

There is a remarkable relation between the axial coupling constant gA = 1.276 [28],

which determines the neutron decay n→ p+e−+νe, the pion decay constant fπ = 92.4

MeV, which gives the rate of the weak channel π → µ + νµ, and the strong πNN

coupling constant gπNN (g
2
πNN

4π
= 13.8)

gA =
gπNNfπ
MN

, (1.4)

where MN is the mass of the nucleon. The relation (1.4) follows from the approximate

conservation of the single-particle axial current Aa and is called the Goldberger-Treiman

relation. The Goldberger-Treiman relation relates the strong and weak coupling con-

stants and is actually a consequence of the spontaneous breaking of chiral symmetry.

The relation (1.4) holds with an accuracy of ∼ 5%. This relation is exactly satisfied

only in the chiral limit, i. e., when the masses of light quarks go to zero mu = md = 0.

Figure 1.3: The few-nucleon reactions that involve the same LEC [29]
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1.4.2 The contact term (NN)2π

There is no Goldberger-Treiman-type relation for two-nucleon currents. However,

there exists an analogous relationship between different processes - strong and weak -

in a system of two nucleons and mesons [30]. Let us consider the term of chiral effective

theory that associates the interaction of pions πa, photons V µ and axial fields Aµ with

an s-state nucleon pair [30]:

LintNN = −2dN+S · uNN+N . (1.5)

Here, N is the nucleon field (projected onto states with positive energy), Sµ is the

Pauli-Lubanski spin (axial) vector, and uµ is the axial four-vector that contains the

pion field πa and the external vector Vµ and axial Aµ fields:

uµ = −τ
a∂µπ

a

fπ
− ε3abVµπ

bτ b

fπ
+ Aµ + . . . , (1.6)

where τa is the Pauli isospin matrix, ε3ab is a completely antisymmetric tensor, and a , b

are isospin indices. In the two-nucleon sector that is under consideration, the constant

d plays a role analogous to that of the constant gA in single-nucleon systems. The pion

field πa is included in the Lagrangian (1.5) under the derivative sign, ∂µπa, which means

that the pion is produced (or absorbed) in a p-wave. At the same time, nucleon fields

N are included without derivatives and, consequently, correspond to the S-wave initial

and final NN pairs.

Substituting the expression (1.6) into the Lagrangian (1.5) leads to a two-particle

analogue of the Goldberger-Treiman relation [30]. The resulting Lagrangian describes

the local interaction of two S-wave nucleons and an additional field (or a current)

associated with the transition between the spin-triplet and spin-singlet states of the

NN pair 3S1 ↔ 1S1. The LEC d in the Lagrangian (1.5) determines the strength of

the contact term (NN)2π. This constant appears in describing the reaction of a single

pion production NN → NNπ and is also important in a number of other few-nucleon

processes. For example, it was shown in [31] that the same contact term (NN)2π is

related to a short-distance three-body force arising in three-nucleon systems. At the

same time, this constant d plays a key role in other few-nucleon processes, such as the
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reaction pp→ de+νe, which is the primary process in stellar thermonuclear reactions, as

well as in the deuteron breakup reactions, which were experimentally measured in order

to determine the total neutrino flux from the sun. In addition, as follows from (1.5),

(1.6), the LEC d is included in the matrix element of pion absorption on the deuteron

with creation of a photon π−d → nnγ, as well as in weak reactions such as µ-meson

capture by the deuteron µ−d→ nnνµ (Fig. 1.3), tritium β-decay, etc. Once the LEC d

has been determined from one process, it can be used to calculate observables for other

processes.

Figure 1.4: Three-nucleon forces (a, b, c) and contact MEC (d) appearing in χPT at N2LO [17].

In χPT, along with the two-nucleon forces, three-nucleon forces appear in the second

order N2LO and four-nucleon forces appear in the third order N3LO (see Figure 1.1).

It should be noted that the two-body MECs discussed here also appear in the N2LO

order. Chiral theory contains the following three types of three-particle forces in the

N2LO order (Fig.1.4): two-pion exchange (a), one-pion exchange with a contact term

(NN)2π (b), and three-nucleon contact interaction (c). The description of three-nucleon

interactions and exchange currents up to N3LO is mainly determined by parameters

extracted from two-nucleon interactions. This is also true for the diagram in Fig.

1.4a. The exceptions are the interactions shown in Fig. 1.4b and Fig.1.4c, which are

characterized by two additional LECs, cD and cE, respectively [32]. The LEC cD is

included in the contact term (NN)2π, being linearly related to the parameter d [17]

defined in (1.5). The same constant cD is included in the contact term of the two-particle

exchange current (Fig. 1.4d). Three-nucleon forces corresponding to the constant cD
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arise when the virtual pion is produced due to the interaction (1.5) and is then absorbed

on the third nucleon. The resulting diagram is shown in Figure 1.4b. The three-nucleon

interaction potential corresponding to this diagram has the form [22]

V 3NF
1π = −D gA

8f 2
π

∑
i 6=j

~σj~qi

~qj
2 +M2

π

(τi · τj)(σi · ~qj) , (1.7)

where ~q ≡ ~p′−~p, ~p and ~p′ are the momenta of the initial and final nucleons, respectively,

σ and τ are the spin and isospin Pauli matrices. The parameter cD is related to the LEC

of one-pion exchange D, as D = cD
f2πΛχ

. The second LEC cE determines the strength of

the three-nucleon contact term shown in Fig. 1.4c.

1.5 Obtaining LECs from experimental data

The three-body force (1.7) contains a new parameter cD, which does not arise in

the two-nucleon sector. There are several ways to measure this parameter, as well as

parameter cE, from data for few-nucleon systems.

1.5.1 Three-nucleon systems

The parameters cD and cE were first determined from the 3H binding energy and the

nd doublet scattering length [32]. However, due to the correlation between these two

observables, known as the Phillips line, and a considerable experimental uncertainty in

the scattering length, this method could hardly be used for accurate extraction of these

constants. Subsequent studies, in addition to using the 3H binding energy to determine

the LECs, also used the 4He ground state energy [33] or the radius of 4He [34]. However,

both these methods are not self-consistent, since the third order N3LO was used for

two-nucleon forces, whereas the three-nucleon potential was calculated up to the second

order N2LO.

Since the LEC cD is also included in the two-nucleon current (Fig. 1.4d), one can

use the tritium half-life as another observable in addition to the A = 3 binding energy

for determining the LECs cD and cE. This was done in [35], where a hybrid method

was used: the standard 3H wave functions with phenomenological NN potentials were
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combined with a chiral expansion for the current operators. The next step towards

accurately determining the LEC cD was done in [36], which also used the binding

energy and the half-life of 3H. The N3LO two-nucleon forces and N2LO three-nucleon

forces were used in [36] to calculate the wave function of the system A = 3. It should be

noted that, strictly speaking, self-consistent calculations should use the same order of

expansion. Constraints for the cD and cE constants were also obtained in [37] through

a fit to the binding energy A = 3 and the 3H Gamow-Teller matrix element. Thus,

the cD and cE were extracted from the tritium β-decay and its binding energy in [35]

and [36]. The value of the extracted d-constant was used to predict the S-factor of

the reaction pp → de+νe in [35]. Using χPT, it was shown in [36] that both 3H and
3He binding energies and tritium β-decay can be described with the same contact

term d. Nevertheless, some questions remain about the accuracy of determining these

parameters from the data for three-nucleon systems [17]. Although there are reasons to

believe that using χPT for the 3N system is reliable, general considerations make it clear

that determining the constant d from the data for two-nucleon systems is necessary in

order to provide an independent cross-check of the formalism.

1.5.2 Two-nucleon systems

pp→ de+νe reaction

The contact term d is contained in the Gamow-Teller matrix element for the reaction

p+p→ d+e+ +νe, which is of fundamental importance for understanding the evolution

of stars and the physics of solar neutrinos. The modern theory of stellar evolution and

the solar model require the accuracy of 1% in determining the S(0)-factor proportional

to the cross section of the process [40]. The first calculations of this process were made

by Bethe and Crichfield [41] more than 70 years ago. Their estimations were improved

in [42]. Subsequently, fine effects (electromagnetic radioactive corrections and vacuum

polarization in the Coulomb interaction) were taken into account in [43]. The most

thorough calculations of the process p + p → d + e+ + νe within the framework of

the potential model approach were made in [44]. Recently, high-precision models of
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phenomenological potentials [44] and effective field theory [35] have been used to study

this process.

The astrophysical S-factor of this reaction at zero energy is determined from the

transition matrix element, the basic uncertainty of which arises mainly from the normal-

ized Gamow-Teller matrix element Λ, which binds the pp and the deuteron states [40].

In this paper, the authors show that the Gamow-Teller matrix elements for the pp fu-

sion and the tritium β-decay are related by the same constant. According to this paper,

the predictions using five high-precision phenomenological potentials lie in the narrow

interval 7.05 ≤ Λ
2 ≤ 7.06.

The three-particle forces and currents included in the tritium β-decay are the source

of uncertainty for S(0). A hybrid approach was used in [35]: the transition operators

for the tritium β-decay were determined from χPT but were sandwiched between phe-

nomenological wave functions generated by a potential model. The calculations [35]

were carried out up to N3LO and, after fitting the MECs with the LEC d̂R obtained

for the tritium β-decay, yielded Λ
2

= 7.03(1± 0.008) [35]. The astrophysical factor was

determined to be S(0) = 3.94× (1± 0.004) · 10−25 MeV·b [35]. In [45], the S-factor in

the framework of χPT was determined to be S(0) = (4.030±0.006) ·10−25 MeV·b. The
theoretical uncertainty arises from the fitting of the LECs and the cutoff dependence

found in [37].

π−d→ γnn reaction

As noted above, the transition matrix element of the reaction π−d → γnn con-

tains the contact d-term. In addition, this reaction contains information about another

fundamental parameter, the nn scattering length ann. The ann values extracted from

experimental data on this reaction in [46] were obtained with a large error: ann = ±0.4

fm. Furthermore, it was shown in [47], [39] that 0.3 fm out of the total uncertainty

of ±0.4 fm arises from the short-range part of the NN wave function. Taking into

account the d-term from independent data on the reaction pp→ de+νe in [30] made it

possible to significantly reduce the error in determining ann. The correlation between

the pp→ de+νe and π−d→ γnn reactions was studied in [30]. The value of the d-term
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was fixed in [30] using the Gamow-Teller matrix element obtained with the potential

approach for the pp → de+νe reaction in [44]. This constant was then used in [30] in

calculating observables for the π−d → γnn reaction. Thus, it was found in [30] that,

when using a fixed value for the d-term, the theoretical uncertainty for the nn-scattering

length extracted from π−d→ γnn is reduced by a factor greater than 3, to ≤ 0.05 fm.

µ−d→ nnνµ reaction

The reaction of muon capture on the deuteron µ−d→ nnνµ, as well as the reaction

pp → de+νe, makes it possible to reduce the uncertainty in determining the LEC d.

The process µ−d → nnνµ does not contain three-body effects and is therefore simpler

for theoretical interpretation than A = 3 reactions. The doublet capture rate of muon

on deuteron Λ1/2 is known with a low accuracy ∼ 6 − 10%. The Λ1/2 parameter was

calculated theoretically in [48] within χPT using the constant cD extracted in [36] from

the tritium β-decay and its binding energy. The values obtained for Λ1/2 show a large

spread depending on the values of cD that were used. It is important to emphasize that

the MuSun collaboration [49] aimed to measure Λ1/2 with an accuracy of 1.5%. Thus,

if this effort is successful, the MuSun data will allow us to significantly constrain the

uncertainties in determining cD. Currently, the experiment is completed and the results

are being analyzed [50].

1.6 Using the pp→ {pp}sπ0 and pn→ {pp}sπ− reactions for

extracting the contact d-term

The reactions of single-pion production in nucleon-nucleon collisions provide another

possibility to extract the LEC d (or cD). In this case, as follows from the form of the

Lagrangian (1.5), (1.6), it is necessary to consider processes with the production of

p-wave pions NN → NNπ, which connect S-wave pairs of initial and final nucleons.
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1.6.1 Analysis of the allowed transitions

There are two reaction channels that satisfy this condition, differing by the spin of

the NN pair, S = 0 and S = 1.

A. The final NN pair is forming in the spin-triplet S-state 3S1, and the initial

NN pair is in the spin-singlet S-state 1S0. Such a transition 1S0 → 3S1p, where p

indicates the pion orbital momentum l = 1, takes place in the pp → pnπ+ reaction.

Other transitions with the formation of a final 3S1 pair do not contain the d-term.

Indeed, the final 3S1p state of the NNπ system can be formed in the pp → dπ+

(or pp → pnπ+) reaction from the initial 1D2 state (or higher partial waves), which

obviously excludes the d-term from this transition. Finally, in other channels of

reactions with deuteron formation, pp → dπ+ and pn → dπ0, the final 3S1 state of

NN is accompanied by the s-wave pion production, while the initial nucleon pair is

in the P-state [29], which is also incompatible with the condition of including the d-term.

B. Another allowed transition with the d-term contains a spin-singlet (S = 0) S-

wave nucleon pair in the final 1S0 state with a p-wave pion. Such a transition takes

place in the isosinglet (I = 0) channel of the pn→ {pp}sπ− reaction. Here and below,

{pp}s denotes the 1S0 state of the pp-pair, which is implemented in the experiment

by limiting the pp-pair excitation energy to Epp < 3 MeV. It should be noted that, in

the isosinglet channel of this reaction, a transition from the initial triplet D-wave to

the final 1S0p state is also possible: 3D1 → 1S0p. This transition does not contain a

contact d-term, but there is a strong coupling of the channels 3S1 − 3D1 because of

the tensor interaction between the initial nucleons. The isotriplet channel (I = 1) of

the NN → {pp}sπ reaction allows only transitions to states with even orbital angular

momenta of the final pion, so it does not contain a contact d-term either.

It is necessary to choose the optimal alternative to determine the d-term from the

single-pion production NN → NNπ. When choosing between the alternatives A and B,

it should be noted that it is hardly possible to extract the LEC d with a high accuracy

using channels with isovector initial states (for example, pp → pnπ+ and pp → dπ+),

although they can be helpful in placing restrictions on d. Thus, for reactions with a
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pp-pair in the initial state and p-wave mesons in the final state, two partial waves exist:
1S0 → 3S1p and 1D2 → 3S1p. The contact term contributes only to the 1S0 → 3S1p

transition and does not contribute to 1D2 → 3S1p; at the same time, the amplitude of

the 1D2 → 3S1p transition is much greater numerically due to the strong coupling of the

initial NN channel with the ∆-isobar excitation channel 5S2 N∆(1232). In addition,

the final nucleons in the pp → pnπ+ reaction can contribute not only to the S-waves

but also to higher partial waves, which makes it difficult to determine the LEC.

On the contrary, the pn → {pp}sπ− reaction with the formation of a spin-singlet

final diproton is more preferable for reliably extracting the d-term [51]. In this reaction,

the LEC d is included only in the isoscalar amplitude 3S1 → 1S0p, which, however, is

strongly related to the 3D1 → 1S0p transition due to the tensor interaction in the S = 1

state of the initial nucleons. To separate the 3D1 → 1S0p transition from the 3S1 → 1S0p

transition, it is necessary to carry out a partial-wave analysis of the spin amplitudes

describing the reaction pn→ {pp}sπ−. In order to separate the isovector channel (I =

1) from the isoscalar channel (I = 0) in the amplitude of the pn→ {pp}sπ− reaction, it

is necessary to measure the same observables for the two reactions pp → {pp}sπ0 and

pn→ {pp}sπ− in the same kinematics. Both these problems – extracting the isoscalar

channel of the pn→ {pp}sπ− reaction and carrying out the partial-wave analysis of its

spin amplitudes – are the main tasks of the thesis.

The possibility to determine the LEC d from the pN → NNπ reaction was first

indicated in [31]. However, it was shown that, in this case, the initial proton momentum

in the center-of-mass system is p ≈
√
mπMN ∼ 360 MeV, therefore, the perturbation-

theory expansion parameter for the NN → NNπ reaction should be of the order of

χ ∼ p/Λχ ∼
√
mπ/MN ∼ 0.4, which is noticeably larger than the typical order of

this parameter in χPT, χ ∼ mπ/Λχ ∼ 0.14. This means that, when describing the

NN → NNπ reactions within chiral theory, one should expect a slower convergence of

the perturbation theory series. The restrictions on the LEC d were obtained in [31] by

studying the 1S0 → 3S1p transition in the pp → pnπ+ reaction. Another attempt to

extract the LEC d was made in [52], which led to a negative result. Later, the results

and conclusions of [52] were criticized in [53]. It was shown in [53] within χPT that
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a combined analysis of the p-wave amplitudes of pion production contributing to the

reactions pp→ dπ+, pp→ pnπ+ and pn→ ppπ− provides a good general description of

the differential cross sections and analyzing powers Ay for different channels of NN →
NNπ with the same value of the LEC d, which turns out to be of the order of d ∼
3/(f 2

πMN) for the NN interaction described in the coupled channel model [54]. In this

case, from the three alternatives d = 3, 0,−3 (in the units of f 2
πMN), the value d > 0

was found to be the most preferable.

Finally, let us note that the interest in processes involving the formation of a 1S0-

diproton {pp}s in the final state of reactions in few-nucleon systems with large mo-

mentum transfer is related to [55]. In this work, in order to to solve the well-known

T20 problem found in elastic pd backward scattering in the energy range 0.5 − 1 GeV,

it was proposed to investigate the process pd → {pp}sn in the elastic pd backward

scattering kinematics in the ∆(1232)-isobar region, a theoretical model for this process

was developed, and qualitative differences of this process from the analogous reaction

with the deuteron in the final state were shown. The advantages of a channel with

a final 1S0 diproton are its isospin I = 1 and spin-parity Jπ = 0+. These quantum

numbers differ from those of deuterons, so reactions with a diproton in the final state

are described by different transition amplitudes as compared to analogous (in terms

of kinematics) reactions with a final deuteron, which provides a new nontrivial test of

the pd scattering dynamics [55]. In addition, since the spin of the diproton is zero,

the spin structure of the reaction amplitude of pN → {pp}sπ is much simpler than

for the deuteron channel. In particular, for some reactions with a final diproton and a

pion, only a few spin observables are required to reconstruct all the independent spin

amplitudes of the process. The deuteron breakup reaction with the formation of a

diproton pd→ {pp}sn at large transferred momenta was studied in the ANKE@COSY

experiment [56, 57]. The dominance of the 1S0 state in the internal motion of the pp

system at Epp < 3 MeV was demonstrated by measuring the internal angular and en-

ergy dependencies for the proton pair in the final state. The developed experimental

technique for detecting the {pp} pair was later applied at ANKE@COSY to investigate

a number of other reactions [58], [59], [60], [61].
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1.6.2 Available experimental data

When limited to the s-, p-, and d-waves of π-mesons produced in the reaction pn→
{pp}sπ−, this reaction is described by five partial amplitudes. Therefore, to carry out

the partial-wave analysis, it is necessary to measure nine independent real parameters

(observables), 1 which will allow us to extract the contact d-term (NN)2π in a model-

independent manner. A part of the information needed was obtained by measuring

the unpilarized differential cross section in the WASA-CELSIUS experiment for a beam

energy of 350 MeV, which made it possible to obtain two expansion coefficients of the

differential cross section in powers of cos θ in 4.9 (see Chapter 4).

Figure 1.5: Analyzing power and differential cross section of the np → {pp}sπ− reaction for the

energy Tn = 353 MeV and with the proton pair excitation energy cut Epp < 1.5 MeV.

Experimental data are taken from [9] and [10]. The solid line shows the fit of a second-order

polynomial function with respect to the pion momentum.

The Ay and dσ/dΩ measurement in the quasi-free process np→ {pp}sπ− potentially

allows to find a larger number of coefficients in the expansion on cos θ. Based on the

data of the TRIUMF experiment [9, 10] of measuring Ay and dσ/dΩ in the process

np → {pp}sπ− at 353-440 MeV, the authors of this experiment carried out a partial-

wave analysis with consideration for five amplitudes.However, the angular range, as can
1The phase common for all amplitudes is immeasurable and therefore can be chosen arbitrarily.
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be seen from the data given for the TRIUMF experiment in Fig.1.5, is much narrower

than the full interval [0, π]. Therefore, the procedure for selection of the expansion

coefficients by Legendre polynomials in this case is ambiguous in principle. And the

authors of [9] actually found several solutions of the partial-wave analysis for all energies,

finding it difficult to choose a physically meaningful solution. Particularly, the authors

of [9] obtained a very small contribution of the π-meson d-wave at this energy of 353

MeV, which is in contradiction with the measurements of CELSIUS [63].

Figure 1.6: Analyzing power (AN0) for a quasi-free reaction with a cut on the proton pair excitation

energy Epp < 6 MeV. The figure is taken from [11].

The data for the analyzing power from PSI [11] (see Fig. 1.6) were obtained with

a cut on the excitation energy of Epp < 6 MeV and therefore can not be used in the
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partial-wave the analysis of the amplitudes of the pn→ {pp}sπ− reaction in which the

proton pair 1S0 selection is required. Nevertheless, even with this weaker restriction

on energy, the results have significant errors in the region of backward pion emission

for Tn = 345 MeV. The unpolarized cross section of the dp→ pspppπ
− reaction for the

considered energy region was also obtained by the collaboration COSY − TOF [64].

In spite of the fact that the pp pair was singled out, insufficient statistics did not allow

for a strong restriction on the excitation energy.

Thus, before the experiments discussed in this paper, only data on dσ/dΩ and Ay in

an incomplete angular range were obtained at the beam energy of 353 MeV. The aim of

the ANKE experiment [65] was to expand the angular range of Ay(θ) and to add the spin

correlations Ax,x and Ax,z to the set of the observables, which would allow conducting a

complete polarization experiment, i. e. finding values of both spin amplitudes (see Sec.

4.1) and their relative phase, and on this basis to carry out a partial-wave analysis and,

as a result, determining the 3S1 → 1S0p transition amplitude containing the contact

d-term.
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Chapter 2

Experimental equipment

2.1 COSY accelerator and storage ring

The experiment was carried out at the ANKE setup [66] of the COSY ("COoler

SYnchrotron") accelerator complex [67] located at the Forschungszentrum Jülich (Ger-

many). The layout of COSY is shown in Fig. 2.1.

The COSY accelerator provides high precision polarised and unpolarised proton and

deuteron beams. The total circumference of the storage ring is 184 m. The machine

covers the momentum range of accelerated particles from 295 MeV/c up to 3.65 GeV/c,

which corresponds to an energy range from 45 MeV to 2.83 GeV for protons.

COSY beams are being delivered to internal (ANKE, WASA, COSY–11, EDDA)

and external experiments (TOF, BIG KARL), but the latter are not of importance for

the current discussion.

In the case of polarized beams, H− and D− ions from the polarized ion source are

pre-accelerated in the cyclotron JULIC, pass through the charge–exchanging carbon

foil and then injected into the storage ring. After the injection process, the particles

are accelerated up to desired energy by the electric field, and are focused and held in

the storage ring by the magnetic field. The accelerated beam can both circulate in the

ring and be output to an external target. The accelerator is equipped with electron and

stochastic cooling systems which provide a monochromatic beam at the level of δp/p ∼
10−4, whereas for an uncooled beam this parameter is 10−3. In the measurements
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Figure 2.1: The COSY synchrotron.
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considered, only electron beam cooling after injection and acceleration was used, which

made it possible to accumulate particles in the ring from a set of consecutive injections

for joint acceleration (the stacking process). This approach increased the intensity of

the accelerated polarized beam up to 10 times.

The particle number accumulated in the ring for unpolarized beam is on the order of

∼ 1010, and the circulation frequency is ∼ 106 Hz. The intensity in the case of polarized

beam after a single injection was 5-10 times lower than for unpolarized beam which was

partially compensated by the use of stacking.

2.1.1 Polarized ion source

The polarized ion source at COSY [68, 69] produces negatively charged hydrogen

and deuterium ions, which then undergo a charge–exchange procedure and are injected

into the storage ring. The source setup is shown in Fig. 2.2. The source consists of

several components: an atomic beam source, a radio-frequency dissociator, a system of

sextuples, a charge-exchange region, a deflector magnet, and a Wien filter.

Figure 2.2: Setup of the polarized ion source.

First, neutral and unpolarized deuterium or hydrogen gas pass through a radio-

frequency dissociator in which, under the action of the high frequency electromagnetic

field, free electrons accelerate and excite vibrational levels of the molecules. As a result

of excitation, the molecules break up into atoms, and the resulting atomic beam enters
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a sextupole magnetic system. The first sextupole defocuses atoms with an electron spin

state mj = −1/2, while atoms with the spins mj = +1/2 remain in the beam. The

second sextupule plays the role of an achromatic lens, which focuses the beam into the

charge-exchange ionization region. Here, the atomic beam interacts with neutral cesium

atoms. Since electronegativity of hydrogen is much higher than of cesium, hydrogen

receives an additional electron:
−→
H0 + Cs0 →

−→
H− + Cs+. Finally, the resulting ion

beams H− and D− are turned with a toroidal deflector by 90o and fall on the cyclotron

injection line. Here, with the help of the Wien filter, electrons and other backgrounds are

removed from the ion beam, then pre-accelerated in the JULIC cyclotron and injected

into the storage COSY ring through the charge-exchange carbon foil.

2.2 ANKE spectrometer

Figure 2.3: Scheme of the magnetic spectrometer ANKE.

A magnetic spectrometer of charged particles ANKE (Apparatus for Studies of

Nucleon and Kaon Ejectiles) was located on one of the linear sections of the COSY

accelerator ring [66]. The ANKE scheme is shown in Fig. 2.3.

25



The main components of the spectrometer are a magnetic system, an internal target,

and several detector systems (side detectors of positive and negative particles, front and

vertex detectors). The ANKE magnetic system consists of three dipole magnets. Two

magnets, D1 and D3, change the trajectory of the accelerator beam, deflecting it by

an angle α (varying from 00 to 10.60) from the inner orbit to the target in the target

chamber and returning the beam to the nominal orbit after the interaction with the

target. The main spectrometer dipole magnet D2 deflects the beam by an angle 2α.

2.2.1 Targets types

In the discussed experiments, two types of targets were used. A cluster target pro-

duces only unpolarized hydrogen or deuterium jets of high density, and a polarized

target with a storage cell provides both polarized and unpolarized hydrogen or deu-

terium beams.

Unpolarized cluster target

The cluster target at ANKE consists of three main parts: a cluster source, an

analyzing chamber, and a beam ejector [70]. Clusters of 103 − 104 atoms are produced

in the Laval nozzle, which is cooled to 20 K. The resulting cluster beam, surrounded by

a gas beam, reaches a conical hole of 700 µm in diameter, which works as a skimmer.

Thus, only a well-formed cluster passes the skimmer and enters the analyzing chamber,

where the density of the cluster beam is measured. The density reached values up to

1014 atoms/cm2.

Polarized target with storage cell

To implement the experiment with double polarization, one should use an inter-

nal polarized target with a storage cell (PIT - Polarised Internal Target) [71]. The

components of the target are:

– an atomic beam source (ABS),
– a storage cell,
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– a Lamb-shift polarimeter (LSP), which allows to quickly measure the polarization

of the target gas.

The use of a storage cell allows to increase the target density by two orders of magnitude.

The atomic beam source produces a beam of polarized hydrogen or deuterium atoms

with an intensity of 6 · 1016 atoms/s for hydrogen atoms and 4 · 1016 atoms/s for deu-

terium. ABS is located between the dipole magnets D1 and D2. The setup consists

of a dissociator in which the hydrogen or deuterium molecules dissociate into H and D

atoms, and a set of sextuple magnets and radio-frequency nodes where atomic beam

was polarized. Atomic hydrogen or deuterium leaves the dissociator and then the beam

is formed by a filter made of steel and a collimator whose geometry is chosen so that

the beam deviates, falling into the acceptance of the sextuples magnetic system. The

density of the polarized gas jet at the ABS exit was about ∼ 1011 atoms/cm2.

Figure 2.4: Storage cell.

The storage cell is a T-tube opened on both sides (Figure 2.4), into which gas is

injected from the ABS source. The tube size is 20 × 15 × 370 mm3, the walls of the

tube are made of aluminum foil of 20 µm thick, covered with a 5 µm Teflon layer, which

prevents surface recombination of polarized atoms. The polarization of the gas in the

cell is preserved due to the scattered field of the magnet D2. The main vertical field

component exceeds the critical value necessary to preserve the polarization over the

entire length of the cell and entrance tube. The resulting target density was 1.3 · 1013

atoms/cm2. The cell design allows not to destroy the beam and carry on measurements

with a circulating (up to several hours during the use of cooling) accelerating beam.
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2.2.2 Detection systems

The ANKE spectrometer is equipped with the following detection systems:

– a Front Detector (FD),
– a detector of positive particles (PD - Positive Detector),
– a detector of negative particles (ND - Negative Detector),
– a vertex detector - Silicon Tracking Telescope (STT).

Multiwire proportional cameras (MWPC) used for track reconstruction and scintil-

lation counters for obtaining the information on time of flight and energy of particles

are installed in the side detectors and FD. In the PD and ND, the time of flight is

measured between the start and stop counters. In order for this time to be maximum

the start detectors are located directly outside the D2 window. Information on energy

loss is also used to identify particles. The momenta acceptance limits for the PD and

ND were (0.15− 1.1) GeV/c, for the FD — (0.4− 3.7) GeV/c.

Front detector (FD)

The front detector, shown in Fig. 2.5, includes multiwire proportional cameras

(indicated as MWPC on the diagram), a drift chamber (MWDC), and two layers of

scintillation counters.

Parameters of the detector are given in articles [72,73], except for the camera system,

which was replaced before the measurements considered in the thesis took place. With

that the first proportional chamber was replaced with MWDC, which contains three

planes of vertical wires and four planes of wires inclined by 30o, with a pitch between

the wires of 1 cm and the same distance between the planes. The chamber operates

with gas mixture of C2H6(20%) + Ar and allows a resolution of σ = 260 µm to be

achieved.

Two other cameras with a 1.05 mm wire pitch were replaced with proportional

cameras with twin planes with a pitch of 2.06 mm (MWPC in Figure 2.5). Each MWPC

contains a pair of wire planes with vertical wires (X), and a pair with horizontal wires

(Y). The two planes of the pair are shifted relative to each other by half of a wire pitch

with a distance between planes of 2 mm. This allows to achieve a spatial resolution
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close to the cameras with 1.05 mm pitch, without the use of a supporting film, which

simplifies the cameras design and operation. One of the cathodes from the pairs of X,

Y planes is striped with a strip incline of ±30o and a pitch of 5 mm.

Figure 2.5: Scheme of the forward detector.

The detector is located between the dipole magnets D2 and D3 close to the beam

channel. The space available is very limited. The distance between the magnets is

about 1.6 m. Since the cameras are located close to the beam, the system operates at

high loads. Moreover a good spatial resolution of the multiwire chambers (< 1 mm) is

necessary in order for momentum resolution to be no worse than 1%, which in turn is

necessary for selection of proton-proton pairs with low excitation energy.

The front scintillation hodoscope consists of two planes of separate counters. In

the first plane there are 8 counters and 9 are in the second, the sizes of the counters

vary from 4 to 8 cm in width and from 1.5 to 2 cm in thickness. The counters of one

plane are shifted by a half the width of one counter relative to the other plane. The

signal time and amplitude information is read using photomultipliers located at both

ends of each scintillator. The scintillation counters provide a trigger signal, information

on energy loss and allow to determine the time of flight difference for particle pairs

passing through different counters. Information analysis from the hodoscope allows to

determine energy loss with an accuracy of 10% and the time of flight difference for

two-particle events with an accuracy of 0.2 ns.
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The angular acceptance of the FD is about 120 horizontally and 3.50 vertically.

Positive detector (PD)

The positive detector is intended for detection of particles with momenta in the range

of 150−1100 MeV/c moving into the forward region. It consists of 23 starting counters,

two multiwire proportional chambers, and 15 tracking telescopes, supplemented from

the high momenta side with a hodoscope of 6 scintillation counters ("side wall"), as

shown in Fig. 2.3.

The scintillation start counters are located next to the exit window of the spectrom-

eter magnet D2. Each particle, detected by the PD, passes through one counter and

then enters the multiwire proportional chambers for track reconstruction and then goes

to one of the telescopes or the side wall. In each chamber there are three planes of

anode wires (vertical, inclined by +30◦ and −30◦). The cathode planes are located at

a distance of 5 mm from the anode ones. Information from the proportional chambers

about particle tracks makes it possible to determine particle momenta with an accuracy

of 2− 3%.

The telescopes are located in the focal plane of the spectrometer magnet D2, and

each of them covers a momenta range of about 30 MeV/c. Each telescope consists of a

scintillation stop counter working on coincidence with the start counters, an energy loss

∆E counter, a veto counter and two copper passive absorbers which stop the protons

from the target. Only stop counters were used at the data analysis of the discussed

experiments. The side wall closes the gap between the last telescope and the FD

hodoscope and is located outside the focal plane D2.

Negative detector (ND)

The negative detector was used to register the π− mesons. It is partially located

inside the gap of the yoke (active cavity) of the spectrometer magnet D2 and consists

of 20 scintillation start counters and 22 stop-counters divided into two groups, used for

time-of-flight and energy loss identifications. The start counters are located next to the
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exit window of the magnet D2. The first group of stop counters is located inside the

yokes gap of the D2, and the second group is located outside the gap of the magnet.

Inside the D2 dipole magnet, two multiwire proportional chambers are installed,

which are necessary for track reconstruction, with a momentum accuracy up to ∆p/p ≈
2−3%. The design of the ND multiwire proportional chambers is similar to that of the

PD chambers.

Silicon Tracking Telescope

The silicon tracking telescope is designed to detect low-energy protons and deuterons

emitted from the target and to reconstruct the tracks of the registered particles. The

telescope consists of three silicon detectors having strip structure on two sides to de-

termine the particle track coordinates. There are vertical and horizontal strips on each

side of each detector.

The energy loss measurement in each individual layer allows to identify the stopped

particle. A proton can be registered in the case when it passes at least one layer. Thus,

the minimum energy of the detected proton is determined by the thickness of the inner

layer. The maximum registered energy of a proton is determined by the total thickness

of all layers. Therefore, the main goal in the STT construction was to provide minimum

thickness of the inner layer and at the same time maximum thickness of the outer layer.

The thickness of the tracking telescope layers in order from the inner to the outer are 60

µm, 300 µm and 5100 µm. The proton identification by ∆E/E is possible for energies

from 2.5 to 40 MeV. The energy resolution of the STT is of 150-250 keV.

2.3 Data-taking

2.3.1 Trigger structure

During the measurement, the information was read from the detectors by signals of

a trigger module. There were used several trigger sets the signals of which were fed to

the trigger module inputs. While the data was being read (deadtime of the system), the

system was blocked to receive new trigger actions, however, the number of such actions
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(input triggers) was accumulated separately for each individual trigger, including the

time when it was blocked. In addition, in each recorded event, there was information

about all the trigger sets that triggered.

For some triggers a prescaling procedure was used, that is, only each n-th event

(with a fixed n) was selected for registration. Such suppression changed the influence

of the system deadtime on events with this trigger. In this case the individual count of

the input and output triggering made it possible to evaluate the deadtime factors, that

is, the efficiency of the data collection system, for each trigger.

The following trigger circuits were used in the discussed experiments:

— FdAnd: a single-particle FD trigger, requires the action of at least one counter in

each of the hodoscope walls;

— FdDouble: a trigger for two particles in the FD, requires in each of the hodoscope

wall either two counters triggering, or exceeding the threshold of double ionization

energy loss for the proton;

— PdDirect: a single-particle PD trigger of coincidence of any PD start counter with

any of the stop, including the sidewall;

— PdTripple: a trigger for two particles in the PD, which requires the action of a

combination of counters, either (1 start + 2 stop), or (1 stop + 2 start);

— Fd&Pd: FdAnd coincides with the PD sidewall counter;

— HighThreshold: a trigger for high ionization loss in the first FD wall hodoscope

and the PD sidewall, requiring a loss threshold exceeding in at least one counter;

— STT_Or: a trigger by signal from any of the first two STT layers.

FdDouble, PdTripple, and Fd&Pd were the main triggers for proton pairs registra-

tion in the FD and PD. The schemes of the FdAnd and FdDouble triggers are given

in [74].

2.3.2 Measurement with a proton beam

In the experiment conducted in 2009 a vertically polarized proton beam with kinetic

energy of 353 MeV circulated. The direction of polarizations varied each accelerator cy-
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cle (6 minutes). In the ~p d→ {pp}sπ− + pspec reaction fast protons from the pair {pp}s,
obtained by interaction of the beam with a deuterium cluster target, were registered

in the FD and PD. Pions produced at small angels in the center of mass system were

registered in the ND, slow spectator protons pspec in the STT.

In this measurement, all of the following triggers were used. FdAnd was prescaled

2 to 6 times (the factor varied depending on the load). It was used for calibration,

normalization and also for evaluation of the FdDouble and HighThreshold triggers ef-

ficiency. For a small part of the data being taken for STT calibration, FdAnd was

replaced by the STT_Or trigger. PdDirect was used at the beginning of the beam-time

to configure and test the PdTripple trigger efficiency.

2.3.3 Measurement with a deuteron beam

The experiment with double polarization was carried out in 2011 using a vertically

polarized deuteron beam (the polarization was switched every 10 minutes) and a po-

larized hydrogen target with a storage cell (the polarization direction changed every 5

seconds). The deuteron beam energy was 726 MeV.

At this measurement all the described triggers were used, except for the STT_Or.

The FdAnd trigger was prescaled 20 times, PdDirect – 16 times, and HighThreshold

– twice. All the proton pairs from the ~d ~p→ {pp}sπ− + pspec process were registered

in the PD with the PdTripple trigger. The spectator protons carried half of the beam

momentum this time, and thus fell into the FD. The FdDouble trigger was used to the

calibration process dp→ dπ0 + pspecregistration, in which both charged particles fell

into the FD.
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Chapter 3

Experimental data analysis

This chapter describes the procedures for the experimental data processing. They

include methods of calibration, events reconstruction and efficiency determination com-

mon to all measurements on ANKE, as well as the procedures that were used in the

study of the processes ~pn→ {pp}sπ−and ~n ~p→ {pp}sπ−.

3.1 General analysis and calibrations procedures

3.1.1 Particle trajectories and momenta reconstruction

The information from the multiwire proportional (MWPC) and drift (MWDC)

chambers is used for the particle track reconstruction in the FD, PD and ND. The

chambers are located in the scattered field of the D2 magnet region which leads only to

a slight deviation from a straight line for tracks. This allows us to use a simple straight

track model in the detector area. Multiple Coulomb scattering also has no significant

effect on the particle trajectory between the chambers and is taken into account by the

corresponding differences in the tracks identification procedure.

In general, the tracks multiplicity in each detector in the experiments with a cluster

and a polarized target is very small: one-track events rate to more than 99.5% except

for the case of the FD in the deuteron beam measurements when two particles are

recorded in about 5% cases of all events. However, in the processes ~pn→ {pp}sπ−and
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~n ~p→ {pp}sπ−, proton pairs with low excitation energy Epp most often fall into one

detector and thus the special attention was paid to the effective reconstruction of such

events.

The track reconstruction procedure in the FD is described in details in Ref. [73]. The

presence of vertical, horizontal and inclined wires (strips) allows to reconstruct multiple

track events in the chambers, that is necessary for the study of diproton reactions. The

size of the wire cluster in MWPC is very small, one wire acts in more than 90% of cases,

which allows to exclude the usage of the same cluster in several tracks. A significant

efficiency loss in the reconstruction of proton pairs is observed only for Epp < 0.3 MeV.

It is connected mainly with the MWDC pitch as well as with the requirement of two

particles to fall into different hodoscope counters in at least one of its walls, which is

necessary for identifying particles by the time-of-flight (TOF) difference.

The task of the tracks search for one-track processes in the PD and ND is simple

enough and is carried out by "standard" searching procedures that are used in all ANKE

experiments. However, the "standard" procedure did not provide required efficiency of

the two-track events reconstruction. Thus, a special search algorithm was created.

The typical cluster size in the PD is 3-5 wires depending on a proton track angle and

momentum and, as a wires pitch is 2.54 mm, it leads to a cluster width of ∼ 1 cm.

Furthermore, proton momenta recorded in the PD is much lower than in the FD and,

with an equal value of Epp, the distance between tracks of a proton pair is larger in the

case of registration in the PD. This allows to reconstruct the pairs with low excitation

energy Epp efficiently even with a large size of wire clusters. As in the case of FD, the

main restriction on the minimum value of the Epp here is also related to the requirement

that two protons hit different counters of the start or stop counters groups.

The ND was used only for π− detection in the measurement with a proton beam

which did not require the development of a special search procedure aimed at multiple

events.

Having obtained tracks coordinates one can estimate kinematic parameters of the

particles. The magnetic field of the spectrometer magnet D2 is known on a three-
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dimensional lattice, which makes it possible to determine the three-component momenta

at the reaction vertex, fixing the latter.

Several methods of the momenta reconstruction were used: the box-field approxi-

mation, the polynomial approximation, the Runge-Kutta method.

The box–field approximation has been used for the fast preselection of raw data in

the PD and ND. For this procedure the magnetic field of the magnet D2 is considered

as a homogenous box-field with an effective field width and length. Inside the magnetic

field the charged particle moves circular, outside the field a straight line is assumed.

Then components of the particle momentum are calculated, taking into account the

vertical and horizontal coordinates and angles derived from the chamber information.

In the polynomial method [73], each of the momentum component was approximated

by a polynomial of the third degree of the four track parameters (track coordinates and

angles in the horizontal and vertical planes). The polynomial coefficients are found from

typical samples of events produced by GEANT-simulation. This method was used for

the momenta reconstruction in the FD.

The fourth-order Runge-Kutta method was used for the final analysis of data from

all detectors. Fit parameters, three-component momentum ~P and vertical coordinate

of the vertex Ytarget are varied to obtain coordinates of the measured chambers after

tracking, while the target X and Y coordinates are fixed. The widely used method of

inverse tracking from the track on the cameras to the target was not applied due to

trajectory curvature in the camera area, which was of little importance when searching

for a track, but valuable for the momentum reconstruction. The initial parameters

for the Runge–Kutta are taken from the box–field approximation and the polynomial

method. The Runge-Kutta method tracking was also used when a vertex Z-coordinate

was reconstructed in the measurement with a storage cell (see Sec. 3.5.3).

3.1.2 Momenta scale calibration

The technique for the geometrical parameters calibration on ANKE is described

in [73]. The accuracy of the particle momentum and emission angle reconstruction is

directly related to the accuracy of the ANKE geometry determination. The location
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and size of the main parts of the spectrometer are well defined and fixed, but some

parameters, that necessary for track reconstruction, must be known with accuracy

inaccessible in a direct measurement. Thus, the camera position is measured with

accuracy of at least 0.5 mm which, however, exceeds the coordinate resolution (RMS)

of the FD cameras which makes the main contribution to the momenta resolution

δp/p ≈ 1%. This makes the X-coordinate of the cameras the most sensitive positional

parameter. One more of these parameters is the X-coordinate of the intersection point

of the beam with the target. Another important parameter is the beam deflection angle

from the nominal COSY orbit which may differ from the expected one due to the shift

of the synchrotron orbit. The uncertainties of these parameters influence the value

of the reconstructed particle momentum, and hence the resulting missing mass in the

reaction.

To ensure the correct momentum reconstruction, it is necessary to calibrate the

geometry with kinematics of exclusively registered processes. In the case of a proton

beam and a deuterium target, such processes, with all particles recorded or only one

particle not recorded, are pd→ pd, pd→ dnπ+, pd→ ppn, pd→ 3Hπ+. In the inverse

dp-kinematics a process dp → dpπ0 is added to them, and in the elastic dp-scattering

both secondary particles in the FD can be detected.

During the calibration procedure the parameters are varied and tracks are recon-

structed anew at each iteration . At the same time, the missing mass deviations from

the nominal value for the reaction are minimized. The processes with all final par-

ticles recorded are included in the general χ2-functional through the deviations of all

4-momentum components. They play a special role, since they are most sensitive to

the particle transverse momentum shift.

The calibration procedure is especially important in the case of FD where the influ-

ence of track positions on reconstructed momenta is the greatest.

3.1.3 Scintillation counters delay adjustment

The difference in the particles TOF from the target to the counters serves as the main

criteria for identification two or more particles in the FD, PD and ND. To determine this
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difference it is necessary to know the relative delays between the scintillation counters.

Such delays are determined for the counters of each detector separately, after that the

total delay between the detectors is estimated.

FD delays

The hodoscope walls in the FD are close to each other (7 cm), so that the TOF for

the particles can be assumed to be approximately the same, and the TOF difference

between two walls for different particles can be neglected. Thus, the difference of signals

from the counters located one after another, triggered by the same particle, directly

yields a relative delay in this pair. The hodoscope walls are shifted by half a counter

and each front wall counter corresponds to two on the back wall, and vice versa. This

allows all counters to be linked through paired delays and, in the end, to determine

delay for each counter with respect to the first one.

PD and ND delays

The start and stop counters in the PD are spread over a large distance and, for

determining the relative delays, it is necessary to take into account the TOF between

the counters for which it is necessary to reconstruct the momentum and identify the

particle type. Pions and protons are in the majority of particles in the PD, and usually

forming clearly separable peaks in the raw TOF spectra for each combination of start-

stop counters, which is due to the limited momenta range of each stop counter with a

width of ∼ 30 MeV/c.

The delay between the i-th start and j-th stop counters is ∆ij = ∆Sa
i −∆So

j , where

the delays for each counter ∆Sa
i and ∆So

j are defined relative to the one of PD counters.

By minimizing the following form:

χ2 =
∑ (Ti − Tj + ∆Sa

i −∆So
j − τij)2

σ2
,

one can define the delays for all PD counters with respect to the selected one. Here

Tj and Tj denotes the time measured in the i-th start and j-th stop counters, and

τij is the TOF between start and stop counters calculated using the reconstructed
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momentum and with a certain type of particle assumed. Summation is carried out

for all combinations of start and stop counters falling within the acceptance region of

the PD detector. Since the χ2 form is linear over the parameters ∆, the minimization

process is equivalent to solving a system of linear equations with respect to the delays

of all the counters considered.

(a) Before delay corrections (b) After delay corrections

Figure 3.1: The difference between the calculated TOF between the start and stop counters and the

raw measured TOF without and with the delay corrections, as a function of the calculated

TOF.

Pions or protons did not fall into some start-stop combinations acceptance, in addi-

tion, data obtained with a storage cell contained a significant background of scattered

protons with momenta that did not correspond to their stop counters. In this case,

for the particles identification, the energy loss spectra in the stop counters were built,

depending on the difference in the TOFs for each counters combination, as shown in

Fig.3.2. On these spectra one can see a compact group of the fastest particles, these

are pions, and a continuous line of protons, which includes scattered protons, as well as

protons coming from the target. Relative positions of the peaks could be found using

model spectra from the GEANT simulation.

When solving the system of equations, the useful events were selected within 2σ

region of identified peaks of pions and protons found in the TOF spectra. Fig. 3.1

shows the difference between the measured and calculated TOF before and after the

delays correction was applied.
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(a) Experimental spectrum (b) Simulated spectrum

Figure 3.2: Energy losses in the stop counter versus the TOF between the #4 start counter and the

#3 stop counter. The groups of pions and protons born in the target are labeled, as well as

the group of background protons with large momenta.

3.2 Efficiency of events registration and reconstruction

3.2.1 Efficiency of multiwire chambers and scintillation counters

Counter efficiency

Scintillation counters were used for trigger generations, for the track search and

particles identification. The main inefficiency originated from the amplitude drop at the

upper (Qup) or lower (Qdown) photomultiplier (PMT) below the time signal generation

threshold. The possibility of this was checked by the distribution of the amplitudes Qup

and Qdown as a function of distance from tracks to PMTs (vertical track coordinates):

the amplitudes are minimal at the maximum distance from the PMT. Events close to

the sought secondary particles (protons from diproton pairs, or spectator protons in the

FD and PD, π− in the ND) were selected according to the particles types and momenta.

Signs of inefficiency were detected only in the thin FD counters, nearest to the beam,

which, however, were not used at this analysis.

In the case of FD, the gap between the counters of each of the hodoscope walls

could also serve as a source of inefficiency. Chances of this were studied earlier in the

report [75], where it was shown that the inefficiency of each hodoscope wall does not

exceed 1, 6%, and most of the failures occur in counter edges or gaps between them. In

this report, the second wall studied did not participate in the trigger formation and the
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track search, and its efficiency could be estimated. This estimate was used as a general

factor for the correction of the hodoscope inefficiency.

Camera efficiency

The coordinate information excessiveness in the FD allows to determine the effi-

ciency of the cameras, excluding certain cameras (planes) from the track search, and

scanning these planes with the tracks reconstructed in such a manner. In practice,

either all the first of the double (X, Y) MWPC planes were used, or all the second

planes, and the drift chamber did not participate in the construction of the test tracks.

Only events with one cluster on each of the track planes were used to build test tracks.

For each chamber plane, an efficiency map was constructed, and the correction factor

was calculated for each event using the efficiency value at the map cell intersected with

the track. The sensitive area of the plane was divided into 20 × 20 cells (2 to 3 cm

each), and the efficiency was calculated for each of the cells.

The efficiency maps for each plane were calculated for all runs and were checked

for stability over time. In the measurements described, all FD wire planes showed an

efficiency ε ≥ 99%, while the strip efficiency was lower (ε ≥ 90%).

In the case of PD and ND the chambers scanning was carried out using passages,

built by the start and stop counters tripped. The efficiency for proton events was higher

than for pion ones. The total track efficiency with the requirement of triggering of two

out of the three wire planes in each of the PD MWPC was 99% for protons and 95.4%

for pions.

The cameras efficiencies were also determined in the real time during the data col-

lection, which allowed choosing the optimum values of voltage and thresholds, as well

as monitoring the correctness of the camera timing gate settings.

3.2.2 Trigger efficiency

A set of used triggers is given in Sec. 2.3. The efficiency of the single-particle

triggers depends only on the counter efficiencies discussed above, and does not require

special verification.
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The efficiency of the two-particle FD trigger (FdDouble) was tested at events

recorded with the single-particle FD trigger. From these events, proton pairs of the

process pn→ {pp}sπ−with low relative energies were selected in the presence of Fd-

Double. The efficiency of FdDouble was defined to be not less than 98% for both

measurements, as with the proton, and with the deuteron beams.

The situation with the two-particle PD trigger (PdTripple) turned out to be more

complicated. The efficiency of this trigger was defined from the events recorded with the

single-particle PD trigger (PdDirect). Here events were searched with the combinations

(1 stop + 2 starts) or (1 start + 2 stops) of triggering counters, which were included

in the PdTripple circuit and with the difference of response times in the expected for

diprotons range. For such events, triggering of PdTripple was checked. As it turned

out, at the beginning of the measurement with the proton beam, PdTripple was almost

completely ineffective. The trigger circuit was changed significantly, after which the

efficiency estimation was > 99%, and it remains at this level in the measurement with

the deuteron beam.

A fortunate circumstance was that the thresholds of the high energy loss trigger in

the PD side wall (HighThreshold) during the PdTripple inefficiency period turned out

to be low enough to register 95% of the protons from the pn→ {pp}sπ−process, which
allowed not to lose statistics in this part of the beam time.

3.2.3 Deadtime of the DAQ correction

The loss of events due to the deadtime of the data acquisition system (DAQ) depends

on the detector loads and, therefore, may change with time. Due to the asymmetric

acceptance of the detectors, the load, and hence the deadtime factor, will also depend on

the direction of the beam and target polarization vectors. The suppression usage, that

is, the selection only each n-th event for recording, also changes the time distribution

between the selected events from P (1) to P (n), where P is the Poisson distribution

probability for the 1st and n-th events in this time interval, which also changes the

deadtime factor. When using different factors of suppression for different triggers, it is

necessary to determine its correction for each of them.
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There is information about all triggers acted for each event in the ANKE data

collection system, and the number of input triggers (Tin) is counted for each of these

events. It is important to note that the input triggers are not blocked when reading

information from "slow" cameras or a vertex detector, and the deadtime for the input

triggers is negligible under our conditions. In such situation the deadtime correction can

be defined as Rdt = Tout/Tin, where Tout is the number of events recorded by this trigger.

This value is determined for each run, trigger, and beam and target polarization, and

is used as the weight for a specific event.

3.2.4 Track search efficiency

The procedure for the track reconstruction efficiency estimation was developed for

the FD when studying the process pd → {pp}sn [57]. This procedure included the

GEANT simulation of the facility, taking into account the non-point interaction between

the beam and target and Coulomb scattering, as well as dispersion of the hits in the

wire chambers according to the experimental clusters distribution. Additionally, the

efficiency maps of sensitive planes of the cameras obtained from the data were used

(see Sec. 3.2.1). Camera noise events were also copied into model hits from randomly

selected experimental events. The resulting set of hits was sent on the input of the

same tracks search procedure, which was used in the experimental data analysis.

Since the efficiency of the search of pairs with low Epp depends on the kinematic

parameters, firstly on the Epp value itself, the efficiency evaluation was included in the

general procedure for calculating the acceptance, thus, providing a complete simulation

of the detection and reconstruction processes for each event. This procedure was also

used to calculate the acceptance of the pn→ {pp}sπ−process. Considered separately

from the other factors, the average value of the track search efficiency for two-track

events was ∼ 90%. A similar procedure was applied to events with one track in the

FD, and showed the search efficiency of 99.5%.
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3.2.5 Vertex detector STT efficiency

The main sources of STT inefficiency are non-working strips and low energy loss

of particles in one of the STT layers. The first reason is related to the operation of

reading electronics and can be taken into account when calculating the geometrical

acceptance, while the second one affects the choice of the particle energy range used.

The energy loss thresholds, used for the track reconstruction, were determined at the

level ∆E = 0.3 MeV for reasons of cutting of electronic noises and soft background

particles, and they exceeded the electronic thresholds used.

The vertex detector was used in the measurement with the proton beam to detect

slow spectator protons. The proton energy had the upper-limit with the region of

applicability of the spectator mechanism Tspec < 6 MeV (Pspec < 106 MeV/c), and the

lower-limit was built upon the requirement of the first layer passing Tspec > 2.5 MeV,

which was necessary for the δE/E particle identification. If a particle was registered in

the three layers of STT, it would be possible to determine the efficiency of each layer

directly by excluding it from the track construction and checking for presence of trips

in the corresponding strips. In our case all the protons of the required energies were

stopped in the second layer of the STT (the minimum energy of the protons passing to

the third layer was ∼ 7 MeV) and there was no such opportunity, the third STT layer

was disconnected during the measurement. However, the energy loss of the protons of

our interest in the first layer was in the range of ∆E1 = (0.8−2.5) MeV, which exceeded

the required threshold significantly. In the second layer the range was of ∆E2 = (0.6−5)

MeV, and the presence of the lower-limit is due the Bragg peak of energy release for

the protons stopped in the first layer. Thus, small energy release could not be a source

of inefficiency in this experiment.

A direct study of the STT efficiency using particles falling into the third layer was

performed on the other ANKE data and showed a high detector efficiency of ε ≥ 99%.
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3.3 Particle type identification

3.3.1 Particle identification by the TOF

When two or more particles are detected in the FD, PD and ND, the difference

in their measured arrival times in the scintillator counter can be used to determine a

particle type. In the case of the production of these particles in the same interaction

and from the one vertex, this difference is equal to the difference of particle TOF from

the target to the counters ∆tof .

On the other hand, assuming certain masses of particles from the pair, the difference

of the TOF ∆τ(p1, p2) can be calculated taking into account the reconstructed momenta

and trajectory lengths. Then, on the plot, pictured the measured versus calculated TOF

differences, the events for which the assumed masses turned out to be correct are located

on the diagonal.

(a) Two protons in the PD. (b) A proton and a deuteron in the FD.

Figure 3.3: Measured TOF difference for two particles ∆tof versus calculated TOF ∆τ(p1, p2).

Fig. 3.3a shows the proton beam experiment events, for which the tracks are recon-

structed in the PD and ∆τ(p1, p2) is calculated under assumption that both detected

particles are protons. Proton pairs form a diagonal on the figure. The resolution for the

pairs registered in both FD and PD was σ(∆τ(p1, p2)−∆tof ) = 0.6 ns and is determined

mainly by the momenta resolution.

The identification of the process dp→ dπ0 + pspecin the experiment with a deuteron

beam was carried out in a similar way. The distributions were constructed for events
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with two tracks in the FD, assuming that the detected particles are a proton and a

deuteron, as shown in Fig. 3.3b. The resolution in this case was σ(∆τ(p1, p2)−∆tof ) =

0.33 ns.

3.3.2 Particles identification by the energy losses in the scintillator coun-

ters

(a) Energy losses as a function of momen-

tum.

(b) Particle mass reconstructed by energy

loss in the first wall of the hodoscope

versus the mass obtained from energy

loss in the second wall.

Figure 3.4: Particles identification by ionization losses in the FD hodoscope.

In the proton beam experiment only the secondary deuteron from the normalizing

process pd → dπ0 + pspec was detected in the FD, which means that the TOF iden-

tification method was inapplicable. In this case, the particle type was defined from

the ionization losses in the FD hodoscope. The calibration procedure of the energy

losses is described in Ref. [72]. Fig. 3.4a shows the dependence of the measured energy

losses versus the particle momentum. The lines of protons and deuterons are clearly

distinguishable, the latter also includes deuterons from elastic backward pd scattering.

With the momentum and energy loss known, it is possible to calculate the particle

mass, as shown in Fig. 3.4b, where the masses obtained from the energy losses in

the first and second walls are compared. The protons and deuteron groups are clearly

separated.
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3.3.3 Particles identification in STT

(a) Left telescope. (b) Right telescope.

Figure 3.5: Energy losses in the first and second STT layers.

The determination of a particle type in the vertex detector is possible on the basis

of ionization energy losses for the particles stopped in the second or third layer. Fig.

3.5 shows the energy losses for protons and deuterons in the first and second STT layers

in the measurement with the proton beam and the deuterium target. The two upper

downward lines correspond to the protons and deuterons stopped in the second layer,

and the lower upward line to the particles that passed through the second layer. As

can be seen, identification is possible only in a limited energy interval. Deuterons are

observed only in the left telescope in this measurement, since events were obtained with

the FD trigger, and most deuterons belong to the elastic pd scattering, which does not

fall into the right telescope in coincidence with the FD trigger. In the case of proton

pairs in the FD or PD selection, the deuteron branch in the left telescope also turns

out to be suppressed significantly.

3.4 Analysis of the proton beam data

For this experiment a vertically polarized proton beam and a deuterium cluster

target were used. The beam (σ = 3 − 5 mm) and the deuterium jet (� = 1 cm)

dimensions did not bring in significant uncertainty into the reconstructed kinematical
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parameters and the interaction region was considered as pointlike in the horizontal

projection.

The task of the experiment was to obtain the differential cross section and the vector

analyzing power of the process ~pn→ {pp}sπ−, which required the absolute luminosity

as well as beam polarization determination. In order to do this, it was necessary to

determine the ratio of the luminosities obtained with the different directions of the

beam polarization vectors.

3.4.1 Processes identification and kinematical cuts

The process pn→ {pp}sπ−
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Figure 3.6: Kinematical identification of the process pd→ {pp}sπ− + pspec. (a) The case of the reg-

istration of a spectator proton in the STT. The experimental spectrum (histogram with

error bars), the background histogram (shaded area) and the sum of the background with

the Gaussian describing the π− peak (solid line) are shown. (B) The case of π− in the ND

registration. The curve is the result of the fit with the Gaussian and linear background.

For the selection of the pd→ {pp}sπ− + pspecprocess proton pairs {pp}s were de-

tected in the front and side detectors, in addition to that it was necessary to detect

either π− in the ND or spectator proton pspec in the STT. Thus, the complete kinemat-

ics of each event was reconstructed. The types of the detected particles were determined

by the TOF difference or by the energy losses in the STT.

As shown in Fig. 3.3a, the proton pairs are reliably separated from other pairs

of particles and the only background source for the diproton selection is accidental
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coincidences which contribution does not exceed 7%. The excitation energy of the

proton pairs (diproton) was constrained to Epp < 3 MeV, which was possible due to a

good resolution σ(Epp) < 0.6 MeV in this range of the Epp.

The process pd→ {pp}sπ− + pspec identification was based on the missing mass of

the reaction. Typical missing mass spectra for two cases are shown in Fig. 3.6, such

spectra were built for each angle θcmπ and φcmπ bin and for both beam polarization vector

directions. The background level in the case of π− detection was low (5 − 8%), which

allowed to use a simple linear description for it. The significant level and complex shape,

that is changing with an angle, in the case of the spectator proton detection, required

a special procedure for this shape determination, described below in Sec. 3.4.2.

The energy of the spectator proton was limited to Tspec < 6 MeV (Pspec < 106

MeV/s) in order to select the quasi-free reaction pn→ {pp}sπ−from missing mass peaks.

In addition, the first layer of the STT was required when registering pspec, which led to

the selection of events with Tspec > 2.5 MeV, and in the case of the π− registration the

lower limit for the Tspec was not set.

The quasi-free pn-interaction energy depends on the energy and exit angle of the

spectator proton, and an available range of the effective "free" beam energy in the

experiment was Tfree = (310− 390) MeV. Here Tfree is the beam energy of the free pn-

interaction with the same total energy in the center of mass system as in the quasi-free

one. This value was measured with accuracy of σ(Tfree) = 2− 4 MeV, and only data in

the range of Tfree = 353± 20 MeV were used in the analysis .

The process pn→ dπ0

In the pd→ dπ0 + pspec reaction, the final deuteron was detected in the FD and was

identified by energy losses in the hodoscope, while the proton background admixture

did not exceed 10%. The spectator proton was detected in the STT similar to the case

of the pd→ {pp}sπ− + pspec, and here the limit Tspec = (2.5− 6) MeV was also applied.

The process was identified by the missing mass equal to the π0 mass. As in the case of

the pd→ {pp}sπ− + pspec, the background description for the missing mass spectra was

a certain problem, and a procedure common to both reactions was used, see Sec. 3.4.2.
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Additional constraints were applied on the proton exit angles to reduce the back-

ground of accidental coincidences: the azimuthal angle was chosen to be ϕ = ±20o in

the left and ϕ = 180±20o in the right STT telescope. The process pd→ dπ0 + pspec was

observed in the range of polar angles θ = 50− 130o in the left, and θ = 56− 72o in the

right telescope, but in the latter case the range was narrowed to θ = 60− 68o to reduce

the contribution of the elastic pd-scattering that gives a peak at ∼ 70o. The Tfree distri-

butions for the pspec registration differ for the two telescopes, and the Tfree = 353± 10

MeV in the left telescope and Tfree = 370± 10 MeV in the right one were chosen for the

analysis.

3.4.2 Background shape in the missing mass spectra

The time information from the STT was not used in the initial analysis, which led to

fact that the main source of the background when registering the spectator proton in the

processes pd→ {pp}sπ− + pspec and pd→ dπ0 + pspecwas the accidental coincidences.

To obtain the shape of this background, artificially constructed events were used in the

missing mass spectra. For this, diprotons (or deuterons in the case of pd→ dπ0 + pspec)

were identified in the main part of the data, but without the requirement of coincidence

with spectator protons. In this case, the signal in the STT was also not required in

the trigger (see the list of triggers in Sec. 2.3). Information about the spectator proton

was obtained from a random event taken from another part of the data with the STT

trigger, and the other detectors were excluded (data for the STT calibration). The

same restrictions as in the main analysis were applied on the particle in the STT, as

well as on the designed "complete" event. The missing mass spectra obtained from

such events described the background in the real mass spectra well, as demonstrated in

Fig. 3.6a where the shaded area is formed by the constructed background events. This

procedure was carried out for each missing mass spectrum.

3.4.3 Relative and absolute luminosities, beam polarization

The luminosity and beam polarization were determined by the data of the quasi-

free process ~pn→ dπ0. It follows from isotopic invariance that the cross section for this
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process should be equal to the half of the cross section pp → dπ+, and all the spin

observables of these reactions coincide. The differential cross section and the analyzing

power of the pp→ dπ+ at 353 MeV are described with good accuracy by the SAID phase

analysis [76], which predictions coincide near 353 MeV with the available experimental

data with an accuracy of 5% for the cross section and 6% for Apy.

# of method
1 2 3 4 5 6 7

R
e
la

ti
v
e
 l
u

m
in

o
s
it

y

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

 / ndf 2
χ  2.412 / 5
p0        0.005± 1.017 

p p p d d d
o

<0.5θ
o

=90φ
o

=­90φ o
<0.5θ

o
=90φ

o
=­90φ

Figure 3.7: Relative luminosity determined for each group of normalizing events.

In order to determine luminosity and polarization one should find a ratio of the

integral luminosities for different orientations of the beam polarization vector (relative

luminosity). For this purpose, particles emitted at angles θ = 0 and φ = ±900 can be

used, since for these angles the part of the cross section depending on the polarization

is equal to 0. Protons and deuterons emitted at such angles were selected from the the

single-particle FD trigger data (FdAnd) and the relative luminosity was calculated for

each group of events, as shown in Fig. 3.7. The results for the groups coincide within

the statistical errors, and the average result is RL = L ↓ /L ↑= 1.017 ± 0.005. This

value also includes the DAQ deadtime correction for the FdAnd trigger.

In order to estimate detector acceptance, a complete GEANT-simulation of the

ANKE was carried out. The acceptance of the reaction pn→ {pp}sπ− was calculated

as a function of the pion exit angle θcmπ in the pn center of mass system, both for the cases

of the spectator proton and the π− detection. An isotropic distribution of the spectator

exit angles was used and its energy was played out over the Fermi distribution [77].

A fast proton pair {pp}s was generated in the 1S0 state with the excitation energy

distribution in accordance with the Migdal-Watson factor for the S-wave interaction in
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the final state taking into account the Coulomb interaction [59]. The efficiency for the

two-track events search was also taken into account when calculating the acceptance.

To obtain luminosity, the number of events for the process pn→ dπ0 was determined

in each bin over the polar angle of the deuteron emission θcmd in the pn center of

mass system, and the results with opposite directions of the beam polarization were

summed taking into account the relative luminosity RL and the deadtime. Using the

SAID calibration data [76], the integral luminosity was determined to be L = (2312±
110) нб−1, as shown in Fig. 3.8a. In this procedure, no correction for the shadowing in

the deuteron was made since there is a similar effect in the process pn→ {pp}sπ−.
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Figure 3.8: Estimation of beam polarization and luminosity for different angles of deuteron emission.

Only statistical errors are given.

An estimation of the beam polarization was obtained in each θcmd bin as P =

ξ
Apy ·<cosφ>

, where ξ = N↑·RL−N↓
N↑·RL+N↓ is the observed asymmetry corrected for the relative lu-

minosity, and the value of Apy is taken from the SAID analysis. The values of < cosφ >

were calculated by filling the missing mass spectra with weights cosφd and by carrying

out the same procedure of the background subtraction. The angular distribution of the

polarization is shown in Fig. 3.8b. It can be seen that the average value is determined

by the angles close to 90o, where the Apy is maximal. The resulting average value, taking

into account the normalization error, was P = 0.66± 0.06.
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Figure 3.9: Time (in channels), measured in the second layer of the vertex detector STT, depending

on energy release in this layer.

3.4.4 Reanalysis of the data using time STT information

The primal data analysis, described in Sec. 3.4.1-3.4.3 was carried out without

using the time information from the vertex detector. The results of this analysis were

included in Ref. [12] and were used for the first partial-wave analysis described in

Sec. 4.3. Meanwhile, the main source of background in these data were accidental

coincidences between fast proton pairs, or a deuteron recorded in the FD or PD and

a spectator proton in the STT born in another pd collision. At the same time, the

background level for the pion peak for the process pd→ {pp}sπ− reaches 50%.

Subsequently, a method to access the time information from the STT, obtained from

vertical strips of each of the first two layers of each of the telescopes, was found. Fig.

3.9 shows the time measured in the second layer of the STT versus the energy release

in this layer. Since the trigger and the time mark were obtained from the front or side

detectors, the time in the STT reflects the time difference in the registration of fast

particles in the FD or PD and slow spectator protons. Although the time resolution of

the STT did not allow the refinement of the process kinematics, or even the particles

identification, the time STT signal served as a powerful criterion for suppressing the
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background of accidental coincidences. The time dependence versus the energy in the

STT, shown in Fig. 3.9, is due to the use of a fixed threshold for the TDC signal.
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Figure 3.10: Missing mass squared for the pd → pspec{pp}sX reaction. (a) The spectrum measured

using the first two layers of the STT, without selection by the time (points with error

bars); constructed background (shaded area). The line marks the data obtained using the

time information from the STT. (b) The spectrum for the same angular bin and the same

detector combination obtained using the time information for protons stopped in the first

STT layer.

A radical decrease in the background level of accidental coincidences by means of

the time information from the STT is shown in Fig. 3.10. Such background suppression

also allowed one to increase the statistics by considering also slower spectator protons

Tspec < 2.5 MeV that stopped in the first layer of the STT. This was possible since,

at the beam energy of 353 MeV, the reaction pd → pppπ− is the only process with

three positively charged particles in the final state. Therefore, one can identify the

reaction simply by making a missing-mass selection, without identifying explicitly the

spectator proton from its energy loss. For such events, a second layer of the STT was

used as a veto. The center of beam with target interaction region was considered as

a starting point of the track, which defined the momentum direction. The accuracy

of the measurement of the spectator three-momentum was poorer than in the case of

a track construction using two layers of the STT, but still sufficient to identify the

pn → {pp}sπ− reaction from the pion missing mass. The background level makes
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the events without the time information from the STT unusable. After applying this

selection criterion, the background reduced to the few-percent level, as shown in Fig.

3.10b.

The expansion of the registered spectator proton energy range also led to an almost

double refinement of the beam polarization, a new value of the beam polarization is

P = 63, 3±3, 6%. The reanalyzed results were used in the second partial-wave analysis

described in Sec. 4.5.

3.5 Analysis of the deuteron beam data

In this measurement a vertically vector-polarized deuteron beam and an ANKE

polarized hydrogen target, equipped with a storage cell (see Sec. 2.2.1) were used.

The cell usage required a separate measurement of the background created by the cell,

as described in Sec. 3.5.2. In addition, the cell length affected the reconstruction

accuracy of the kinematic parameters. Therefore, the procedure for the interaction

vertex reconstruction was developed (Sec. 3.5.3).

The purpose of the experiment was to measure the transverse spin-correlation coef-

ficients Ax,x and Ay,y in the ~n ~p→ {pp}sπ− process, so it was necessary to determine

the beam and target polarizations and the relative luminosities for different directions

of the polarization vectors.

3.5.1 Process identification and kinematical cuts

The dp→ {pp}sπ− + pspec reaction was separated by a spectator proton registered

in the FD and two protons in the PD. The spectator pspec, in contrast to the case with

a deuterium target, carried away about a half of the beam momentum and exited at

angles of about 0o in the laboratory system, and the momentum of the protons from

the pair {pp}s was a half of the spectator momentum. The pion π− was not registered

in this measurement.

In order to determine the particle type, the time-of-flight method was used. In this

case, the differences in the TOF of pspec with each of the {pp}s protons were analyzed.
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In addition, each proton in the pair was identified by the TOF between the PD start

and stop counters. Since protons were the bulk of the load of both PD and FD, the

level of false identification of particles was negligible. The background of accidental

coincidences, under a small load of the detectors and after the application of the time

selection, also did not exceed several percent.

Diprotons, being 1S0 states, were chosen among the selected proton pairs by the cut

appliance on the diproton excitation energy of σ(Epp) < 0.6 MeV. The resolution of

σ(Epp) < 0.6 MeV was the same as in the experiment with the proton beam.

In a similar way, proton-deuteron pairs were selected for the normalization pro-

cess dp→ dπ0 + pspec, in which both deuteron and pspec were detected in the FD. The

particles identification by the difference in the TOF for this case is illustrated in Fig.

3.3b.
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Figure 3.11: Missing mass squared for the processes (a) ~d ~p→ pspec{pp}sX; (b) ~d ~p→ dpX.

Knowing the types of registered particles, the processes dp→ {pp}sπ− + pspec and

dp→ dπ0 + pspec can be selected by their missing mass, equal to the mass of pionsmπ− ,

mπ0 , respectively, as shown in Fig. 3.11. Here histograms with error bars represent the

experimental data with a hydrogen target, the shaded histograms are the result of the

background measurements described in Sec. 3.5.2, and the solid line is the fit of the

hydrogen data with the sum of the background histogram and Gaussian.

As can be seen from the distribution of the kinetic energy of the spectator proton

Tspec in the rest frame of the deuteron, the FD acceptance basically allows one to
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Figure 3.12: (a) Experimental (histogram) and simulated (shaded area) energy distribution of the

spectator proton in the deuteron reference system from the reaction ~d~p → {pp}sπ−pspec;
(b) experimental distribution of the beam effective energy, the shaded area was chosen for

the analysis.

detect protons with a small Tspec (Fig. 3.12a). To extract the quasi-free kinematics,

the kinetic energy of the spectator protons was limited to Tspec < 6 MeV. Knowing

the spectator proton momentum, one can estimate the effective neutron energy in the

reaction np→ {pp}sπ−

Tfree = [s− (Mp +Mn)2]/2Mp,

where
√
s is the total energy in the center of mass system np, Mp and Mn are the

proton and neutron masses, respectively. Fig. 3.12b shows the experimental energy

distribution Tfree and the limits Tfree = 353 ± 20 MeV in which it was selected for the

analysis. The cuts imposed on Tspec and Tfree coincided with the limits in the experiment

with the proton beam.

3.5.2 Shape of the background in the missing mass spectra

The reactions, similar to the dp-interaction processes under the consideration, also

happened when the beam interacted with aluminum nuclei from the storage cell walls,

which became the main source of an irremovable background in the experiment. The

only visible difference between useful and background events was in the shape of the
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missing mass spectra. To determine this shape, the separate measurements with an

empty cell and also a cell filled with nitrogen were realized.
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(a) Nitrogen target background
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Figure 3.13: Background subtraction in the case of the reaction dp→ dπ0 + pspec. The histogram

with error bars represents the data from the hydrogen target, the shaded area is the scaled

background, the red line shows the total fitted function.

In order to determine the amount and shape of the background under the peak

from the hydrogen target, the studied processes were selected from the background

data, and the missing mass spectra for each bin over polar θ and azimuth φ angles

were put on the similar spectra for hydrogen events, as shown in Fig. 3.13. As can

be seen from the figure, a more accurate description of the background was obtained

with the empty cell data, so these data were used to subtract the background in the

process dp→ dπ0 + pspec. However, the statistics obtained for the cell with nitrogen

was significantly higher than the statistics on the empty cell, which turned out to be

insufficient for the case of the process dp→ {pp}sπ− + pspec. Here the difference in the

distributions with the nitrogen and empty cell did not exceed the statistical errors, and

the nitrogen data were used for the background subtraction.

When fitting the hydrogen data distribution, the sum of the scaled histogram of

the background events and the Gaussian was used. The data error for each bin was

determined from the squared sum of the statistical errors for the main and background

data, taking into account the scaling.

The problem of the estimation of the background contribution could be substantially

simplified by assuming that the angular distributions of the background events are the
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Figure 3.14: Background scaling factor depending on the θ angle for the dp→ dπ0 + pspec reaction

in (a) the nitrogen target, (b) the empty cell; (c) for the dp→ {pp}sπ− + pspec reaction in

the nitrogen target.

same for the measurements with hydrogen, nitrogen and/or the empty cell. In this

case, it would be possible to use a single background scaling factor. In order to test

this assumptions, the independence of the fit parameter corresponding to the scale

background factor from the scattering angle (Fig. 3.14) was investigated. As can

be seen, this condition is not observed for the nitrogen coefficients of the reaction

dp→ dπ0 + pspec. With regard to the remaining two spectra, it is hardly possible to

make a definite conclusion because of too large statistical uncertainties. It should also be

taken into account that such comparisons should be carried out separately for different

ranges of the angle φ, which will additionally reduce the statistics. Therefore, in the

further analysis, the individual values of the background level, that was determined for

each angular bin, were used.

3.5.3 Vertex reconstruction

The measurements were carried out using the long storage cell with an asymmetric

gas density distribution. Under these conditions, the determination of the interaction

vertex allows: a) to reconstruct the kinematics of an event more accurately and re-

duce the width of the missing mass distribution; and b) to get rid of the data of the

interactions of the beam with the gas in the target chamber but outside the storage

cell.

The vertex reconstruction procedure involves the joint fit of the tracks and TOFs

of all the registered particles. The reconstruction of the three-momentum of a particle
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passing through the magnet D2 was based on the assumption that the (X,Z)-position

of the interaction vertex is known. In the case of several tracks, along with the particle

momenta, the longitudinal coordinate of the vertex Z can also become the fit parameter,

while the transverse coordinate X is selected along the beam line according to the Z

value. In addition, the reconstructed Y -coordinate of the interaction point becomes

common for all tracks and is determined with better accuracy.

The accuracy of the Z-coordinate determination depends on the time measurement

accuracy, the difference in the velocities of the particles included in the fit, and their

momenta reconstruction accuracy. In our case, the limiting factor was the accuracy of

the momenta measurement of the slowest particles — the protons from the final diproton

in the reaction dp→ {pp}sπ− + pspec and the deuteron in the dp→ dπ0 + pspec.
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(b) N2 in the target
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Figure 3.15: Reconstructed vertex coordinate for the reaction dp→ {pp}sπ− + pspec.

For the process dp→ dπ0 + pspec with a deuteron registered in the FD, the simu-

lation gives an error in the vertex determination of σ(Z) ≈ 12 cm. This is too large

to the vertex determination can improve significantly the reconstruction of the process

kinematics, however, the procedure allows to get rid of the interactions with unpolarized

gas outside the cell. For the process dp→ {pp}sπ− + pspec, the simulation leads to the

vertex coordinate accuracy equal to 5.6 cm, which significantly refines Z in comparison

with the cell length of 37 cm.

The vertex reconstruction procedure was applied to the experimental data. The dis-

tribution of the obtained coordinate is shown in Fig. 3.15 for the data with a hydrogen

target, a nitrogen target, and for an empty cell for the reaction dp→ {pp}sπ− + pspec.

The shape of all three distributions is similar, the peak is observed in the region of the
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cell location (−140;−100) cm, with a maximum near the entrance tube at Z = −125

cm. The events to the right of the peak (Z > −100 cm) are the result of the interaction

of the beam with gas in the target chamber, and these events’ number is explained,

among other things, by increase of the acceptance of this reaction when approaching

the magnet D2.

(a) Fixed interaction vertex (b) With use of the reconstructed interaction

vertex

Figure 3.16: Missing mass squared as a function of the Z-coordinate for the

dp→ {pp}sπ− + pspecreaction.

One can follow up the influence of the interaction coordinate determination on the

reconstruction of the reaction kinematics. Fig. 3.16 shows the results in the cases with

the use the vertex reconstruction procedure and without it. Without reconstruction,

the missing mass peak width increased as the vertex moved away the center of the

cell (Z = −125 cm), used as the fixed coordinate of the vertex. In the case of the

simultaneous reconstruction of the momentum and vertex, the width of the pion peak

remains approximately constant along the entire region, including its part outside the

cell.

The correct vertex coordinate implementation also affects the resolution in the TOF

spectrum. In Fig. 3.17 the dependence of the discrepancy between the differences in

the TOF, the calculated and measured ∆τ − ∆TOF , is shown for the cases with the

fixed and reconstructed vertex.
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(a) Fixed interaction vertex (b) With the use of the reconstructed inter-

action vertex

Figure 3.17: Discrepancy between the measured and calculated TOF differences as a function of Z-

coordinates for the dp→ {pp}sπ− + pspec reaction.

3.5.4 Relative luminosity, beam and target polarization

As in the case of the proton beam (Sec. 3.4.3), the process np→ dπ0 was used for

the polarimetry. Its analyzing power at 353 MeV is known from the SAID database [76].

The specificity of the measurement with a storage cell was the presence of the

substantial background from its walls. For the exclusively selected processes this back-

ground could be subtracted from the hydrogen target signal in the missing mass spec-

trum. However, this was not possible for the particles emitted at the angles θ = 0 and

φ = ±900 and selected without identification of the process, as was done for the cluster

target data analyze. Therefore, the exclusive process np→ dπ0 was used, among other

things, to determine relative luminosities. This was promoted with the large angular

interval available for this process in the deuteron beam measurement θcmd = 0− 160o.

The bulk of the experimental statistics was obtained with the polarized beam and

target. However, in order to study the polarization of the beam P and target Q sep-

arately, for a small part of the data an unpolarized beam or target were used. Also

completely unpolarized data were obtained. Considering the acceptance of the reaction

np→ dπ0 for these data sets to be the same, one could determine the polarizations for

different directions of the beam and target polarization vectors independently.
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Let’s introduce the observed asymmetry, as

ξ =
N ↑ −N ↓
N ↑ +N ↓

where N ↑, N ↓ are the rates with the beam polarization vector up and down, respec-

tively. Then the polarization P is related to the observed asymmetry ξ as

ξ = PApycosφ,

where cosφ is the average of the acceptance in this bin over θcmd . Asymmetries as regard

to normalized unpolarized rates are equal

ξ↑ =
N ↑ −Nn

2Nn

ξ↓ =
Nn −N ↓

2Nn

,

where Nn are the rates for the unpolarized data set, corrected for the relative

luminosity. The asymmetry associated with the target polarization is expressed by the

similar formulas. The experimental asymmetries were constructed as the functions of

the polar angle and fitted with the analyzing power function using the polarization

and relative luminosity as parameters. The following results were obtained:

for the target (protons) Q ↑= 59± 7% and Q ↓= −70± 11%,

for the beam (neutrons) P ↑= 55± 8%, P ↓= −45± 8%.

Within the error limits, the polarization values for the polarization vectors up and

down are compatible and, as shown by the systematic error analysis in Appendix A.1,

only a small additional error arises under the assumption of equal polarizations. The

obtained neutron polarizations coincide with the accuracy of up to 10% with deuteron

polarizations, which were measured at the injection at the beginning and end of the

experiment (Chapter 2). It should be noted that the distribution of the gas density in

the storage cell in the measurement with ABS was different from that for the unpolarized

H2 gas source, and the equality of the acceptances assumed here was not accurately

observed.

However, the results obtained from the data part with the single polarization can not

be considered final. It is necessary to extract time-averaged values for the polarizations
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from the main set of the experimental data with the double polarization, since the

polarization could vary during the course of the experiment, and, in addition, due to

the difference in the acceptance of the process np→ dπ0 for polarized and unpolarized

gas in the cell. The polarization determination directly from the data with the double

polarization is also preferable because of much more statistics were obtained for this

data.

In order to determine the beam and target polarization, one should know the integral

luminosity ratios for each of the orientations of their polarizations. In our case, the

polarized cross section is written as:

dσ

dΩ
=

(
dσ

dΩ

)
0

(1 + (PAPy +QAQy ) cosφπ + PQ(Ay,y cos2 φπ + Ax,x sin2 φπ)),

where
(
dσ
dΩ

)
0
is the spin-averaged cross section, APy and AQy are the beam and target

vector analyzing powers, and Ax,x and Ay,y are the spin-correlation coefficients of the

process np→ dπ0. The polarizing effect in the cross section does not disappear at the

forward direction, and in order to use such data to determine the relative luminosities,

it is necessary to know not only the spin-correlation coefficients and the analyzing power

for this reaction, but also the values of the still undetermined polarizations.

In order to separate the problems on the determination of the polarizations and

relative luminosities, an iterative procedure was used. In the first approximation, the

assumption was made that the integral luminosities are equal. Then, to determine the

polarization of the beam (target), the states with different directions of the polarization

vectors of the target (beam) could be averaged to obtain an unpolarized state. After

using the transverse spin-correlation coefficients for the pp→ dπ+ reaction at 353 MeV

and the defined polarization values, the following estimations were obtained for the

luminosity ratios: R ↑↓= L ↑↓ /L ↑↑= 0.97± 0.02, R ↓↑= L ↓↑ /L ↑↑= 0.95± 0.02 and

R ↓↓= L ↓↓ /L ↑↑= 1.05± 0.02, R ↑↑= 1.

Although the luminosity ratios, as expected, are close to one, the deviations from

this are important in the extraction of the polarizations. After taking these deviations

into account, for the average values of the beam and target polarizations one were

obtained:
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| P |= 50± 3%(stat)±3.5%(syst) and

| Q |= 69± 2%(stat) ±3.5%(syst).
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Chapter 4

Measurement results and partial-wave

analysis

4.1 Relations for the observables and amplitudes of the pro-

cess pn→ {pp}sπ−

4.1.1 Polarization observables

In the reference frame, in which the beam is directed along the Z axis, and the Y axis

is perpendicular to the reaction plane, the differential cross section for the considered

reaction pN → {pp}sπ can be written as follows [78]:

dσ

dΩ
=

(
dσ

dΩ

)
0

[1 + PyA
P
y +QyA

Q
y + PyQyAy,y + PxQxAx,x + PzQzAz,z

+ PxQzAx,z + PzQxAz,x] , (4.1)

where P and Q are the polarization vectors of the beam and target, and (dσ/dΩ)0 is

the unpolarized cross section. The analyzing powers of the beam APy and target AQy ,

as well as the spin-correlation parameters Aij, are the functions of the pion polar angle

θπ.

In the case when both the beam and the target are polarized perpendicular to the

plane of the accelerator ring, with the polarization values P and Q, respectively, it is
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convenient to rewrite the expression for this reference frame as follows:

dσ

dΩ
=

(
dσ

dΩ

)
0

[1 + (PAPy +QAQy ) cosφπ + PQ(Ay,y cos2 φπ + Ax,x sin2 φπ)] , (4.2)

where φπ is the azimuth angle of the pion emission in the laboratory reference frame.

However, in the quasi-free pn-collision, the direction of the incident particle momen-

tum in the center of mass system of the reaction deviates from the accelerator beam

axis. Similarly, the XYpn plane does not coincide with the laboratory plane (see Ap-

pendix B.1). Then, the P and Q values in expression 4.2 correspond to the vector P

and Q projections on the XYpn plane of the quasi-free reaction (see Appendix B.1),

and φπ is the angle between the projection and the Xpn axis. We also neglect in 4.2 the

small components Pz and Qz, which arise in the quasi-free dimension. However, their

contribution is included in the systematic errors in the analysis.

4.1.2 Spin and isospin amplitudes

The spin structures of the reactions pp→ {pp}sπ0 and pn→ {pp}sπ− with the

spin-singlet diproton in the final state are identical and in both cases is defined by the

amplitude of the form 1
2

+ 1
2

+ → 0+0−. Because of the requirement of the parity and

angular momentum conservation, the initial nucleon-nucleon pair must have a spin S =

1. Indeed, let L, S, respectively, to be the orbital angular momentum and the spin of

the pair of nucleons in the initial state, and lπ is the orbital moment of the pion in the

center of mass system of the reaction. Then, following from the P-parity conservation,

L and lπ are opposite, and from the total angular momentum conservation one has

|lπ − S| ≤ L ≤ lπ + S. These two requirements are compatible for S = 1 and are not

compatible for S = 0.

In the considered reaction, there are only four possible transitions, which differ

from each other by the spins projections of the initial nucleons, but because of the

parity conservation, only two are the independent amplitudes. Regardless of the process

dynamics, the transition operator can depend only on the momentum vectors of the

initial proton p and final pion k, and the Pauli spin matrix σ, that is affecting the initial

nucleon spin states. The Pauli matrix in the plates of the initial nucleons spin states
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gives the polarization vector of the initial spin-triplet NN-state, which denoted here as

S. Since the pion parity is negative, the transition amplitude of the considered reaction

must be a pseudo-scalar, which is dictated by the requirement of parity conservation of

the angular momentum. Using the three vectors S, p and k, one can construct, in the

most general case, only one pseudo-scalar of the following form:

M = S · (Ap̂ +Bk̂) , (4.3)

where A and B are the complex amplitudes (true scalars), determined by the process

dynamics; p̂ and k̂ are the unit vectors in the center of mass system, directed along the

momentum of the incident proton and the final pion, respectively. Note that a term

of the form [p̂× k̂]S is a true scalar and therefore is absent in (4.3) because of the

requirement of the parity conservation.

The spin observables are expressed in terms of the scalar amplitudes A and B as

follows [17]: (
dσ

dΩ

)
0

=
k

4p
(|A|2 + |B|2 + 2Re[AB∗] cos θπ) ,

Ax,x

(
dσ

dΩ

)
0

=
k

4p
(|A|2 + |B|2 cos 2θπ + 2Re[AB∗] cos θπ) ,

Ax,z

(
dσ

dΩ

)
0

= − k

4p
(2|B|2 sin θπ cos θπ + 2Re[AB∗] sin θπ) ,

APy

(
dσ

dΩ

)
0

=
k

4p
(2Im[AB∗] sin θπ) ,

AQy = APy , Ay,y = 1 , Az,z = Ax,x , Az,x = Ax,z . (4.4)

These reactions are considered to be quasi-two-particle and, when estimating the

kinematic factor k/p, a small range of the excitation energies of the diproton can be

neglected. And, in case of the kinetic energy of 353 MeV, p = 407 MeV/c and k ≈ 94

MeV/c.

Not all the observables 4.4 are independent. In particular, for any angles of the pion

production, there is an equation [13]

(Ay)
2 + (Ax,x)

2 + (Ax,z)
2 = 1 . (4.5)
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This means that if two variables in this equation are measured, the third is determined

within a sign of the given relation.

In addition to the total amplitude dependence on the spin, the amplitudes are

subdivided into two isospinsM I=0 andM I=1. At the same time, the amplitudeM(pp→
{pp}sπ0) contains only the vector contribution I = 1, while the amplitude M(np →
{pp}sπ−) is a mixture of the isovector (I = 1) and isoscalar (I = 0) transitions: M(pp→
{pp}sπ0) = M I=1 and M(np→ {pp}sπ−) = (M I=1 +M I=0)/

√
2. 1

Since the initial nucleons are in еру spin-triplet state, the Pauli principle requires

that M I=1 to be antisymmetric with respect to the inversion operation p → −p, and
M I=0 is symmetric. Taking into account the expression 4.3, these restrictions can be

rewritten as follows:

AI=1(cos θπ) = AI=1(−cosθπ) ,

BI=0(cos θπ) = BI=0(−cosθπ) ,

BI=1(cos θπ) = −BI=1(−cosθπ) ,

AI=0(cos θπ) = −AI=0(−cosθπ) . (4.6)

It follows from the equation 4.6 that both BI=1 and AI=0 turn to zero at θπ = 900,

therefore one can write the following important relation for the angle θπ = 900:

(1 + Ax,x)
dσ

dΩ
(np→ ppsπ

−) =
dσ

dΩ
(pp→ ppsπ

0) . (4.7)

This relation is obtained if one adds the first and the third equation from (4.4) together,

setting θπ = 900, and then takes into account that A = AI=0 +AI=1, where AI=0(90◦) =

0, and BI=1(90◦) ≡ 0.
1Here it is necessary to emphasize that the isovector pp channel differs from the isovector pn channel

by the total isospin projection, therefore in the general case one can expect that these amplitudes are

different numerically, as, for example, the amplitudes of the processes pp → dπ+ and pn → dπ0

differ from each other. The dependence on the isospin projections is determined by the Wigner-Eckart

theorem by the value of the corresponding Clebsch-Gordan coefficient. In the case under consideration,

this coefficient is (1110|11) = 1√
2
for M(pp → {pp}sπ0) and (111 − 1|10) = 1√

2
for the isovector part

of the amplitude M(pn→ {pp}sπ−). Therefore, the Clebsch-Gordan coefficients for both reactions in

the isovector channel are equal, so in the expressions above, the same amplitude M I=1 is used.

69



It turns out that regardless of the process dynamics and the assumptions that are

made in the analysis, the value of the spin-correlation coefficient Ax,x in the reaction

np→ {pp}sπ− at 900 is fixed by the values of the unpolarized differential cross sections

for the reactions np → {pp}sπ− and pp → {pp}sπ0. However, the quasi-free nature of

the experiment with the π− production, and the difference in the masses of both pions

and nucleons leads to the fact that there is an uncertainty in the relative normalizations

of these two unpolarized measurements, and therefore direct measurement of Ax,x is

preferable.

Another useful result follows from the symmetry relations 4.6 and the equations 4.4:

for the reaction pp→ {pp}sπ0 Ax,x = 1 at 900.

4.1.3 Partial wave decomposition

The experiment was carried out around the energy of 353 MeV, and for such low

energies it can be assumed that only the few pion partial waves contribute. The first

partial-wave analysis of the low-energy data for the pion capture on the diproton in the

nucleus 3He, π−pps → np, at Tπ = 85 MeV, which corresponds to Tn = 425 MeV in the

nd rest frame, was performed taking into account the s- and p-wave pions [?]. However,

as was shown in [63], in the process under consideration the contribution of the pion d-

waves is significant and can not be neglected. In our analysis, the terms of the expansion

up to the pion d waves was kept, and, for this case, there are three possible transitions

from the initial state I = 1: 3P0 → 1S0s, 3P2 → 1S0d and 3F2 → 1S0d. Let’s denote

these amplitudes as MP
s , MP

d and MF
d , respectively. In the case of the initial state

I = 0, there are two p-wave transitions (with regard to the final pions): 3S1 → 1S0p

and 3D1 → 1S0p. Their amplitudes are denoted as MS
p and MD

p , respectively.

The scalar amplitudes can be decomposed in terms of these partial waves as [13]

AI=1 = MP
s −

1

3
MP

d +MF
d (cos2 θπ −

1

5
) ,

BI=1 = (MP
d −

2

5
MF

d ) cos θπ ,

AI=0 = MD
p cos θπ ,

BI=0 = MS
p −

1

3
MD

p . (4.8)
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These relations satisfy, of course, the symmetry conditions 4.6. Thereat, for the ampli-

tudes A and B in the expressions 4.3 and 4.4, the following relations are true:

for the process pp→ {pp}sπ0 : A = AI=1, B = BI=1

for the process pn→ {pp}sπ− : A =
1√
2

(AI=0 + AI=1), B =
1√
2

(BI=0 +BI=1)

The partial-wave amplitudes depend only on the energy and act at the threshold as

k l , where l is the pion angular moment. Thus, for small k (near the threshold), higher

waves are suppressed by an angular momentum barrier. In 4.6 one should take into

account the contribution of all waves up to the pion d-wave. But the contribution of

the d-wave squared is not taken into account. One should note that the contribution of

the s− g interference, which has the same threshold behavior as the d-wave squared, is

assumed to be negligibly small in comparison with the contribution of the pure d-wave

and is not taken into account in our analysis.

Required assumptions for the partial wave analysis

As already was noted, the partial wave decomposition procedure leads to ambiguous

solutions, even in case of the complete set of the measurements of the independent spin

observables of the corresponding process [12,80]. In practice [?,84], the Watson theorem

is applied to minimize the ambiguities [?, 81]. This theorem is a consequence of the S-

matrix unitarity and the invariance over the time reversal, and impose restrictions on

the phases of the individual partial amplitudes.

For the uncoupled partial waves, in the case of very small the inelasticity, the Watson

theorem connects the phase of the interaction amplitude in the initial state of the process

NN → NNπ to the phase-shift of the elastic nucleon-nucleon scattering [?, 81]. These

conditions apply for the 3P0 partial wave and, therefore, the amplitudeMP
s = |MP

s |e
iδ3P0

with δ3P0
= −14.80 was taken [82]. The phase associated with the 1S0 final pp state

is not included because it is common for all partial waves and does not influence the

observables.

For the coupled channels, such as 3P2 −3 F2, the terms of the Watson theorem, in

general, do not strictly apply. However, the phase shift analysis of the pp data at 353
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MeV shows that the mixing parameter, as well as the inelasticities, are very small [82].

Thus, for a good approximation, one may neglect the channel coupling and use the

Watson theorem also to the individual 3P2 and 3F2 partial waves. Here the phases are

δ3P2
= 17.90 and δ3F2

≈ 00 [82].

Two theoretical potential models also suggest that the 3P2 −3 F2 channel coupling

is weak [1,54]. The quality of this approximation was also checked by the direct calcu-

lations of the d-wave production amplitudes within the chiral effective field theory up

to the order of mπ/mN (N2LO) [83]. By these calculations, it was shown that the as-

sumptions about the phases made here should be valid within ±2o. It should, however,

be noted that we do not neglect the channel coupling in the 3S1 −3 D1 case, where the

tensor interaction coupling can be very strong. The phases of the I = 0 amplitudes,

MS
p andMD

p , are determined in the in the analysis procedure through their interference

with the I = 1 amplitudes.

4.2 Differential cross section dσ/dΩ and analyzing power Ay

of the process pn→ {pp}sπ−

The procedures of the identification of the process events, the determination of the

relative normalization of the beam polarization modes, and the determination of the

luminosity and polarization for this measurement are described in Sec. 3.4.1-3.4.3.

Fig. 4.1 shows the results for the differential cross section dσ/dΩ of the quasi-free

pn → {pp}sπ− reaction, integrated over the excitation energy range Epp = (0 − 3)

MeV and averaged over the effective beam energy Tfree = 353 ± 20 MeV (the cross

section values are given in the table 4.2). The results were extracted within the impulse

approximation model, and the spectator proton momentum distribution corresponded

to the Bonn deuteron wave function [1]. It should be noted that the choice of a potential

did not play an important role due to the use of the small spectator momentum range

Pspec < 106 MeV/c, where the modern NN -potentials show complete agreement with

each other. The cross section was estimated separately for the cases of the pion π− and

spectator proton detection. The results were found to be consistent, and Fig. 4.1 shows
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the averaged values. Also the TRIUMF data for the quasi-free π−-production [10] are

shown. In that experiment, however, a stronger restriction was imposed on Epp < 1.5

MeV, and the results were converted to the Epp < 3 MeV limit, used in our work,

using the Migdal-Watson energy variation for the s-wave pp-interaction in the final

state [?, 81].
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Figure 4.1: Unpolarised differential cross section for the pn→ {pp}sπ− reaction. The ANKE data

with statistical errors are shown by empty circles. There is systematic error of 6%, arising

from the uncertainties of the luminosity and acceptance determination. The statistical er-

rors of the TRIUMF pn → {pp}sπ− results are shown by the crosses [10], the statistical

errors here are generally smaller than the symbol size and their normalisation uncertainty

is 10%. The arbitrarily scaled TRIUMF cross sections extracted from π−3He → pnnspec

data [84] are shown with the stars. The dashed curve is a direct cubic fit of these ANKE

data whereas the solid one corresponds to the result of the partial wave analysis from Sec.

4.3.

While the TRIUMF results cover only the central region of pion angles [10], the

current data extend over the whole angular range. Both data sets are consistent in the

pion backward emission region but the TRIUMF measurements do not show any rise
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Figure 4.2: (a) The product of the measured analysing power Apy and differential cross section for

the pn→ {pp}sπ− reaction at 353 MeV depending on the pion emission angle. Only sta-

tistical errors are shown, systematic uncertainty of 11% is not included. The dashed curve

represents the best fit of Eq. 4.10 whereas the solid one corresponds to the result of the par-

tial wave analysis from Sec. 4.3. (b) The measured values of Apy obtained on ANKE (empty

circles) and on TRIUMF [9] (crosses). Systematic uncertainty in the ANKE data is 9%.

The dashed and solid lines represent the division results of the fit from the panel (a) and

the cross section from Fig 4.1.
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at the forward angles, that is seen at ANKE. Some confirmation of the ANKE angular

shape is offered by the pion absorption data, π− 3He → pnnsp, where the unobserved

slow neutron is assumed to be a spectator [84]. In this case, this reaction can be

interpreted as π−{pp}s → pn, though the internal structure of the diproton is very

different to that in the production data. Over the range of angles covered, the ANKE

data are consistent with the pion capture results. The forward/backward peaking is

in contrast to the results found for π0 production [63, 80] and is an indication of the

dominance of the I = 0 p-wave amplitudes in the π− production reaction.

The unpolarized cross section for the π− production and the proton vector analyzing

power Apy can be written in the form of:(
dσ

dΩ

)
0

=
k

4p

∑
n=0

an cosn θπ , (4.9)

Ay

(
dσ

dΩ

)
0

=
k

4p
sin θπ

∑
n=0

bn+1 cosn θπ . (4.10)

Table 4.1 shows the parameters for Equation 4.9 obtained with the ANKE data fit. As

can be seen from Fig. 4.1, the cross section data are well described by a cubic parabola,

and the inclusion of a fourth degree in the fit does not improve the value of χ2/n.d.f..

a0(pn) a1(pn) a2(pn) a3(pn) b1(pn) b2(pn) b3(pn)

2.69± 0.18 −8.24± 0.51 9.11± 0.70 2.89± 0.90 1.77± 0.14 −1.95± 0.50 −4.43± 0.70

Table 4.1: Parameter values in units of µb/sr obtained by the direct fit of the experimental data of

the reaction pn → {pp}sπ− by the relations 4.9 and 4.10. Only statistical errors are given,

systematic uncertainties were 6% in the cross section and 9% in the analyzing power.

The results for the analyzing power Apy, as well as Apy, weighted with the cross

section, are shown in Fig. 4.2 (the corresponding values are given in Table 4.3). The

agreement with the TRIUMF Apy data [9] is reasonable at large pion emission angles and

both show the strong and rather asymmetric oscillation in the central region. However,

there are clear discrepancies for θπ ≤ 60◦ for both the analyzing power Apy as for the

cross section dσ/dΩ shown in Fig. 4.1.

Fitting the weighted Apy distribution with the form of 4.10 requires at least three

terms given in Table 4.1. Moreover, the inclusion of higher degrees does not change
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significantly the results of the fit. The associated curve is shown in Fig. 4.2 and this

divided by the parameterisation of the cross section in Fig. 4.2b.

Central value Bin width dσ/dΩ [µb/sr]
cos θcmπ in the bin

−0.963 0.074 1.03± 0.12
−0.889 0.074 0.95± 0.11
−0.815 0.074 0.84± 0.12
−0.741 0.074 0.80± 0.14
−0.667 0.074 1.00± 0.21
−0.593 0.074 0.73± 0.22
−0.519 0.074 0.32± 0.10
−0.444 0.074 0.354± 0.074
−0.370 0.074 0.324± 0.062
−0.296 0.074 0.257± 0.048
−0.222 0.074 0.308± 0.050
−0.148 0.074 0.221± 0.039
−0.074 0.074 0.191± 0.034
0.000 0.074 0.159± 0.029
0.074 0.074 0.154± 0.027
0.148 0.074 0.114± 0.022
0.222 0.074 0.088± 0.018
0.296 0.074 0.075± 0.016
0.370 0.074 0.072± 0.016
0.444 0.074 0.068± 0.016
0.519 0.074 0.051± 0.013
0.593 0.074 0.072± 0.016
0.667 0.074 0.136± 0.024
0.740 0.074 0.132± 0.023
0.815 0.074 0.211± 0.022
0.889 0.074 0.305± 0.022
0.963 0.074 0.328± 0.023

Table 4.2: Differential cross section for the reaction pn→ {pp}sπ− depending on the cosine of the
pion emission angle (empty circles in Fig. 4.1). Only statistical errors are presented.

4.2.1 Reanalysis using the STT time information

As was said in Sec. 3.4.4 the use of the STT time information made it possible to

suppress the background of random coincidences and increase statistics by including
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events with Tspec < 2.5 MeV. However, for some of these events, the STT efficiency is

difficult to estimate, as well as the calculation of the full acceptance has the additional

uncertainty. In this regard, the purpose of the reanalysis was only to improve the accu-

racy of the analyzing power determination. As a result of the reanalysis, the statistics

of the process pn→ {pp}sπ−for exit angles of θcmπ > 30◦ increased approximately by

two times. For smaller angles where the pions were detected directly in the ND, the

statistics improvement was less significant.
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Figure 4.3: Analyzing power Apy of the reaction ~pn→ {pp}sπ− at 353 MeV. The data obtained with-
out the use of the STT time information and with the cut of Epp < 3 MeV are shown by
the shaded area. The black dots denote the results of the analysis with the use of the time
information obtained with an energy cut of Epp (a) 3 MeV and (b) 1.5 MeV. Triangles indi-
cate the TRIUMF data [9]. Only statistical errors are shown.

The statistics increase allowed to impose a more tighter constraint on the diproton

excitation energy Epp < 1.5 MeV, similar to that used in the TRIUMF experiment [9].

Fig. 4.3 shows the data for Apy obtained by the new method for two cuts over the energy

Epp (in Table 4.3 the corresponding values are given), in comparison with the ANKE

data obtained without the use of the STT time information, and with the TRIUMF

data [9]. It can be seen that the analyzing power does not change with the introduction

of a more tighter cut on the Epp.
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Centrer of bin Bin width Apy · dσ/dΩ Apy Apy with the use of STT

θcmπ [grad] [grad] [µb/sr] time information

Epp < 3 MeV Epp < 1.5 MeV

2.5 5 0.05± 0.05 0.14± 0.16 0.22± 0.13 0.07± 0.21

7.5 5 −0.05± 0.03 −0.15± 0.10 −0.14± 0.08 −0.06± 0.13

12.5 5 −0.05± 0.02 −0.17± 0.08 −0.23± 0.07 −0.24± 0.10

17.5 5 −0.08± 0.02 −0.28± 0.07 −0.28± 0.06 −0.21± 0.09

22.5 5 −0.09± 0.02 −0.34± 0.07 −0.33± 0.06 −0.48± 0.09

27.5 5 −0.09± 0.02 −0.34± 0.07 −0.44± 0.07 −0.43± 0.10

32.5 5 −0.11± 0.02 −0.51± 0.10 −0.66± 0.07 −0.60± 0.10

37.5 5 −0.11± 0.02 −0.57± 0.11 −0.65± 0.08 −0.68± 0.11

45.0 10 −0.10± 0.02 −0.68± 0.12 −0.71± 0.07 −0.72± 0.11

57.5 15 −0.002± 0.011 −0.02± 0.12 −0.40± 0.09 −0.40± 0.13

72.5 15 0.051± 0.010 0.78± 0.15 0.60± 0.09 0.59± 0.13

87.5 15 0.073± 0.012 0.61± 0.11 0.67± 0.07 0.73± 0.10

102.5 15 0.11± 0.02 0.43± 0.09 0.39± 0.06 0.50± 0.12

117.5 15 0.10± 0.04 0.22± 0.09 0.29± 0.07 0.56± 0.23

132.5 15 0.09± 0.08 0.13± 0.11 0.16± 0.07 0.21± 0.46

145.0 10 0.10± 0.09 0.11± 0.11 0.00± 0.08 0.00± 0.00

157.5 15 0.09± 0.07 0.08± 0.06 0.03± 0.06 0.04± 0.10

172.5 15 0.04± 0.09 0.04± 0.08 0.02± 0.08 −0.02± 0.11

Table 4.3: Analyzing power Ay and that multiplied by the differential cross section for the reaction

pn→ {pp}sπ− at 353 MeV, depending on the emission pion angle. Only statistical errors

are given. The second and third columns show the results of the analysis without the use the

STT time and with the cut on the Epp < 3 MeV, the 4th and 5th show the result obtained

with the time information and the cuts on the Epp indicated in the table.
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4.3 First partial-wave analysis of the ANKE data

The first approach to the data analysis described here relied on the ANKE data for

the reactions pp→ {pp}sπ0 [80] and pn→ {pp}sπ− [12] (the latter are presented in

Sec. 4.2) which include the differential cross section and Apy for both processes. The

amplitudes of the s- and d-pion waves could be determined from the π0 production data

taking into account the assumptions described in Sec. 4.1.3, and the results of such

analysis are cited in Tables 4.5 and 4.4 in comparison with the combined analysis of

both reactions. The results of the data pn→ {pp}sπ− reanalysis, given in Sec. 4.2.1,

were not used in this analysis.

As described in Sec. 4.1.3, it is reasonable to limit the set with the s, p and d

partial waves at 353 MeV, which requires the determination of 5 partial amplitudes:

MP
s , MS

p , MD
p , MP

d and MF
d , connected with the spin amplitudes and the observables

by the relations 4.4 and 4.8

On the other hand, the number of parameters extracted from the data is determined

by the fit with the empirical relations 4.9 and 4.10. The connection between the em-

pirical parameters and the partial waves, with the expansion up to p − d interference

and the neglection of the d-wave squares, is given by the relations

a0 = 1
2
|MP

s |2 + 1
2
|MS

p − 1
3
MD

p |2 − 1
3
Re
[
MP∗

s (MP
d + 3

5
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d )
]

a1 = Re
[
MP∗

s (MS
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3
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p ) + 2
3
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d (MS
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6
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p )

−3
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d MS
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[
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p MD
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s (MP
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5
MF

d )
]

b3 = Im
[
MP∗

d MD
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d (MS
p + 1

15
MD

p )
]
. (4.11)

Since the spin of the initial NN -pair is 1, the sum of the pion orbital angular

moment l and the initial nucleon-nucleon isospin l + I is odd. Therefore, in the case

of the pp→ {pp}sπ0 reaction, only even pion partial waves are allowed. As shown
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in [80], in order to describe the data of this process it is enough to take into account

the coefficients a0, a2 and b2 from the equations 4.9 and 4.10. In expressions 4.11, the

contributions of the pion p-waves fall out for the π0 production process, and the right

side doubles.

By neglecting the small coupling between the 3P2 and 3F2 partial waves, and impos-

ing the Watson theorem, one can fix the phases for the complex amplitudes MP
s , MP

d

and MF
d [80]. However, such an approach is not valid for the two p-waves due to the

strong coupling between the initial 3S1 and 3D1 states. Thus, the total number of free

fit parameters is seven, whereas the total number of observables in both reactions is 10

(three expansion coefficients for the pp→ {pp}sπ0 and seven for the pn→ {pp}sπ−).
Despite the fact that there is a significant general relative uncertainty between the π−

and π0 production data, related to luminosity and other systematic effects, it becomes

obvious that the system is overdetermined. Therefore, if an acceptable solution is found,

it would support the assumptions made in the analysis, such as the neglection higher

partial waves, the d−d interference, and the coupling effect between 3P2 and 3F2 partial

waves.

The best agreement with the pp→ {pp}sπ0 and pn→ {pp}sπ− data was obtained

for the amplitudes given in Table 4.4 in comparison with the results of a separate fit of

the pp→ {pp}sπ0 data [80]. As can be seen, the results for s and d waves differ little

for these two cases.

Amplitudes Joint analysis Only π0 data

MP
s (55.3± 0.4)− (14.7± 0.1)i (55.3± 0.4)− (14.6± 0.1)i

MP
d −(26.6± 1.1)− (8.6± 0.4)i −(26.8± 1.2)− (8.7± 0.4)i

MF
d 5.3± 2.3 (6.0± 2.4)

MS
p −(32.4± 2.2) + (17.3± 2.7)i

MD
p −(109.6± 9.6) + (140.7± 4.0)i

Table 4.4: The results of the partial-wave analysis of the pp→ {pp}s π0 and pn→ {pp}sπ− pro-

cesses in units of
√

nb/sr. The second column shows the results of the joint two processes

analysis, the third one cites the pp→ {pp}s π0 analysis data [80].
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This solution has χ2/NDF = 89/82, which means that the used limited decom-

positions can lead to a very good description of the data. The contribution of the
3F2 → 1S0d transition is clearly small, and if one completely eliminate MF

d , this will

only lead to a slightly less accurate description of the data with χ2/NDF = 94/82. It

should also be noted that while the phases MP
s , MP

d and MF
d were preset, the MS

p and

MD
p phases were extracted from the data.

The quality of this parameterization can also be judged by comparing the curves in

Fig. 4.1 and 4.2 with the data. The remaining slight discrepancy in the analyzing power

description may arise due to neglect of the smaller terms. However, it should also be

borne in mind that the main systematic uncertainty, namely the relative normalizations

between the data sets for the pp → {pp}sπ0 and pn → {pp}sπ−, was not taken into

account in the determination of the parameters. On the other hand, adjusting the

normalizations by a few percent does not lead to any qualitative changes in the solution

4.4.

Another way to estimate the quality of the parametrization made is to compare the

parameters obtained by the direct fit of the individual distributions for the observables

and a common fit, which parametrizes all data at the same time. The way the pa-

rameters vary depending on the fittings procedure, can be seen in Table 4.5. In the

resulting parameters, after the direct and common fit, no difference was found at all

for the pp → {pp}sπ0 reaction. In the case of the pn → {pp}sπ− reaction, only the

parameter a3(pn) differs by more than three error values.

The conclusion following from the results 4.4 is that, in spite of the significance of

the d-wave in the pion production, it arises almost exclusively from the 3P2 state, since

the 3F2 → 1S0d transition contributes very little. In the case of the pp → {pp}sπ0

reaction, the transition amplitude 3D1 → 1S0p dominated.

It should be noted that the first attempt of the partial-wave analysis of the

pn→ {pp}sπ− reaction near the threshold was undertaken in [9] using the TRIUMF

data on the differential cross section and Apy for this process [9,10]. At that time, there

was no data on the π0 production in the process pp→ {pp}sπ0, which limited the con-

tribution of the s- and d-waves, and the authors were forced to rely on the Watson
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Observable Direct fit PWA

a0(pp) 4.05± 0.08 4.05± 0.08

a2(pp) −2.31± 0.14 −2.34± 0.14

b2(pp) 1.82± 0.10 1.80± 0.10

a0(pn) 2.69± 0.18 2.47± 0.08

a1(pn) −8.24± 0.51 −7.83± 0.45

a2(pn) 9.11± 0.70 10.12± 0.41

a3(pn) 2.89± 0.90 1.38± 0.27

b1(pn) 1.77± 0.14 1.82± 0.13

b2(pn) −1.95± 0.50 −1.75± 0.36

b3(pn) −4.43± 0.70 −4.83± 0.27

Table 4.5: Expansion parameters in units of µb/sr obtained by the direct fit of the experimental

data for the reactions pp→ {pp}s π0 [80] and pn→ {pp}sπ− [12] (this paper) by the rela-

tions 4.9 and 4.10 (the second column), and from the results of the joint partial wave analy-

sis based on the relations 4.11 (the third column). The errors are purely statistical. For the

case of π− meson production there are systematic uncertainties of 6% in the cross section

and 9% in the analyzing power.

theorem applicability even for strongly coupled 3S1 and 3D1 waves. In addition, their

data were obtained only in the central angular region, so it is not surprising that the

results of the TRIUMF analysis are significantly different from the ANKE results re-

ported in this section. Thus, in [9] the conclusion about negligibility of the d-waves was

made and the dominant role of the transition 3D1 → 1S0p was specified.

4.4 Results of the experiment with double polarization for the

~n ~p→ {pp}sπ−

4.4.1 Cross-section and analyzing powers Ap
y and An

y

The determination of the differential cross section and the analyzing power for the

~n~p → {pp}sπ− reaction in dp kinematics opens the possibility of checking the correct-
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ness of the double polarization experiment, which is more complicated for the analysis.

A different registration procedure of the reaction products in detectors also makes it

possible to verify the correctness of the systematic estimation in the previous experi-

ment. It is much more difficult to estimate the exact value of absolute luminosity for the

data obtained with a long cell than for those with a point interaction vertex. Therefore,

in Fig. 4.4a only an arbitrarily normalized cross section, obtained from the experiment

with the cell, is shown to compare the shape of that with the result presented in Sec.

4.2 and with the TRIUMF data [10]. Both cross sections obtained at the ANKE are in

good agreement with each other at all angles, including in the front region, where the

TRIUMF cross section begins to deviate from them.
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Figure 4.4: Observables obtained for the pn → {pp}sπ− reaction at 353 MeV with a cut on the

diproton excitation energy Epp < 3 MeV. (a) Unpolarized differential cross section. The

results obtained in the single-polarization experiment [12] are shown by the shaded area,

the curve shows the direct cubic fit of this data. The black dots denote the results with sta-

tistical errors obtained in the double polarized experiment [13]. Since the absolute normal-

ization was not achieved, the cross section values were normalized to an arbitrary common

factor. The TRIUMF data [10] are denoted by triangles. (b) Proton analyzing power Apy
(points), neutron analyzing power Any (shaded areas) obtained at the same time from the

experiment with double polarization [13].
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Central value Bin width, Apy Any

θcmπ in the bin, [grad] [grad]

9.0 18 −0.21± 0.08 −0.08± 0.11

27.0 18 −0.35± 0.07 −0.38± 0.10

45.0 18 −0.61± 0.09 −0.62± 0.12

63.0 18 −0.24± 0.13 −0.00± 0.18

81.0 18 0.68± 0.09 0.65± 0.14

99.0 18 0.44± 0.05 0.52± 0.07

117.0 18 0.21± 0.04 0.24± 0.06

135.0 18 0.12± 0.03 0.12± 0.05

153.0 18 0.06± 0.04 −0.04± 0.05

171.0 18 0.02± 0.05 0.08± 0.07

Table 4.6: Proton Apy and neutron Any analyzing powers obtained for the reaction ~p~n → {pp}sπ−

at 353 MeV with a cut on the diproton excitation energy Epp < 3 MeV [13] (are denoted by

dots and shaded areas, respectively in Fig. 4.4b).

The proton and neutron analyzing powers were obtained from the data with double

polarization by averaging over the polarization states of the beam and target, respec-

tively. The value of the neutron polarization from beam deuterons is smaller than for

the proton target, so the error for the neutron analyzing power is greater than for the

proton one. But, in general, the results for the Apy and Any are fully compatible with

each other (Fig. 4.4b, the values are given in Table 4.6), which confirms the correctness

of the experiment and its analysis. The obtained results fully coincide to the previous

results for the differential cross section and analyzing power (from the experiment with

single polarization) and therefore can be used in a combined analysis.
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4.4.2 Spin correlation coefficients Ax,x, Ay,y

It follows from the relation 4.2 that the experimental asymmetry in the double

polarized experiment can be written as follows:

ξ =
Σ1 − Σ2

Σ1 + Σ2

= PQ(Ax,x sin2 φπ + Ay,y cos2 φπ) , (4.12)

where Σ1 = N↑↑+N↓↓, Σ2 = N↑↓+N↓↑. Here, N denotes the number of events registered

with the beam and target polarization directions, shown by arrows, normalized to the

corresponding relative luminosity R, and PQ is the product of the beam and target

polarizations.

The background from the cell was subtracted separately for the combinations Σ1−Σ2

and Σ1 + Σ2. Since the background contribution has sensibly no polarization depen-

dence, for histograms of the differences of the event numbers the background turned

out to be very small.
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Figure 4.5: Spin correlation coefficients for the reaction ~n~p → {pp}sπ− at 353 MeV with statistical

errors, as a functions of pion emission angle [13]. (a) Ay,y. The horizontal line shows a fit

with a constant. (b) Values of Ax,x were obtained after imposing the requirement Ay,y = 1

for all angles of the pion emission. The systematic uncertainties for the point 90◦ (the blue

star, shifted slightly in angle to be distinguishable), obtained with the help of the relation

4.7, are much greater than purely statistical errors shown.
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The experimental data were distributed over five bins over the pion exit angle θπ
and the value of ξ/PQ was fitted with a linear function of cos2 φπ in each bin. The

detector acceptance was significantly higher for the events with large cos2 φπ values,

so the coefficient Ay,y was determined more accurately than Ax,x. The results for the

spin-correlation parameters as a function of θπ are shown in Fig. 4.5, and the values

are given in Table 4.7.

As can be seen from the expression 4.12, the values of the Ax,x and Ay,y depend

only on the product of the beam and target polarizations PQ, which in turn can be

determined if, in accordance with expressions 4.4, require for the average over all the

pion emission angles to be Ay,y = 1. This gives us a powerful tool for the study of

the systematic uncertainties. If one takes into account the uncertainty of 0.11, which

arises from the errors of the polarizations product PQ determination, the value Ay,y =

1.08 ± 0.04, obtained during the fit, is compatible with 1. Setting Ay,y = 1, one can

refine the measured value of the product PQ = 0.373 ± 0.015, which can be used to

determine Ax,x.

In order to reduce the uncertainties in the results for the spin-correlation coefficient

Ax,x, Ay,y ≡ 1 was fixed for all the angles θπ, after which the linear fit over the cos2 φπ

was repeated. This procedure yielded the result shown in Fig. 4.5b. Statistical uncer-

tainty dominates in the value of Ax,x (see also Appendix A). Systematic uncertainties,

in turn, arise from the error in the product of the polarization determination (0.04),

the possible difference in polarizations for the opposite spin directions (0.01), the un-

certainty of the relative normalization (0.023), and the effect of the longitudinal spin

component appearance due to the Fermi motion in the deuteron (up to 0.07).

Fig. 4.5b also shows the value of Ax,x = 0.51 ± 0.11 at 90o. It is obtained with

the relation 4.7, using the results of direct fit of the π0 and π− production cross sec-

tions. However, the error shown for this point is purely statistical and does not include

systematic effects from the relative normalization uncertainty.
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Central value Bin width, Ax,x Ay,y

θcmπ in the bin, [grad] [grad]

18.0 36 0.67± 0.12 1.06± 0.14

54.0 36 −0.03± 0.21 0.80± 0.19

90.0 36 0.67± 0.24 1.05± 0.15

126.0 36 0.80± 0.10 1.15± 0.07

162.0 36 1.10± 0.09 1.06± 0.07

Table 4.7: Values of the spin correlation coefficients Ax,x and Ay,y for the reaction ~n~p → {pp}sπ− at

353 MeV with statistical errors [13] (are shown by black dots in Fig. 4.5).

4.5 Partial wave analysis of the complete data set

The fit with the partial waves described in Sec. 4.3 was repeated with the new data

including the reanalyzed result for Apy from the single polarization experiment (see Sec.

4.2.1), the Apy estimation from the experimental data obtained on the hydrogen cell,

and the result for Ax,x. Also, the analysis took into account the significantly reduced

uncertainty of the proton beam polarization as a result of the performed reanalysis (see

Sec. 3.4.4). The previously obtained in the single polarized experiment values of the

unpolarized cross section (dσ/dΩ)0 for the π− production (Sec. 4.2), as well as the cross

section and Apy for the pp→ {pp}sπ0 reaction [80] were used in the analysis.

In contrast to the previously described analysis, the square of the d-wave amplitudes

was included in the fit procedure. In addition, the uncertainty effects in the data

normalization were included by constructing a complete nondiagonal covariant matrix

M for the measured points, and by minimizing the overall shape of χ2 = δiM−1
ij δj,

where δi is the measured deviation of the i-th point.

The search of a global minimum of χ2 was first performed on a grid in the space of the

magnitudes and phases of the p-wave amplitudes, and the s- and d-wave amplitudes were

fixed by the fit to the π0 production data. As a result, three minimums with very close

values of χ2 were found, after which five amplitudes were fitted nearby each minimum.

It should be noted that in the first analysis (4.3) the search for a global minimum on
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the grid was not performed and the result of the fit was obtained in accordance with

arbitrarily chosen initial parameters. The result of the previous analysis corresponds

to the first solution from this analysis and it does not correlate well with the theory

expectations. The properties of the three solutions are shown in Table 4.8. As can be

seen, the solutions differ from each other mainly in the parameters of p-wave amplitudes,

and the s- and d-waves stay essentially unchanged.
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Figure 4.6: The partial-wave analysis predictions for the reaction pn → {pp}sπ− at 353 MeV, Epp <

3 MeV; the solid, llong-dashed, and short-dashed lines correspond to the solutions 1, 2 and

3 from Table 4.8. Experimental results are also presented. (a) Differential cross section; (b)

Analyzing power Apy obtained in the double-polarized experiment; (c) Ax,x; (d) Ax,z, for

which there are yet no experimental data.

The predictions for the reaction np → {pp}sπ− observables for each of the three

solutions in comparison with the ANKE data are shown in Fig. 4.6. The data for

the differential cross section and analyzing power Apy are described equally well by all

three solutions. Meanwhile, the predictions for the spin-correlation coefficient Ax,x and,
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especially, for the Ax,z, differ significantly from each other. The data for the Ax,x ob-

tained in this paper does not contradict in general with any of the three predictions.

The second and third solutions are somewhat more preferable, but given the statisti-

cal uncertainties, one can not make the final choice in favor of one of the solutions.

Considering the radical differences in the predictions for the Ax,z, a measurement of

this coefficient becomes especially important for the resolving the ambiguities in the

analysis and determining which of the three possible solutions is physical one.

Are there any theoretical indications as to which of the three solutions of Table 4.8 is

to be preferred? Because of the strong coupling between the 3S1 and 3D1 partial waves,

the Watson theorem can not be used to deduce the phases of MS
p and MD

p amplitudes.

Nevertheless, one can propose a cautious assumption that the phases of the solutions

found should not differ drastically from the corresponding phases of elastic nucleon-

nucleon scattering. It is interesting to note that the phases of the p-wave production

amplitudes evaluated within χPT remain fairly close to the elastic phases, in spite of

the coupled-channel dynamics [53]. It is important to note that, although according to

the Watson theorem, the real production amplitude should acquire the elastic phase,

one does not know whether the "bare" amplitude is positive or negative. Therefore,

there is an ambiguity over the rotation by 180◦, or in other words, only the tangent of

the phase is relevant.

One can see from Table 4.8 that for the three solutions

(Im(MS
p )/Re(MS

p ), Im(MD
p )/Re(MD

p )) = (−0.44, 1.32), (0.02, −0.48) and (0.29, −0.53).

These are to be compared with the values from the nucleon-nucleon phase-shift analysis

values of (tan δ3S1
, tan δ3D1

) = (0.03, −0.46) [82], and with the values obtained from

the theoretical analysis within χPT of (0.04, -0.61) [53]. Although this theoretical

calculation does not coincide exactly with the elastic phases, nevertheless, it is much

closer to the second solution than to the third one. Specifically, the difference of 0.13 in

tan δ3D1
between the theory and the second solution corresponds to a phase difference

of only 5◦, whereas the difference obtained for the third solution is already 14◦. There

is therefore a distinct preference against solution 1 and possibly in favor of solution 2.

However, it is difficult to quantify up to what extent these theoretical reasoning can
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isolate one of the solutions, and to clarify the situation, a direct measurement of the

Ax,z is required.
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Amplitude Real Imaginary Im/Re

Solution 1: χ2/ndf = 101/82

MP
s 53.4± 1.0 −14.1± 0.3

MP
d −25.9± 1.4 −8.4± 0.4

MF
d −1.5± 2.3 0.0± 0.0

MS
p −37.5± 1.7 16.5± 1.9 −0.44± 0.06

MD
p −93.1± 6.5 122.7± 4.4 −1.32± 0.11

Solution 2: χ2/ndf = 103/82

MP
s 52.7± 1.0 −13.9± 0.3

MP
d −28.9± 1.6 −9.4± 0.5

MF
d 3.4± 2.6 0.0± 0.0

MS
p −63.7± 2.5 −1.3± 1.6 0.02± 0.03

MD
p −109.9± 4.2 52.9± 3.2 −0.48± 0.03

Solution 3: χ2/ndf = 106/82

MP
s 50.9± 1.1 −13.4± 0.3

MP
d −26.3± 1.5 −8.5± 0.5

MF
d 2.0± 2.5 0.0± 0.0

MS
p −25.4± 1.9 −7.3± 1.5 0.20± 0.07

MD
p −172.2± 5.6 92.0± 6.2 −0.53± 0.04

Table 4.8: Real and imaginary amplitudes values for the five lowest partial waves, determined from

the fit of the pp → {pp}sπ0 and np → {pp}sπ− [13]. The ratios of imaginary to real parts of

the amplitudes that were freely fitted are also shown. The other three relations unspecified

were fixed by the Watson theorem.
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4.6 Spin correlation coefficients Ax,x, Ay,y of the reaction

~n ~p→ dπ0

In addition to the main task of the experiment with the polarized beam and target,

the spin observables for the process ~n ~p→ {pp}sπ−determination, the same data allowed

to extract the spin-correlation coefficients Ax,x, Ay,y of the reaction ~n ~p→ dπ0 [14].

It follows from isospin invariance that the cross section for the process

np→ dπ0 should be half of that for pp → dπ+ but all the spin observables should

be identical for the two reactions. The pp→ dπ+ reaction has been intensively studied,

and a vast set of data on the cross section, analyzing powers, spin correlations and

spin transfers in both the direct and reverse channels has been accumulated. These

data were used in the SAID phase analysis for the proton beam energies up to 1.3

GeV [76]. In contrast, there are relatively few measurements of the cross section for the

reaction np→ dπ0 [85, 86], and even less is known about the spin dependence of the

process. The following analysis aimed to fill this gap and compare the results of the

pn-interaction with the available data for the pp → dπ+ and with the phase analysis

predictions.

In order to solve this problem, methods of the background subtraction and the re-

construction of the interaction vertex when measured with a target with an long storage

cell, described in Sec. 3.5.2 and 3.5.3, were used. The beam and target polarization

values and the relative normalizations, determined in the data analysis of the reaction

~n ~p→ {pp}sπ−, were also applied in this analysis. The identification of secondary par-

ticles and the events selection of the quasi-free reaction ~n ~p→ dπ0 are described in Sec.

3.5.1. The systematic uncertainty sources and their estimation are also similar to the

case of ~n ~p→ {pp}sπ−. Only events with the effective neutron energy within a limited

interval 333 < Tfree < 373 MeV were used in the analysis. The average energy was

varied over angle from 351 MeV to 357 MeV, being the smallest at θ ≈ 90◦.

The procedure of the spin correlations values obtain is similar to that used to esti-

mate Ax,x and Ay,y for the quasi-free reaction ~n ~p→ {pp}sπ−. The φπ-dependence of the
observed asymmetry ξ/PQ was fitted in bins over θcmπ to determine the spin-correlation
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Figure 4.7: Spin-correlation coefficients (a) Ax,x and (b) Ay,y obtained for the reaction ~n ~p→ dπ0,

depending on the pion emission angle θπ in the center of mass system [14]. The points are

shown with statistical errors. The values of the systematic errors are denoted by the shaded

area. Previously published data [87] are not shown because of too large error bars. The

results are compared with the SAID predictions [76] denoted by a solid line.
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coefficients. The result is shown in Fig. 4.7 and is given in Table 4.9, both coefficients

are well described by the SAID solutions [76]. The SAID data were averaged over the

Tfree range used with weights corresponding to the experimental Tfree distribution. Let’s

note that the existing at 350 MeV data for the Ax,x and Ay,y of the ~p~p → dπ+ pro-

cess [87] have error bars comparable with the signal value, and therefore not shown in

Fig. 4.7, weakly refine the partial-wave analysis.

Figure 4.8: The combination 1 + Ax,x + Ay,y, measured for the reaction ~n ~p→ dπ0, as a function

of the pion emission angle θπ [14], is compared with the SAID prediction for pp → dπ+

(dashed line) [76]. Statistical uncertainties are shown with error bars. Systematic uncertain-

ties are indicated by the shaded area. The open circles denote the data of the Az,z in the

reaction ~p~p→ dπ+ obtained in the IUCF experiment at 350 MeV [87]. The SAID prediction

for the Az,z is shown by the solid line.

The longitudinal spin correlation Az,z of the reaction ~p~p→ dπ+ at 350 MeV is more

accurately determined [87], and this result is shown in Fig. 4.8 in comparison with the

values obtained for the value 1+Ax,x+Ay,y of the reaction ~n~p→ dπ0 at 353 MeV. These

two quantities coincide exactly at θπ = 0o and 90o. And if the pion d-wave is neglected,

which should be a good approximation for such low energies, Az,z = 1+Ax,x+Ay,y over

the full angular range. As can be seen, the result for 1 + Ax,x + Ay,y really agrees well

with both the data [87] and the predictions of the SAID partial-wave analysis [76]. It

can be noted that there are no signs of any isospin invariance breaking, although the

accuracy of the data does not allow to consider this result as a significant verification

of the symmetry.
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Central value Bin width, Ax,x ± stat± sys Ay,y ± stat± sys

θcmπ in the bin, [grad] [grad]

11.25 22.5 −0.87± 0.02± 0.04 −0.85± 0.02± 0.05

33.75 22.5 −0.79± 0.02± 0.04 −0.90± 0.02± 0.05

56.25 22.5 −0.68± 0.03± 0.04 −0.83± 0.02± 0.04

78.75 22.5 −0.59± 0.09± 0.03 −0.71± 0.03± 0.04

101.25 22.5 −0.68± 0.16± 0.06 −0.75± 0.05± 0.04

123.75 22.5 −0.63± 0.15± 0.03 −0.84± 0.04± 0.04

146.25 22.5 −0.89± 0.26± 0.04 −0.88± 0.05± 0.05

Table 4.9: Spin correlation coefficients Ax,x and Ay,y values for the reaction ~n ~p→ dπ0 at 353 MeV

with statistical and systematic errors [14].
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Epilogue

The measurements of the differential cross section and spin observables for the re-

action pn → {pp}sπ− performed at the beam energy of 353 MeV and under the same

kinematic conditions with data for the pp → {pp}sπ0 process [80] allow to determine

with the discrete ambiguity both spin amplitudes of the isoscalar reaction channel

pn → {pp}sπ− and to carry out a partial-wave analysis of these amplitudes taking

into account the contribution of the s-, p- and d-waves of the π meson. The practical

and scientific significance of the result obtained is that the isolation of the transition

amplitude 3S1 → 1S0p, which contains the chiral LEC d, gives the necessary grounds

for this parameter extracting from the obtained data. At the same time, the results

of the analysis show that in order to eliminate the discrete ambiguity in the solutions

obtained for the partial waves, it is necessary to measure the spin correlation coeffi-

cient Ax,z, which is the most sensitive to the form of solutions found. The proposal

for the corresponding experiment was made on ANKE-COSY [65] and approved by

the COSY program committee. Another use of the obtained results of partial wave

analysis and elimination of its ambiguity will be the use of the detected amplitudes of

the processes pn → {pp}sπ− and pp → {pp}sπ0 to describe the data on the deuteron

breakup pd → {pp}sn at the same 350 MeV energy under kinematics of elastic back-

ward pd scattering [88]. As shown in [89], the mechanism of the triangular diagram

with the subprocess pN → {pp}sπ is the most likely mechanism of this process for

the energy under consideration. The corresponding data on the deuteron breakup were

obtained on ANKE-COSY and are currently in the analyzing stage. There is reason to

expect that the description of the pd → {pp}sn reaction data will allow us to choose
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the most optimal of the three solutions found for the partial amplitudes of the process

pn→ {pp}sπ−.
From the theory point of view for the process under consideration, pn → {pp}sπ−,

the procedure of extraction of the parameter d from the available data requires the

implementation of complex theoretical calculations within χPT, which are currently car-

ried out both at the level of modification of the NN -potential in the 5-th perturbation

theory order [90], and of construction of the axial current operator in the 4-th order [91].

The methodological result of this work was the development of the procedures for

the analysis of the data obtained with a target with a long storage cell in an experiment

with a polarized beam and target. This technique was used in the analysis of a number

of processes in measurements with double polarization on ANKE [92–94] and can be

used in other experiments with a storage cell.
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Outlook

The work is devoted to the measurement of the spin observables for the quasi-free

reactions pn→ {pp}sπ− and pn→ dπ0near 353 MeV per nucleon. The experiment was

carried out at the ANKE spectrometer (COSY-Jülich).

The main results of the thesis are:

1. The differential cross section dσ/dΩ and the proton analyzing power Apy for the

process ~pn→ {pp}sπ− at the proton beam energy Tp = 353 MeV over the whole

angular interval and at the excitation energy of the diproton Epp < 3 MeV were

measured for the first time. The results obtained are basically consistent with

the TRIUMF data at the same energy and Epp < 1.5 MeV, available in a limited

central interval of angles.

2. Using the time information from the vertex ANKE detector, the proton analyzing

power Apy was obtained with a Epp < 1.5 MeV cut, which allowed comparison

with the TRIUMF results under the same conditions. The ANKE data in both

cases are well matched, while the observed discrepancy with the TRIUMF data

is preserved.

3. The process ~n ~p→ {pp}sπ− was investigated for the first time with the use of a

vector-polarized deuteron beam and a polarized proton target. Polarimetry tech-

niques, the background accounting and the vertex coordinate reconstructing when

measured with a storage cell were developed for the double-polarized experiment.

4. The differential cross section dσ/dΩ, the proton Apy and neutron Any analyzing

powers were determined for the process ~n ~p→ {pp}sπ− from the data with double
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polarization. The results show good agreement with the differential cross section

and the analyzing power Apy obtained in the single-polarized experiment, which

indicates the correct consideration of systematic effects.

5. The first measurements of the spin correlation coefficients in Ax,x and Ay,y for the

reaction ~n ~p→ {pp}sπ− at Tn = 353 MeV were carried out. The results agree

with the theoretical expectation Ay,y = 1 in the full range of angles, while the

value Ax,x shows a deep minimum in the region of θcmπ = 60o.

6. The combination of all the obtained spin observables and cross section made it pos-

sible to carry out a joint partial-wave analysis for the processes pp→ {pp}sπ0 and

pn→ {pp}sπ− at 353 MeV. Three possible solutions to the analysis were found,

equally satisfying the experimental data. It was shown that the best way to re-

solve ambiguity is to measure the mixed spin-correlation parameter Ax,z. The

results of the analysis are necessary for the further determination of the contact

(NN)2π interaction constant in χPT.

7. The spin correlation coefficients Ax,x and Ay,y were measured for the first time

for the reaction ~n ~p→ dπ0. The results demonstrate a good agreement with the

partial-wave SAID analysis for the reaction ~p ~p→ dπ+, as well as with the avail-

able data for Az,z for this reaction. There were no signs of isospin invariance

violation.
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Appendix A

Systematic errors of the normalization

A.1 Impact of the inaccuracy in the polarization determina-

tion

In order to verify the validity of use of the equal polarization values for states with

polarization vectors directed up and down, both for the beam and for the target, one

can investigate the polarization uncertainties influence on the result.

Let us write the beam polarization values for different polarization vector directions

as follows: P ↑= P − δp + η, P ↓= P + δp + η, Q ↑= Q− δq + ηq, Q ↓= Q + δq + ηq,

where P and Q are the averaged beam and target polarizations, respectively, 2δp and

2δq are the differences between the polarization values for opposite polarization vector

directions, η is the deviation of the measured values of P and Q from the real ones.

The polarization estimates obtained experimentally yield values of δp, δq and η within

5%.

Then, the ratio ξ
PQ

, from the angular dependence of which the spin correlation

coefficients are determined, can be written as

ξ

PQ
=

C(1 + η
P

+ ηq
Q

+ ηηq
PQ

)

1− A(δp+ δq) + Cδpδq
, (A.1.1)

where ξ = Σ1−Σ2

Σ1+Σ2
, Σ1 и Σ2 are rates with the same and opposite beam and target

polarizations directions, respectively, A = Ay · cosφ, C = Ax,x sin2 φ+ Ay,y cos2 φ.
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In this case, the variation of the ratio ξ
PQ

can be written as follows:

δ
ξ

PQ
=

((
(A− Cδq)C(1 + η

P
+ ηq

Q
+ ηηq

PQ
)

(1− A(δp+ δq) + Cδpδq)2
δp

)2

+

(
C( 1

Q
+ η

PQ
)

(1− A(δp+ δq) + Cδpδq)
δη

)2

+

(
(A− Cδp)C(1 + η

P
+ ηq

Q
+ ηηq

PQ
)

(1− A(δp+ δq) + Cδpδq)2
δq

)2

+

(
C( 1

P
+ ηq

PQ
)

(1− A(δp+ δq) + Cδpδq)
δη

)2
)1/2

(A.1.2)
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Figure A.1: The angular dependence of the δ ξ
PQ uncertainties for the polarization P and Q varia-

tion, on the left δp = δq = 0%, on the right δp = δq = 5%.

Fig. A.1 shows the obtained distribution of the deviations δ ξ
PQ

with varying polar-

izations for different bins over cos2 φ and θ. The main contribution to the systematic

error in the polarization determination is made by the shift of average for the polariza-

tions P ↑, P ↓. It is fixed with an accuracy of 4% by the definition of the polarization

product PQ with use of the relation Ay,y = 1 for the process pn → {pp}sπ−. As can

be seen from the comparison of two histograms in Fig. A.1, the difference between P ↑
and P ↓ is negligible and the value 0.01 is used as a conservative estimate.

A.2 Relative luminosity determination error

In order to evaluate the influence of inaccuracy in the luminosity determination, one

can write the relative luminosity as follows:

R ↑↓= L ↑↓
L

= 0.97± 0.02 , (A.2.3)
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R ↓↑= L ↓↑
L

= 0.95± 0.02 (A.2.4)

R ↓↓= L ↓↓
L

= 1.07± 0.02 , (A.2.5)

where L = L ↑↑.
Then the number of particles registered at different directions of the beam and target

polarizations is expressed as follows:

N ↑↑= L · σ0(1 + A · (P +Q) + C · PQ) , (A.2.6)

N ↑↓= R ↑↓ L · σ0(1 + A · (P −Q)− C · PQ) , (A.2.7)

N ↓↑= R ↓↑ L · σ0(1− A · (P −Q)− C · PQ) , (A.2.8)

N ↓↓= R ↓↓ L · σ0(1− A · (P +Q) + C · PQ) . (A.2.9)

Having made the following designations: D1 = 1 − R ↑↓ −R ↓↑ +R ↓↓, D2 =

1 − R ↑↓ +R ↓↑ −R ↓↓, D3 = 1 + R ↑↓ −R ↓↑ −R ↓↓, D4 = 1 + R ↑↓ +R ↓↑ +R ↓↓,
one can obtain an expression for the ratio ξ

PQ
as an angular function:

ξ

PQ
=

D1

PQ
+ D2·A

Q
+ D3·A

P
+D4 · C

D4 +D3 · AP +D2 · AQ+D1 · CPQ
. (A.2.10)

After that, by varying the relative luminosities

∂ξ/PQ

∂δR ↑↓
=
PQ
(

(− 1
PQ
− A

Q
− A

P
+ C)(D4 + AD3

Q
+ AD2

P
+ CD1

)
(D4 + APD3 + AQD2 + CPQD1)2

−(
D1

PQ
+ AD2

Q
+ AD3

P
+ CD4)( 1

PQ
+ A

Q
− A

P
− C)

)
(D4 + APD3 + AQD2 + CPQD1)2

,

∂ξ/PQ

∂δR ↓↑
=
PQ
(

(− 1
PQ

+ A
Q
− A

P
+ C)(D4 + AD3

Q
+ AD2

P
+ CD1

)
(D4 + APD3 + AQD2 + CPQD1)2

−(
D1

PQ
+ AD2

Q
+ AD3

P
+ CD4)( 1

PQ
− A

Q
+ A

P
− C)

)
(D4 + APD3 + AQD2 + CPQD1)2

,
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∂ξ/PQ

∂δR ↓↓
=
PQ
(

( 1
PQ
− A

Q
− A

P
+ C)(D4 + AD3

Q
+ AD2

P
+ CD1

)
(D4 + APD3 + AQD2 + CPQD1)2

−(
D1

PQ
+ AD2

Q
+ AD3

P
+ CD4)( 1

PQ
− A

Q
− A

P
+ C)

)
(D4 + APD3 + AQD2 + CPQD1)2

,

one obtains the required expression for the variations of the δ ξ
PQ

determination under

the experimental uncertainty for the relative luminosities:

δ
ξ

PQ
=

√(∂ξ/PQ
∂δR ↑↓

)2

(δR ↑↓)2 +
(∂ξ/PQ
∂δR ↓↑

)2

(δR ↓↑)2 +
(∂ξ/PQ
∂δR ↓↓

)2

(δR ↓↓)2.
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Figure A.2: Uncertainty δ ξ
PQ for the varying relative luminosities, depending on the bin over cos2 φ

and θ.

Fig. A.2 shows the obtained distribution of the deviations δ ξ
PQ

with the varying

relative luminosities for different bins over cos2 φ and θ. The systematic error averaged

over the angels is 0.023.
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Appendix B

Kinematic variables determination

B.1 Kinematics of quasi-free collision

Pp = Zpn Pn

Pd

Pπ

Ypn

Xpn

P Py

Figure B.1: Kinematics of quasi-free pn interaction.

When studying the quasi-free processes in pd collisions, the initial state of the pn

system is defined as ˘(pn) = p̆+d̆−p̆spec, where the upper symbol of˘means 4-vector, and

pspec is the spectator proton in the deuteron, affecting only the kinematics of the process.

In the measurements described in this work it was agreed to count the scattering angle

with respect to the momentum of the initial free proton Pp, regardless of whether a

proton beam or target was used. The spectator’s momentum was known either from

direct measurement, or as missing 4-momentum of the reaction.

105



The kinematics of the pd→ Xπ+ pspec reaction in the (pn) rest frame is illustrated

in Fig. B.1, where the hat symbols P̂π, P̂p, etc. the 3-momenta of particles in the (pn)

rest frame are marked. In this system the Z-axis is determined by the initial proton,

the Y-axis is the unit vector P̂p × P̂π, and the X-axis forms the right-hand coordinate

system with them. Note that the Z-axis here does not coincide with the beam direction

in the laboratory system.

The beam or target polarization vector ~P in Fig. B.1, which is directed vertically

in the described experiments, also does not lie in the (X, Y )pn plane, which leads to

the appearance of a small component Pz. This effect was taken into account in the

systematic measurement errors evaluation.

In order to compare the results with the available data on free pn and pp scattering,

the energy in the (pn) system was expressed as "free" energy Tfree of the beam, obtained

in free collision at the same s value:

Tfree = [s− (mp +mn)2]/2mp,

where
√
s is the total energy in the (np) center of mass system, and mp and mn are the

proton and neutron masses.

B.2 Process pN → {pp}sπ variables

Knowing the particle masses and 3-momenta in the initial state, the kinematics of

the process event is determined by the 9 components of the 3-momenta of the final

particles. Taking into account the four laws of energy and momentum conservation

reduces the number of independent variables to 5. The pN → {pp}sπ can be considered

as a reaction with two particles in the final state, considering the subsystem {pp}s as

one particle. Then, the setting the process kinematics is divided into the description of

the reaction 2→ 2 in the center of mass system and variables of the {pp}s system.

In this paper, the following set of kinematic variables is used: (θcmπ , φπ, θk, φk, Epp).

Here θcmπ and φπ are the polar and azimuthal angles of π− in the center of mass system

(see Figure B.2a). The polar and azimuth angles of the diproton are defined as θcmpp =

180o − θcmπ and φpp = φπ + 180o, respectively.
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Figure B.2: Reaction pN → {pp}sX kinematics.

The polar and azimuth angles θk and φk in the rest frame of the proton pair are

defined in Fig. B.2b. In this case, θk is reckoned from the Pπ direction in the center of

mass system of the reaction, and φk is measured from the plane formed by the beam

particle Pp and the pion momentum Pπ in the center of mass system.

The diproton excitation energy, equal to the kinetic energy in the rest frame of the

proton pair, is defined as Epp = 2(m2
p + k2)1/2− 2mp, where k is the proton momentum

in the diproton center of mass system, and mp is the proton mass.
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