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Zusammenfassung
Frühere Messungen an verschiedenen Großforschungsanlagen zur Bestimmung der
η-Mesonmasse lieferten hochpräzise Ergebnisse, die sich jedoch um mehr als acht
Standardabweichungen voneinander unterscheiden, d.h. 0.5 MeV/c2. Bemerkens-
wert dabei ist, dass im Gegensatz zu den jüngsten "Invariant Mass" Experimenten
insbesondere zwei "Missing Mass" Experimente, bei denen das η-Meson im 3He η
Endzustand produziert wurde, zu kleineren Massenwerten abweichen. Das Ziel
der neuen Messung an COSY-ANKE war daher die uneindeutige Massensituation
zu klären. So wurde in einem verfeinerten "Missing Mass" Experiment die Pro-
duktionsschwelle der Reaktion d p → 3He η, die direkt von der η-Masse abhängt,
bestimmt. Dies gelang durch die Messung eines schwellennahen Datensatzes von
zwölf Deuteronstrahlimpulsen und den dazugehörigen 3He-Endzustandsimpulsen
der Reaktion d p → 3HeX. Die η-Produktion wurde dabei durch Berechnung
der "Missing Mass" klar identifiziert. Für die Messung der einzelnen Strahlimpulse
wurde ein polarisierter COSY-Deuteronenstrahl durch eine künstlich erzeugte Spin-
resonanz, die bei eindeutig definierten Umlauffrequenzen auftritt, depolarisiert.
Mit dieser Methode wurden die Strahlimpulse um 3GeV/c mit einer bis daher
noch nicht erreichten Genauigkeit von 3× 10−5 bestimmt. Die einfache Kinematik
der Zwei-Teilchen-Reaktion d p→ 3He η und die vollständige geometrische Akzep-
tanz von ANKE für die gewünschte Reaktion ermöglichten eine sehr genaue Kalib-
rierung des Vorwärtsdetektorsystems und somit eine genaue Bestimmung der 3He-
Endzustandsimpulse. Bei der Kalibrierung wurde die Impulskugel des 3He η Endzu-
standes auf ihre Symmetrie untersucht. Aufgrund der vollständigen geometrischen
Akzeptanz für den gesamten Raumwinkelbereich wurde die Abhängigkeit des 3He-
Endzustandsimpulses für alle Streuwinkel im Schwerpunktsystem untersucht. Ins-
gesamt lieferte die COSY-ANKE Messung mit

mη = (547.873 ± 0.005stat. ± 0.027syst.) MeV/c2

somit weltweit den genauesten Wert der η-Masse. Während dieser Wert im Gegen-
satz zu den älteren "Missing Mass" Experimenten steht, stimmt er mit den Ergeb-
nissen der "Invariante Masse" Experimente, in denen das Meson über seine Zerfall-
sprodukte nachgewiesen wurde, überein.





Abstract
Previous measurements of the η meson mass performed at different experimental
facilities resulted in very precise data but differ by up to more than eight standard
deviations, i.e., 0.5MeV/c. Interestingly, the difference seems to be dependent on
the measuring method: two missing mass experiments, which produce the η meson
in the 3He η final state, deviate from the recent invariant mass ones. In order to
clarify this ambiguous situation a high precision mass measurement was realised at
the COSY-ANKE facility. Therefore, a set of deuteron laboratory beam momenta
and their associated 3He centre-of-mass momenta was measured in the d p→ 3HeX
reaction near the η production threshold. The η meson was identified by the missing
mass peak, whereas its mass was extracted by fixing the production threshold. The
individual beam momenta were determined with a relative precision of 3 × 10−5

for values just above 3GeV/c by using a polarised deuteron beam and inducing
an artificial depolarising spin resonance occurring at a well-defined frequency. The
final state momenta in the two-body reaction d p → 3He η were investigated in
detail by studying the size of the 3He momentum sphere with the forward detection
system of the ANKE spectrometer. Final alignment and momentum calibration of
the spectrometer was achieved by a comprehensive study of the 3He final state
momenta as a function of the centre-of-mass angles, taking advantage of the full
geometrical acceptance. The value obtained for the mass at COSY-ANKE

mη = (547.873± 0.005stat. ± 0.027syst.) MeV/c2

is therefore worldwide the most precise one. This mass value is contrary to earlier
missing mass experiments but it is consistent and competitive with recent invariant
mass measurements, in which the meson was detected through its decay products.
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1. Introduction

Searching for the basic building blocks of matter and investigating the forces in-
teracting between them are two main objectives of modern particle physics. First
ideas that matter consists of indivisible, fundamental, and elementary particles
were introduced in Ancient Greece. Since the end of the 19th century experiments
confirmed a kind of basic component of matter, the atom, indicating at the same
time its substructure composed of a dense, central, and positively charged nu-
cleus surrounded by a cloud of negatively charged electrons. Further experiments
of J.J. Thomson, E. Rutherford, and J. Chadwick identified the individual con-
stituents beside electrons as protons and neutrons. According to the current state
of knowledge the electron is an indivisible point-like particle, whereas proton and
neutron show an internal structure consisting of quarks.

The development of the first particle accelerators, the Van-de-Graaff accelerator
and the cyclotron of E. Lawrence in the 1930s, made it feasible to investigate by
way of scattering experiments the proton and neutron structure in more detail. Un-
expectedly, a lot of unknown, subatomic, short-lived and unstable particles named
as hadrons and leptons were produced in these experiments.
The large number of hadrons is classified into two different groups: baryons con-
sisting of three quarks and mesons consisting of a quark-antiquark pair, the latter
including the η meson. Main research focal points of modern particle physics tend to
understand physical processes and interactions between these particles on a length
scale of < 10−15 m. Therefore extensive investigations of particle properties are
imperatively necessary. One of the most essential properties of a subatomic particle
is its mass, often used in theoretical models and calculations. Hence an accurate
knowledge of particle masses is of prime importance and can only be provided by
high precision experiments.

Every year the Review of Particle Physics is published by an international col-
laboration, the Particle Data Group (PDG), summarising all published results of
particle property measurements. Looking back to the year 2000 the PDG masses
and uncertainties of the lightest pseudoscalar mesons barely changed with excep-
tion of the η meson mass. During last 20 years the PDG had to adjust the η mass
value and its uncertainty four times, due to new experimental results. Currently
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1. Introduction

the PDG [N+10] quotes a η mass value of

mη = (547.853± 0.024) MeV/c2,

whereas in the review of 2006 [Y+06] the η meson mass value was still listed with
mη = (547.51 ± 0.18) MeV/c2. Compared to other pseudoscalar mesons the preci-
sion differed by up to two orders of magnitude. The pion masses were known with
a precision of ∆mπ/mπ ≈ 10−6, the kaon masses with ∆mK/mK ≈ 10−5, but the
mass of the η meson was specified with a precision of ∆mη/mη ≈ 10−4 only. The
large uncertainty in 2006 and the variations of the PDG value in the last decade
were originated by contradictory results of different experiments. Presently, results
of experiments producing the η meson in the reaction

d p→ 3He η

differ by up to ≈ 0.5 MeV/c from the PDG value.

In order to clarify this unsatisfactory and ambiguous situation a new high precision
η mass measurement was proposed in October 2007 [Kho07] via this reaction using
the ANKE spectrometer [B+01] installed at COSY, the COoler SYnchrotron [Mai97]
ring of the Forschungszentrum Jülich. This proposal was immediately accepted by
the Program Advisory Committee of this facility and in March 2008 the measure-
ment was realised in a four week long beam time.
By producing the η meson in a simple two-body reaction it was possible to deduce
the mass exclusively from pure kinematics. In order to be competitive and compa-
rable in accuracy with recent results two kinematic quantities had to be determined
with a precision never reached at COSY-ANKE before: the beam momentum pd of
the deuteron beam stored in COSY and the 3He final state momentum pf measured
with ANKE.

For the determination of the beam momentum a new technique was implemented
at COSY, the so called resonant depolarisation technique or also named as spin-
resonance method. It increased the reachable accuracy compared to the conven-
tional one by more than one order of magnitude, i.e., ∆p/p < 10−4. Large parts
of the beam momentum determination were carried out in a former Diploma the-
sis [Gos08]. Nevertheless, the analysis was finalised in the scope of this Phd thesis
and the results were published [G+10].
For that reason, one main emphasis of this Phd thesis lies on the precise deter-
mination of the 3He η final state momentum defined in the centre-of-mass frame.
Therefore, it was necessary in the analysis to clearly identify the reaction of in-
terest, describe the background, carefully verify the detector calibration to gain a
deeper understanding of the 3He η signal. In particular, it was indispensable to put
a lot of effort to understand the resolution effects of the ANKE detector, which
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influences the measuring process.
Finally, the COSY-ANKE experiment provides the world’s best measurement for
the η meson mass of

mη = (547.873± 0.005stat. ± 0.027syst.) MeV/c2 .

This result is in agreement with the current PDG estimation for the mass and the
precision achieved is similar to those ones of recent experiments.

Briefly introducing the current situation of the η meson mass in Chapter 2, the
measuring method and experimental apparatus are presented in Chapters 3 and 4.
Chapter 5 shortly summarises the beam momentum determination, followed by a
detailed description for the analysis of the final state momenta in Chapter 6. The η
mass determination and its uncertainties are discussed in more detail in Chapter 7.
Finally, the COSY-ANKE result is compared with those ones of other experiments
in Chapter 8.
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2. Nature of the η meson

By scattering experiments at particle accelerators since the 1930s scientists pushed
forward to smaller length scales to investigate the basic building blocks of mat-
ter. Doing these experiments the η meson as well as a large number of other new
subatomic particles were discovered named as leptons and hadrons. According to
current knowledge leptons are indivisible, whereby hadrons are composite particles
consisting of elementary quarks. Introducing the quark model Gell-Mann [GM62]
and Zweig [Zwe64] grouped hadrons into baryons and mesons according to their
quantum numbers. The quark model is derivable from the theory of strong inter-
action, i.e., quantum chromodynamics (QCD) explaining the interaction between
quarks and gluons. QCD, the electroweak interaction and the Higgs mechanism are
the main components of a more extensive model: "the standard model of particle
physics". Up to the 1980s by the interplay of theoretical considerations and experi-
mental results in particle physics the standard model was developed describing the
elementary particles and the forces acting among them.

In the following sections the standard model and quantum chromodynamics will be
shortly introduced. Afterwards in context of the quark model the η meson properties
will be discussed with main focus on the particle mass.

2.1. Standard model and quantum chromodynamics

The standard model of particle physics is a relativistic quantum field theory de-
scribing three of the four known fundamental forces of nature acting between ele-
mentary particles. The fundamental interactions are gravitation, electromagnetic
interaction, and finally the weak nuclear and the strong nuclear forces. Above the
unification energy electromagnetic and weak interactions are unified in electroweak
theory. The gravitation is not considered in the standard model. On the length
scale of particle physics gravity is many orders of magnitude weaker than the other
forces and therefore negligible.

In the standard model the fundamental forces among elementary matter parti-
cles known as fermions are described by the exchange of force mediating particles
known as gauge bosons. Figure 2.1 shows the indivisible particles of the standard
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2. Nature of the η meson

model. According to the spin-statistics theorem particles with half integer spin are
fermions and those with integer spin are bosons. The force carrying gauge bosons,
which represent the action of force fields, are generated by a special property of
fermions: called charge. The massless photon transmits the electromagnetic in-
teraction among electrically charged particles, which is described by the quantum
electrodynamics (QED). The massive W±, Z0 gauge bosons act as carrier of the
weak interaction between particles with weak isospin. The eight massless gluons
mediate the strong interaction between colour-charged particles, i.e., quarks and
gluons. In contrast to the other force mediating particles gluons carry colour-
charge. Consequently, they interact strongly among themselves.

u
up

c
charm

t
top

d
down

s
strange

b
bottom

ν
e-neutrino

ν
μ-neutrino

ν
τ-neutrino

e
electron

μ
muon

τ
tau

e μ τ

γ
photon

g
gluon

W
W boson

Z
Z boson

Quarks

Three Generations of Matter (Fermions)

Force 
Carriers 

(Gauge Bosons)

Leptons

H
Higgs

I II III

Figure 2.1.: The elementary particles of the standard model are grouped into
fermions, the force mediating gauge bosons, and the higgs boson.
(Fermions are grouped into six quarks and six leptons.)

According to quantum field theory, there is an associated antiparticle to each parti-
cle with identical mass and spin, but exactly opposite additive quantum numbers1.
That means there are associated antileptons and antiquarks corresponding to the
fundamental fermions.

1 Additive quantum numbers are for example electric charge, colour charge, lepton or baryon
number. Particles with additive quantum numbers equal zero are their own antiparticles, like
the η meson or the photon.
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2.1. Standard model and quantum chromodynamics

Predicted in 1964 by P. Higgs, F. Englert, and R. Brout [Hig64, EB64] the scalar
Higgs boson is an elementary particle with zero spin which had not been observed
experimentally for a long time. The Higgs mechanism, i.e., the scalar higgs field,
was introduced as part of the Standard model in order to explain why the gauge
bosons of weak interaction (W±, Z0) have mass in contrast to the photon in QED.
Furthermore, this methodology can explain the origin of the mass of elementary
fermions.
From 2011 to the end of 2012 two experiments, ATLAS and CMS, placed at the
Large Hadron Collider (LHC) at CERN, collected a lot of data from proton proton
collisions searching for the higgs boson. At the end of 2012 the two experiments
announced the discovery of a new particle with a mass of ≈ 125 GeV/c2 which
might be the higgs introduced in the standard model [ATL12, CMS12].

The twelve elementary fermions listed in Table 2.1 are grouped into three genera-
tions or families of matter with four particles. Each generation contains two quarks
and two leptons. The strongly interacting quarks have different flavour and frac-
tional electric charge. The two leptons consist of a charged one (e, µ, τ) and the
associated neutrino (νe, νµ, ντ ), which interacts weakly only. The different genera-
tions are characterised by different mass ranges. Particles of the second and third
generation are often referred as heavier copies of particles of the lightest one. The
basic components of atoms forming the existing baryonic matter surrounding us
are the charged particles of the first generation, i.e., up-quark, down-quark, and
the electron.

Quark Charge Mass Lepton Charge Mass
u +2/3 e 1.8− 3.0 MeV/c2 e −1 e 0.511 MeV/c2

d −1/3 e 4.5− 5.5 MeV/c2 νe 0 < 2 eV/c2

c +2/3 e 1.25− 1.30 GeV/c2 µ −1 e 105.7 MeV/c2

s −1/3 e 90− 100 MeV/c2 νµ 0 < 0.19 MeV/c2

t +2/3 e ≈ 173.5 GeV/c2 τ −1 e 1776.8 MeV/c2

b −1/3 e 4.15− 4.21 GeV/c2 ντ 0 < 18.2 MeV/c2

Table 2.1.: The three generations of elementary fermions, quarks, and leptons,
with electrical charge and mass [N+10].

Due to their different interactions fundamental fermions are separated into quarks
and leptons. Unlike all other elementary particles, only quarks and gluons interact
strongly, described by QCD, a non-abelian quantum field theory. In QCD quarks
have an additional quantum number called colour charge. It occurs in three differ-
ent types, red, green, and blue. Antiquarks carry a corresponding anti-charge, like
antired, antigreen, or antiblue. In contrast to the single electrical uncharged force
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2. Nature of the η meson

carrier in QED, the photon, there are eight different colour-charged gauge bosons
in QCD. These are the gluons possessing different colour and anticolour. Carrying
colour gluons interact strongly among themselves leading to colour confinement, a
special property of QCD. Colour confinement means that colour-charged particles
like quarks cannot exist freely in nature, but only in colour-neutral or colourless sys-
tems confined with other quarks. Colour-neutral states can be formed by all three
different colour or anticolour values or by the combination of a colour-anticolour
pair. These bound quark systems are denoted as hadrons. Until now, all hadrons
observed in experiments are colour-neutral. They are organised in baryons and
mesons depending on how the colourless bound state is constructed.

Baryons or antibaryons consist of three quarks (q q q) or antiquarks (q̄ q̄ q̄) with
three different colour or anticolour charges forming a colourless bound system.
Their spin is based on the half integer quark spin which can be combined to 1/2 or
3/2. By this baryons are fermions and obey the Pauli exclusion principle. The best-
known baryons are the nuclear components, i.e., the proton consisting of (u u d)-
quarks and the neutron of (u d d)-quarks.

Mesons are composed of a quark-antiquark pair (q q̄) with colour and anticolour
charge. Consequently, the spin is combined to 0 or 1. Thus, mesons are bosons. The
π+ meson is one example comprising an up-quark and a down-antiquark pair (u d̄).
Another example is the η meson consisting of a combination of the three lights
quarks (u, d, s). According to the current state of knowledge the proton is the
only stable hadron, whereas all others are unstable, decaying via the fundamental
interactions into lighter particles.

According to QCD the inner structure of baryons and mesons is much more com-
plex than described above as a three quark or a quark-antiquark system. In the
framework of the quark model these quarks are called valence quarks, defining the
quantum numbers of hadrons. Additionally to their valence quarks in QCD hadrons
contain a large number of virtual gluons and virtual quark-antiquark pairs, called
sea quarks, interacting with each other.

2.2. General properties of the η meson

The η particle is one of the mesons. In the quark model mesons are bound states
of a quark-antiquark pair (q q̄) with spin s = 0 (antiparallel quark spins) or s = 1
(parallel quark spins) determined by the combination of the quark spins. The total
angular momentum ~J and the associated quantum number J are given by the spin
~S and the orbital angular momentum ~L via the relation

~J = ~S + ~L with |l − s| 6 J 6 |l + s| . (2.1)

8



2.2. General properties of the η meson

While states with orbital angular momentum l = 0 are ground states with lightest
mass, those one with orbital excitation l > 0 are treated as excited states linked to
higher masses. The abundance of different mesons is arranged by their quantum
numbers JPC in multiplets. The parity P and the charge conjugation C, or C-parity
are given for mesons by

P = (−1)l+1 and C = (−1)l+s . (2.2)

C-parity is defined for neutral particles only, but it can be generalised to G-parity
including charged particles. While states with l = 0 are denoted as pseudoscalar
mesons JPC = 0−+ and vector mesons JPC = 1−−, those ones with l = 1 are
classified as scalar JPC = 0++, axial vector JPC = 1+±, and tensor mesons JPC =
2++.

The η meson has quantum numbers JPC = 0−+ and is assigned to the pseudoscalar
mesons. Considering only the three lightest quark flavours (u, d, s), nine different
meson states or quark-antiquark combinations can be arranged. Mathematically
the multiplication is described by the SU(3) flavour symmetry resulting in a anti-
symmetric octet and a symmetric singlet of light quark meson states. This can be
visualised in a weight diagram by plotting the strangeness versus the isospin. In
Figure 2.2 it is depicted for the pseudoscalar mesons with JPC = 0−+. Particles
with non vanishing strangeness are named as kaons, whereas the (u d̄), (d ū) com-
binations are identified as π+, π− mesons. States in the centre of the diagram with
same strangeness and isospin quantum numbers can interfere with each other.

uddu

ds us

su sd

-1 +1-½ +½

-1

+1

I
3

S

π0
η

η'
π+π-

K0 K+

K- K0

-1 +1-½ +½

-1

+1

I
3

S

1

√2 (u ū−d d̄)

us

1

√6(u ū+d d̄−2s s̄)

1

√3(u ū+d d̄+s s̄)

J PC = 0- +

Figure 2.2.: Pseudoscalar mesons with quantum numbers JPC = 0−+.
Left: Theoretical states according to SU(3) flavour symmetry.
Right: Particles measured experimentally.
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2. Nature of the η meson

If the particles observed in experiments π0, η and η′ were pure eigenstates of the
SU(3) flavour symmetry, they could be directly assigned to the three theoretical
states. This is not the case because the quarks have different masses and so the
flavour symmetry is broken. While the π0 is assigned to the state 1/

√
2(uū− dd̄),

the η and η′ are given as linear combinations of the theoretical states

η0 = 1√
3
(
uū + dd̄ + ss̄

)
and η8 = 1√

6
(
uū + dd̄− 2ss̄

)
. (2.3)

The values of the mixing angle θ published in literature differ from θ ≈ −11◦
to −20◦ [BLN90], depending on the determination method. However, using the
average value of θ ≈ −15◦ the quark content of the η meson is composed of 30%
(u, ū), 30% (d, d̄), and 40% (s, s̄) quarks approximately. The η′ particle contains
20% (u, ū), 20% (d, d̄), and 60% (s, s̄) quarks.

The electrically uncharged η meson cannot be measured experimentally in a direct
way, because it is unstable decaying into lighter particles, mainly photons and pions.
It has a very short mean life time of τ ≈ 5×10−19 s corresponding to a narrow decay
width of Γ = (1.30 ± 0.07) keV. Due to energy and momentum conservation, it is
possible to reconstruct the η meson produced in a reaction, using two different ways:
the missing mass or the invariant mass method. Both approaches are described in
the appendix in Section A.1 in detail.

The η meson decay proceeds via the strong and electromagnetic interaction, dom-
inated by two neutral and two charged decay modes of about 99 % [N+10].

η → 2γ with 39.31 %
η → 3π0 → 6γ with 32.57 %
η → π+π−π0 with 22.74 %
η → π+π−γ with 4.60 %

The final state of the two neutral channels results in photons, because pions of
the 3π0 channel mainly decay into two photons. Other decay channels are possi-
ble, too, but strongly suppressed. Furthermore, the η meson is suitable to study
forbidden decay modes violating C-, P - or CP -parity. One example is shown by
the search for the C-parity violating decay η → π0e+e− by the WASA-at-COSY
experiment [Ber09, Win11, Ber13].

Besides these features mentioned above, the mass is another fundamental property
of a subatomic particle. The chronological development of the world average value
of the η meson mass determined by the PDG is illustrated and listed for the last 50
years in Figure 2.3. Until 1990 the PDG had quoted a value of (548.8 ±0.6) MeV/c2,
which then has decreased by about 1 − 1.5 MeV/c2 because of new measurements
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2.3. Ambiguous results of η mass experiments

with better precision. Nevertheless, since 1992, the PDG had to correct its average
mass value four times. It was only be excluding results of high precision experiments
that in 2008 an accuracy comparable to other pseudoscalar mesons could be reached
for the first time.

As mentioned at the beginning, the variations of the mass value over the last two
decades are the consequence of contradictory outcomes of various experiments. The
next section will emphasise the details by presenting the ambiguous results of the
individual measurements. Finally the current situation of the η meson mass will
be discussed.

PUBLICATION DATE

Publication PDG values of the
Date η mass / (MeV/c2)

until 1990 548.800± 0.600
1992 547.450± 0.190
1997 547.300± 0.120
2003 547.750± 0.120
2006 547.510± 0.180
2008 547.853± 0.024

Figure 2.3.: Chronological development of the PDG estimation for η meson
mass value [N+10].

2.3. Ambiguous results of η mass experiments

At the beginning of the 60s, when Gell-Mann and Zweig predicted the nonet of
pseudoscalar mesons, other scientists at the Lawrence Radiation Laboratory in
Berkley observed a new particle resonance in a bubble chamber experiment [P+61].
The signal appeared at a mass value of ≈ 546 MeV/c2 with a half-width at half
maximum of 6 25 MeV/c2 consisting of 24 events only. It was identified as the
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2. Nature of the η meson

pseudoscalar η meson. Shortly after the first observation of η mesons, the mass
was measured with higher precision by using two different decay modes [B+62].

K− + p → Λ + η

η → π+ + π− + π0 mη = (550.0± 1.5) MeV/c2

η → neutrals mη = (548.0± 2.0) MeV/c2

As depicted in Figure 2.3 the uncertainties of the PDG η mass value decreased over
time which is due to the development of new detector technology. While in the
60s bubble chambers were used for particle detection reaching a precision of about
1 MeV/c2 for mass determination, nowadays an accuracy better than one order of
magnitude, i.e., better than 100 keV/c2, is achieved by using more refined detector
systems.

Figure 2.4 and Table 2.2 show the obtained η mass values of different experiments
in chronological order. Earlier results of bubble chamber experiments are excluded,
being too high by about 1 MeV/c2 systematically.

)2 / (MeV/cηm
547.0 547.5 548.0 548.5

Ruth.Lab. 74

SPES IV 92

MAMI-TAPS 95

NA48 02

COSY-GEM 05

CLEO 07

KLOE 07

MAMI-CB 12 (prel.)

Figure 2.4.: Results of different η mass measurements in chronological order.
Where two error bars are shown, the heavy line indicates the
statistical uncertainty and the feint ones the systematic.
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2.3. Ambiguous results of η mass experiments

Year Experiment η mass Stat. error Syst. error

(MeV/c2) (MeV/c2) (MeV/c2)

2012 MAMI-CB (prel.) [Nik12] 547.851 0.031 0.062

2007 DAFNE-KLOE [A+07b] 547.874 0.007 0.029

2007 CESR-CLEO [M+07b] 547.785 0.017 0.057

2005 COSY-GEM [AB+05] 547.311 0.028 0.032

2002 CERN/SPS-NA48 [L+02] 547.843 0.030 0.041

1995 MAMI-TAPS [K+95] 547.120 0.060 0.250

1992 SATURNE-SPES [P+92] 547.300 0.150

1974 Ruth.Lab. [D+74] 547.450 0.250

Table 2.2.: Results of different η mass measurements in chronological order.
The experiment name comprises accelerator facility and detector
used.

The MAMI-TAPS result coloured in grey will not be considered in the following
discussion, because it is in contradiction to the new MAMI-CB measurement. The
new one is submitted but not published yet [Nik11]. The calibration of the incident
photon energy during the first experiment is suspected to be the reason for the
disagreement, so the authors say [Nik12].

Although the measurement uncertainties decreased over the last years, the in-
dividual η mass results deviate by about 550 keV/c2 and fluctuate in between
547.3 MeV/c2 to 547.9 MeV/c2. Recent experiments of MAMI-CB, KLOE, CLEO,
and NA48, which agree within their uncertainty limits of below 60 keV/c2, refer
to the higher η mass value, whereas earlier ones done by Rutherford Laboratory2,
SPES IV, and COSY-GEM point to the lower value. The variations of the PDG es-
timation were mainly caused by the disagreement of about ten standard deviations
of the first very precise results of NA48 and COSY-GEM.

The origin for this disagreement of the obtained η mass values is unknown and a
widely discussed issue in the community. One speculative but possible explanation
is that different mass determination methods could lead to inconsistent η mass
results. Unconsidered effects could be provoked by the use of various reactions.
The eight various experiments determining the η mass are based on three different
types of mass measurements, discussed in the next section.
2 The result of the Rutherford Laboratory is abbreviated in tables and figures as "Ruth.Lab".
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2. Nature of the η meson

2.4. Three different kinds of η mass determination

The individual experiments comprise three different kinds of methods for mass
determination.

1. Invariant mass technique (NA48, CLEO, KLOE): In this case the η mass is
deduced directly from the mean value of the invariant mass distribution of its
decay products.

2. Interpolation of total cross sections to threshold (MAMI): Once the produc-
tion threshold is determined, the mass can be extracted from kinematic quan-
tities defined by the threshold.

3. Missing mass technique (Rutherford Laboratory, SPES IV, COSY-GEM): In
this case the η meson is produced in a two-body reaction and reconstructed
by calculating the missing mass. The mass is determined by the mean value
of the missing mass distribution.

In the next sections the different methods will be described. Their advantages and
disadvantages will be discussed. Further and more detailed informations can be
found in the cited literature.

2.4.1. Invariant mass technique

The η meson was produced in various reactions at NA48, CLEO, and KLOE [L+02,
M+07b, A+07b] and the decay products, pions and photons were detected. The η
mass was determined by calculating the invariant mass distribution of the decay
products.

At the NA48 experiment a π− beam was scattered on two thin polyethylene targets
and the charge exchange reaction π− p → η n was investigated. The η meson was
clearly identified using the decay into 3 π0 only, whereby each pion decays mainly
into two photons. All six photons were detected with the liquid krypton calorimeter.
By that 1134 η meson events could be reconstructed.

Using the ψ(2S) → η J/ψ decay at the CLEO detector a data sample of around
16000 η events were collected for mass determination. The ψ(2S) charmonium state
was produced by electron-positron scattering. By detecting the lepton-antilepton
pair (electron-positron or muon-antimuon) of the J/ψ decay and all four main η
decay channels listed in Section 2.2 the events could be clearly identified.

At the KLOE experiment, installed at the electron-positron collider DAΦNE, a φ
meson factory, the η meson was produced via the decay channel φ→ γ η. For mass
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2.4. Three different kinds of η mass determination

determination η events decaying into two photons were taken into account only. The
photons were measured with the lead/scintillating-fibre sampling calorimeter.

The accuracy of this mass determination relies mainly on the detection of the decay
products, photons, and pions. Especially, their energy and momentum have to be
reconstructed with highest precision. Therefore the calibration of the electromag-
netic calorimeters has to be understood and studied carefully. It is needed for the
precise photon detection of the two dominating neutral decay channels. In contrast
to other methods, this one has the advantage that the kinematic variables of the
initial state, e.g., the beam energy, do not have to be considered.

2.4.2. Interpolation of total cross sections to threshold

Doing the MAMI (MAinzer MIcrotron) experiments [K+95, Nik12] the η meson
was also reconstructed via the invariant mass of its decay products, however the
mass was deduced in a completely different way. The η meson was produced by
photoproduction at a proton γ p → p η close to reaction threshold in these two
experiments. The reaction threshold is defined by the minimum initial state energy,
which is necessary for producing the particles of the final state, in this case the η
meson. By fixing the photon energy at threshold Ethr

γ the η massmη can be deduced
via the relation [K+95]

Ethr
γ = mη +

m2
η

2mp

, (2.4)

where mp is the proton mass. For a precise determination of the threshold the
absolute number of produced η mesons, i.e., the total cross sections, as function
of the photon energy had to be determined. The energy of each photon was mea-
sured with the Glasgow Photon Tagging-System. Therefore the incident monoen-
ergetic electron beam with energy E0 provided by the mainzer microtron was scat-
tered at a radiator foil for producing high energy photons with energy Eγ through
bremsstrahlung. After having penetrated the radiator foil the degraded electrons
were deflected by a spectrometer magnet and detected in the tagger microscope, an
array of plastic scintillators, to determine the residual electron energy Ee− . Since
the energy transferred to the nuclei of the radiator foil is negligible, the photon
energy is directly given by Eγ = E0 − Ee− . Obviously the accuracy of the photon
energy depends on the precision of E0 and Ee− .

In the same manner as at the invariant mass experiments, described in Section 2.4.1,
the η meson was reconstructed by detection of its decay products. In the two
experiments photons of the two neutral decay modes into 2γ or 3π0 → 6γ, were
measured. In the earlier experiment this was done by the TAPS detector and in the
newer one by the Crystall Ball/TAPS detector. Total cross sections were obtained
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2. Nature of the η meson

as function of the photon energy in the threshold vicinity. They were interpolated to
threshold to determine the η mass. The interpolation of the cross sections requires
a theoretical model to describe the excitation function and its contributions of s -
, p -, and d -wave amplitudes of η-photoproduction close to threshold. Whereas
the MAMI-TAPS experiment determined a mass of mη = 547.12 MeV/c2 the new
MAMI-CB quotes a value ofmη = 547.851 MeV/c2. One possible origin of mismatch
is suspected to be the energy calibration of the Tagging-System [Nik12].

In contrast to invariant mass experiments the described method requires the control
of a larger number of crucial quantities. The result is very sensitive to the photon
energy measured with the Tagging-System, which depends on the incident electron
energy and the energy measured after the bremsstrahlung process. In addition the
behaviour of the excitation function close to threshold, i.e., the theoretical model,
has to be very well understood for describing the total cross sections. And the
determined cross section values, in turn, depend on a lot of experimental parameters
as for example the detector acceptance and efficiency, and the luminosity calculated
by photon flux and target thickness.

2.4.3. Missing mass technique

Rutherford Laboratory (Rutherford Laboratory), SATURNE-SPES and COSY-
GEM studied hadronic two-body reactions at fixed target experiments [D+74, P+92,
AB+05]. The η mesons produced were identified through a missing mass peak by
measuring the kinematic quantities of initial and final state. When doing fixed
target experiments it is clear that the kinematics of the initial state is completely
defined by the momentum of the beam. The η mass was deduced from the mean
value of the missing mass distribution.

The prime objective of the Rutherford Laboratory experiment was the determina-
tion of decay width and mass of the η′ meson. However, the η mass was measured
as cross check on the equipment only. That means the η meson was produced in the
fixed target reaction π− p → η n, where the neutrons were detected and the beam
momentum was measured macroscopically to high precision using the floating wire
technique [D+74]3.

At SATURNE - SPES a deuteron beam was scattered on a fixed liquid hydrogen
target to investigate the reaction

d p→ 3He η
3 More detailed explanations are provided by the references therein.
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2.5. Evaluation of the current η mass situation

close to threshold. The 3He nuclei were detected by the high resolution double-
focussing but small acceptance, SPES IV spectrometer. Due to the limited ac-
ceptance it was solely possible to measure forward and backward (cosϑ = ±1)
scattered 3He nuclei in the centre-of-mass frame. Both, the beam momentum and
spectrometer settings, were calibrated by the measurement of three additional two-
body reactions with well known final states (3Heπ0, 3Hπ+, p d) and masses. For
each final state the first particle only was detected by the spectrometer. Investi-
gating these three reactions the magnetic field of the spectrometer and the beam
momentum had to be adjusted for each one because of the small spectrometer
acceptance.

The COSY -GEM experiment studied the same final state 3He η produced by scat-
tering a proton beam on a fixed liquid deuterium target

p d→ 3He η .

The method for mass determination is very similar to that one of SATURNE-SPES.
By studying one additional two-body reaction p d → 3H π+ with well known final
state in two different situations (π+ 3H, 3H π+), the beam momentum as well as the
spectrometer were calibrated and the target thickness was determined. For the two
different situations the first particle only was detected with the spectrometer. In
contrast to SATRUNE-SPES the used spectrometer BIG KARL had a much larger
acceptance. This allows to study the two reactions of interest at one proton beam
momentum of pp ≈ 1641 MeV/c simultaneously. Nevertheless, particles in forward
and backward direction only were detected. In consideration of the target thickness
the η mass was deduced from the missing mass peak.

Compared to the η mass determination of photoproduction experiments, the miss-
ing mass ansatz is based on pure kinematics of a two-body reaction and therefore
completely model independent. As well as the invariant mass technique4 the method
relies exclusively on the measurement of kinematic quantities, but in addition to the
final state the initial one has to be taken into account, too. Therefore the momenta
of the accelerator beam and of the particle produced together with the η meson
have to be measured with high precision. This requires an accurate calibration of
the detector, mostly a magnetic spectrometer.

2.5. Evaluation of the current η mass situation

Table 2.3 shows the η mass results of various experiments, techniques for mass
determination, and reactions used. Curiously, it seems that the obtained value is
4 The invariant mass technique is described in Section 2.4.1.
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2. Nature of the η meson

dependent on the mass determination method or even on how the η meson was
reconstructed at the experiment.

Experiment Technique and reaction mη / (MeV/c2)
MAMI-CB (prel.)[Nik12] Photoproduction: γ p→ η p 547.851 ±0.031

±0.062

DAFNE-KLOE [A+07b] Invariant Mass: φ→ γ η 547.873 ±0.007
±0.029

CESR-CLEO [M+07b] Invariant Mass: ψ(2S)→ η J/ψ 547.785 ±0.017
±0.057

COSY-GEM [AB+05] Missing Mass: p d → 3He η 547.311 ±0.028
±0.032

CERN/SPS-NA48 [L+02] Invariant Mass: π− p→ η n 547.843 ±0.030
±0.041

SATURNE-SPES [P+92] Missing Mass: d p → 3He η 547.300± 0.150
Ruth.Lab. [D+74] Missing Mass: π− p→ η n 547.450± 0.250

Table 2.3.: Results for the η mass of the various experiments, reaction studied,
and technique used for mass determination. Where two uncertain-
ties are given the upper one indicates the statistical error and the
lower one the systematic one.

The invariant mass experiments NA48, CLEO and KLOE, as well as the photopro-
duction experiment MAMI-CB, obtained consistent results to high accuracy and
point to a higher value. In all these measurements the η meson was reconstructed by
its decay products. However, all missing mass experiments Rutherford Laboratory,
SATURNE-SPES and COSY-GEM reported a lower value of about 550 keV/c2 for
the mass (see Figure 2.4). When taking into account invariant mass experiments
only, the PDG get their best estimation for the η mass as

mPDG
η = (547.853± 0.024) MeV/c2 . (2.5)

In this case results of missing mass experiments are completely excluded and ne-
glected. It is important to note that the MAMI-CB result was not considered by
the PDG because it was not published at this time.

Assuming that the reason for the disagreement is caused by the missing mass ex-
periments, then two explanations are possible:

1. There might be unknown and unconsidered systematic effects or errors at the
measurement or analysis of the kinematic quantities of initial and final state.

2. Or physical process might have influence on the mass measurement.

In the first case the beam energy could be poorly determined, though this was done
using different techniques for the three experiments. Another reason might be that
the spectrometers have been insufficiently well calibrated.
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In the second case it might be that physical process could have impact on the
mass measurement. Worth noting is the fact that SATURNE-SPES and COSY-
GEM, which have used the reaction d p (p d)→ 3He η, obtain a low η mass value of
mη ≈ 547.3 MeV/c2 to high precision. Maybe there is something peculiar about the
reaction or the final state 3He η. One possible cause might be that the multi pion
background below the η peak could have been slightly distorted by a strong coupling
of, e.g., η 3He
 ππ3He. This would influence the missing mass distribution leading
to a wrong or shifted η mass identification [Kho07].

A previous measurement of the reaction d p → 3He η at COSY-ANKE indicated
already an unexpected behaviour of the excitation function near threshold [M+07a,
R+09, Mer07, Rau09] (see Section 3.2.1). This measurement was specially dedicated
to investigate the interaction between 3He nucleus and η meson. Compared to phase
space the total cross section shows a strong enhancement close to threshold. This
could be described only by a very strong final state interaction implying a possible
formation of a 3He η quasi bound state [W+07]. Though highly speculative, one
further possibility might be an influence on mass measurement by forming such a
state of matter.

2.6. Motivation for a new η mass measurement

All considerations about the ambiguous η mass situation led to the conclusion to
pursue a new mass measurement. Furthermore, various investigations of physi-
cal phenomena involving the η meson motivate a new mass measurement. Two
examples will be presented in the following.

The interpretation of η meson production experiments close to threshold, as men-
tioned in the previous section, requires a precise knowledge of the mass value. In the
mid-80s a bound state between η meson and nucleus, the so called η-mesic nucleus,
was predicted by two physicists [HL86]. Since then a lot of various experiments were
carried out to confirm such a state of matter. The search is going on and further
experiments are planned and carried out today (e.g., [G+11, K+12]). In some of
these researches the η nucleus system, such as η 4He, η 3He, and η d, was produced
close to threshold to measure total and differential cross sections. Described by
a final state interaction ansatz the scattering length and the pole position of the
η nucleus system were extracted, providing information about the strength of the
interaction. Since both quantities are dependent on the determined excess energy
and by that on the η mass, a precise knowledge of this value is important in order
to ensure a comparable interpretation of different results.
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Besides η meson production close to threshold, the exploration of η decays de-
pends strongly on the mass value. One example is the G-parity forbidden decay:
η → 3π0. It is caused by an isospin violating part of the QCD Lagrangian, which
is proportional to md −mu, so it is possible to determine the u, d quark mass dif-
ference investigating this decay. Theoretical approaches provide predictions about
the dalitz plot event distribution of the decay, which can be measured in experi-
ments. The dalitz plot can be described by one single kinematic variable z and a
quadratic slope parameter α, representing the difference of the event density from
phase space. Since the kinematic variable z is affected by the η mass value, a precise
knowledge is necessary for comparing various results. Different mass values would
influence the result for α as it is shown in [A+07a].

However, as shown in Figure 2.4 and Table 2.3, the situation of the η meson mass is
ambiguous and could only be clarified by the performance of a much more precise
missing mass experiment using the reaction d p→ 3He η.
Consequently, it was the objective of the COSY-ANKE mass measurement pre-
sented in this PhD thesis to provide an η mass value that is comparable in accu-
racy, i.e., ∆mη ≈ 50 keV/c2, to those that used the invariant mass technique [L+02,
M+07b, A+07b]. The obtained result will confirm or refute the previous d p (p d)→
3He η measurements of SATURNE-SPES and COSY-GEM. In the following chap-
ter the mass determination method used at the COSY-ANKE experiment will be
described in detail.
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at COSY-ANKE

The chosen approach for mass determination at COSY-ANKE differs from other
missing mass experiments thats why it will be explained in the following sections.
First the kinematics of a two-body reaction will be discussed in general. Afterwards
the peculiarities of the reaction used d p → 3He η will be presented, focussing on
the crucial points when determining the 3He final state momentum.

3.1. Relativistic kinematics

It is for sure that relativistic effects cannot be neglected at high-energy scattering
experiments, because the involved particles are moving with velocities close to
the speed of light. Relativistic processes are most conveniently described in the
Minkowski spacetime, a four dimensional real vector space. The kinematic variables
are chosen in a way to simplify the mathematical transformation when changing
the frame of reference (see Section 3.1.1). As usual in particle physics the "natural
units" with ~ = c = 1 will be applied in this thesis.

In relativistic kinematics a particle with energy E and classical three-momentum
vector ~p is entirely defined by its four momentum vector

P = (E, ~p) = (E, px, py, pz) . (3.1)

Due to Minkowski metric the absolute value or the norm of the four momentum is
given by

m2
inv = P2 = E2 − ~p 2 , (3.2)

where m2
inv is designated as invariant mass. This quantity is constant in all frames

of reference related by Lorentz transformation. According to the relativistic energy
momentum relation for a free particle

E2 = m2
0 + p2 (3.3)

the invariant mass can be directly assigned to the particle’s rest mass m0.
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3. Method for mass determination at COSY-ANKE

3.1.1. Laboratory system and centre-of-mass frame

It is well known that fixed target experiments at accelerators are mainly mathemat-
ically discussed in two particular frames of reference, the laboratory system (LS)
and the centre-of-mass (CM) frame. Figure 3.1 shows the transformation of the
particles’ four momenta between these two frames of reference for a two-body re-
action a + b→ c + d at a fixed target. The accelerator beam axis is usually chosen
to define the z-axis of the coordinate system.

Laboratory system (LS) Centre-of-mass frame (CM)

p⃗ a

z

x

y

LS

p⃗b=0
LS

p⃗ c
LS

p⃗ d
LS

p⃗a
CM

p⃗ b
CMp⃗ c

CM

p⃗d
CM

ϕ ν

Figure 3.1.: Two-body reaction a + b→ c + d shown in the laboratory frame
(LS) and centre-of-mass (CM) one. The momenta can be ex-
pressed in cartesian or spherical coordinates with the polar angle
ϑ and the azimuthal angle φ.

The four momenta of the particles involved are measured and reconstructed in the
LS frame by the detection setup. In the LS frame the velocity of the centre-of-mass
~β is given by the relation

~β = ~pa
LS/ELS

tot , (3.4)

with the beam momentum ~pa
LS and the total energy ELS

tot = ELS
a +ELS

b of the initial
state. By definition the total momentum of the initial state in the CM frame is
equal zero

~pa
CM + ~pb

CM = 0 . (3.5)

Thereby the CM is at rest, which simplifies the description of reaction kinematics.
The four momentum components are transformed into the CM frame by the Lorentz
transformation with γ = 1/

√
1− β2:

pCMx,y = pLSx,y

pCMz = γ
(
pLSz − βELS

)
ECM = γ

(
ELS − βpLSz

)
. (3.6)
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Wheras the x and y momentum components are equal in both frames of reference,
the z components is transformed exclusively.

3.1.2. Kinematics of a two-body reaction

The kinematics of a two-body reaction a + b→ c + d with the particle a, b in the
entrance channel and c, d in the output one, as illustrated in Figure 3.1, is entirely
described by the particles’ four momentum vectors. According to energy and mo-
mentum conservation the sum of the four momenta of initial-state is equal to that
one of the final one

Pa + Pb = Pc + Pd . (3.7)

The total energy
√
s or the CM energy of the reaction is defined by the Mandelstam

variable s, given by the square of the four momentum sum of the incoming or
outgoing particles

s = (Pa + Pb)2 = (Pc + Pd)2

= (Ea + Eb)2 − (~pa + ~pb)2 . (3.8)

In a fixed-target experiment the target particle b is at rest and the total energy
depends on the masses of the initial state particles and on the momentum of the
accelerated one. In the final state the overall CM energy is given by the masses
of the outgoing particles and their total kinetic energy Q, that is also denoted as
excess energy √

s = mc +md +Q . (3.9)

The reaction threshold is defined for the case Q = 0, in which the collision of the
two initial particles provide just enough energy to generate the masses mc and
md. As a result of that the outgoing particles are at rest in the CM frame. For
excess energies Q > 0 the momenta of particles c and d are described in the CM
frame in the most simple way, according to Equation (3.5) and due to momentum
conservation:

~pa + ~pb = ~pc + ~pd = 0 . (3.10)

For a two-body reaction, as indicated in Figure 3.1, the CM momenta of the
outgoing particles point into opposite direction, having the same length. They
are distributed on a perfectly symmetric momentum sphere with constant radius
pf = |~pc| = |~pd| named as final state momentum

pf =

√[
s− (mc +md)2

] [
s− (mc −md)2

]
2
√
s

. (3.11)
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The final state momentum depends on the CM energy and the particle masses of
the output channel only. The excess energy is directly linked to the final state
momentum via the reduced mass 1/mred. = 1/mc + 1/md of the final state by this
non relativistic approximation

Q =
p2
f

2mred
=

p2
f

2 (mc +md)
. (3.12)

3.2. Determination of the η meson mass using the
reaction d p → 3He η

The common missing mass experiments [P+92, AB+05] determined the η meson
mass by studying the reaction dp (pd) → 3He η and measuring the relevant kine-
matic variables, i.e., the momenta of the accelerated beam and the recoiling 3He,
at a single fixed energy. A much more effective and robust way to measure the
mass relies on the identification of the reaction threshold, the chosen approach for
COSY-ANKE experiment.

In the reaction d p→ 3He η a deuteron of the accelerated beam fuses with a target
proton to form a 3He nucleus. In addition to that an η meson is produced. At a
scattering experiment, this process occurs exclusively if the collision of the initial
state particles provides enough CM energy, given by Equation (3.8), to generate
the masses of the final state. For a fixed target experiment the CM energy relies on
the masses of the incoming particles and on the momentum pd of the accelerated
deuteron beam

s(pd) = 2mp

√
m2
d + p2

d +m2
d +m2

p . (3.13)

By setting the beam momentum, the CM energy is defined, consequently the excess
energy Q, too, as well as the the final state momentum pf , according to Equa-
tions (3.9) and (3.11)

Q(s) =
√
s−m3He −mη (3.14)

pf (s) =

√[
s− (m3He +mη)2

] [
s− (m3He −mη)2

]
2
√
s

. (3.15)

Using the expression for the CM energy (see Equation 3.13) both quantities, Q and
pf , become functions of the beam momentum.

If a measurement could fix the reaction threshold, Q(pd) = 0 or pf (pd) = 0, then
the η mass can be directly determined from knowledge of the beam momentum at
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3.2. Determination of the η meson mass using the reaction d p→ 3He η

threshold pthrd according to Equations (3.13) and (3.14)

mη =
√

2mp

√
m2
d + pthrd

2 +m2
d +m2

p −m3He . (3.16)

At threshold the precision for mass determination is enhanced because

dmη/dpd ≈ 0.24/c . (3.17)

Using the PDG η mass value in Equation (3.16), a threshold beam momentum of
pthrd = (3141.603± 0.100) MeV/c is associated therewith. The particle masses with
uncertainties needed for this calculation are listed in Table 3.1. These values were
taken from "The National Institute of Standards and Technology" (NIST) [MTN12]
for the nuclei and from the PDG [N+10] for the η meson. At this point it is
important to note that the nucleus masses and not the atomic ones have to be used
in simulations as well as calculations in order to obtain correct results.

Particle Mass m/ (MeV/c2)

Deuteron d 1875.612859± 0.000041

Proton p 938.272046± 0.000021

Helion 3He 2808.391482± 0.000062

Eta meson η 547.853± 0.024

Table 3.1.: The masses of the particles involved in the reaction d p → 3He η
are listed as stated in [MTN12] for nuclei and in [N+10] for the η
meson.

Inserting the two "possible" η mass values into Equation (3.16), this points out that
the beam momenta at threshold differ by about 2.5MeV/c:

1. mη ≈ 547.3 MeV/c2 ↔ pthr.d ≈ 3139.3 MeV/c

2. mη ≈ 547.9 MeV/c2 ↔ pthr.d ≈ 3141.8 MeV/c .

That means in a new mass measurement the beam momentum at threshold has
to be determined with a precision much better than that. In order to achieve an
accuracy comparable to the PDG value, i.e., ≈ 30 keV/c2 the threshold momentum
must be measured with an error of ≈ 100 keV/c.
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3. Method for mass determination at COSY-ANKE

A direct measurement of the beam momentum at threshold would be the simplest
way to determine the η mass, because in this case all systematic effects linked to
the analysis of the reaction would be cancelled out. That means just contributions
of the beam momentum determination have to be taken into consideration. Since
it is impossible to measure the reaction threshold in a real experiment directly, the
value has to be fixed by extrapolation of measurable quantities.
The MAMI experiments [K+95, Nik12] realised the determination of threshold by
extrapolating total cross sections of the photoproduction as explained in detail in
Section 2.4.2. This approach is strongly model dependent, because it relies on an
accurate theoretical description of the excitation function close to threshold. It
cannot be straightforward transferred to the d p → 3He η reaction. It is because
of the unusual behaviour of its excitation function, that will be discussed in the
following section.

By focusing on pure kinematic quantities like the final state and beam momentum
the reaction threshold can be tagged in a much simpler and model independent man-
ner when extrapolating several (pd, pf ) data points. According to Equations (3.13)
and (3.15) the final state momentum is a function of the beam momentum, the η
mass, and other well-measured masses1

pf = pf (pd,mη) . (3.18)

In Figure 3.2 this relation, i.e., the final state momentum and its square, is plot-
ted against the laboratory beam momentum from threshold to an excess energy of
Q ≈ 15 MeV for different η mass values. The figures indicates that the final state
momentum rises similar to a root function with increasing beam momentum. It
shows that the reaction threshold shifts to higher beam momenta for higher η mass
values.
The method to measure the η mass at COSY-ANKE is based on the determina-
tion of the production threshold by investigating the increase of the final state
momentum as function of the beam momentum. This requires to measure the two
kinematic quantities at several different energies close to threshold.

The precision of such an η mass measurement is dependent on accuracy and position
of the measured (pd, pf ) data set. When selecting the energies and consequently the
data points measured in the beam time, the total cross section and the acceptance
of the ANKE detection system for the reaction of interest must be taken into
consideration. Both quantities affect the statistics collected during the beam time
and consequently the precision of the final state momentum.

1 The values for the particle masses involved are listed in Table 3.1.
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Figure 3.2.: The final state momentum pf and its square p2
f are presented as

function of the laboratory beam momentum pd for four different
η mass values.

3.2.1. Previous studies of the d p → 3He η reaction at
COSY-ANKE

In two previous experiments2 the reaction d p → 3He η was already subject of in-
tense research at COSY-ANKE. Especially the energy region close to production
threshold was examined aiming to investigate the η 3He nucleus interaction. By the
use of a continuous beam momentum ramp from Q ≈ −5 MeV to Q ≈ 11 MeV
with respect to the η reaction threshold total and differential cross sections were
determined to highest precision [M+07a, Mer07]. In addition data were recorded
at fixed beam momenta at Q = 20, 40, and 60 MeV in order to cover higher excess
energies [R+09, Rau09]. The analysis revealed that the ANKE spectrometer has
full geometrical acceptance up to an excess energies of Q < 15 MeV for the reac-
tion of interest. The obtained total cross section close to threshold is depicted in
Figure 3.3.

Assuming pure phase space behaviour and s-wave scattering the differential cross
section dσ/dΩ for a two-body reaction close to threshold could be expressed as ratio
of the final to initial state CM momenta pf/pi, multiplied by a constant production
amplitude f

dσ

dΩ = pf
pi
· |f |2 . (3.19)

2 The 1st beam time was conducted in January 2005 with an unpolarised deuteron accelerator
beam and the 2nd in October 2007 with a polarised deuteron beam. In the following the results
of the January beam time will be discussed.
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FIG. 4: (Color online) Comparison of the extracted total cross sections (circles) with previous data drawn in gray: Ref. [1]
(squares), Ref. [2] (triangles), and Ref. [12] (inverted triangles). Equation (1) with the parameters given in Eqs. (3,4) represents
well all our results. The gray curve is the SPESII fit to their own data [2]. Our near–threshold data and fitted curve are shown
in the inset, while the dotted curve is the result to be expected without the 171 keV smearing in Q.

In order to affect the cross section variation over a scale
of less than 1MeV, there must be a pole of the production
amplitude in the complex plane that is typically only
1MeV away from Q = 0. From our fit values we find a
stable pole at Q0 = p2

1/2mred = [(−0.30± 0.15± 0.04)±
i(0.21 ± 0.29 ± 0.06)] MeV.

In summary, we have performed measurements of the
differential and total cross sections for the dp → 3He η
reaction near threshold where the spectrometer accep-
tance is close to 100%. The use of a beam whose energy
varies linearly with time ensured that point–to–point sys-
tematic errors were under control. It also allowed us to
determine the mean value of the excess energy with un-
paralleled accuracy. It was shown that the large physics
background could be eliminated essentially completely
through the subtraction of data taken below threshold.
Although there is a 15% uncertainty in the luminosity,
and hence in the values of the cross sections, this is a
global feature that affects all our data in the same way
and so will not change any of our principal conclusions.

It is remarkable that already for Q ! 4 MeV the an-
gular distributions are no longer isotropic and this must
be an important clue to the dynamics. Effects of p waves
might become clearer when data are available on the an-
gular dependence of the deuteron analyzing powers [13].

The consistent set of total cross section measurements
with high statistics at closely spaced values of Q should
allow theoretical models to be tested in a rigorous man-
ner. The very rapid rise and levelling–off indicates the
existence of a pole in the production amplitude within
one MeV of Q = 0. Fits on the basis of Eq. (1) suggest

that the scattering length has an enormous real part that
largely masks any effects arising from the imaginary part.
The steep variation of |f |2 with pη may bring the results
closer to those of photoproduction of the η 3He state [3].

Our experiment was only possible because of the high
quality of the ramped deuteron beam and for this we
are indebted to the COSY accelerator crew. We would
also like to thank Ch. Hanhart for many valuable dis-
cussions. The support from FFE grants of the Jülich
Research Center is gratefully acknowledged.
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Figure 3.3.: a) Total cross section of the reaction d p → 3He η measured at
COSY-ANKE (black circles) from threshold to Q ≈ 11 MeV, de-
scribed by a FSI ansatz (red curve).
b) The inset enlarges the near threshold data showing the in-
fluence of the beam momentum spread. The dotted curve
presents the FSI description corrected for the beam momentum
spread [M+07a].

In the threshold vicinity the final state momentum rises rapidly, whereas the initial
one is nearly constant. For phase space behaviour the cross section is expected to
increase with

√
Q, since the final state momentum is proportional to

√
Q according

to Equation (3.12).
The cross section of the ANKE measurement differs completely from phase space,
rising steeply within the first MeV above threshold to its plateau value of ≈ 400 nb.
Then it remains nearly constant up to Q = 100 MeV. This behaviour is showing a
very strong final state interaction (FSI) introduced by a separation ansatz of the
production amplitude |f |2 = |fc|2 · |ffsi|2 with a constant contribution fc and an
energy dependent FSI term ffsi. The strength of the FSI is expressed by the values
for the complex scattering length a and the effective range r0 or alternatively by
the two poles p1 and p2

ffsi = 1
1− iapf + 1/2r0ap2

f

= 1
(1− pf/p1) · (1− pf/p2) . (3.20)

The fit to the data provides a large absolute value for the scattering length |a|
which implies a very strong FSI [M+07a]. This might lead to a possible formation
of a quasi-bound or virtual η 3He state [W+07]. In order to verify the FSI interpre-
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3.2. Determination of the η meson mass using the reaction d p→ 3He η

tation, further analysis are going on of data taken with a polarised deuteron beam
~d p→ 3He η. The objective is to explore the non-s-wave contributions and the spin
dependence of the entrance channel on the excitation function [K+06, Pap13].

Additional measurements were proposed to explore the d n → 3H η and p n → d η
reactions aiming to investigate the 3H η and d η final state interaction [G+11, K+12,
Sch13]. This will complete the studies of the η nucleus interaction program at
COSY and it should help to clarify the question in which nuclei the η meson might
be bound.

The data recorded with a continuously ramped beam allowed to tag the reaction
threshold Q = 0 MeV. This was done by extrapolating the excess energy or final
state momentum as a function of the time information of the linearly ramped beam.
The production threshold was identified in the time ramp with an uncertainty of
∆t ≈ 0.16 s, that corresponds to an uncertainty of the excess energy at threshold
of ∆Qthr = 9 keV [Kho07, Mer07]. According to Equation (3.16) this value would
translate directly into the uncertainty of the η mass when knowing exactly the beam
momentum. Due to the fact that the beam momentum measurement was performed
with the conventional method in 2005, an accuracy of only ∆pd/pd = 10−3 could
be achieved, i.e., ∆pd ≈ 3 MeV/c for momenta at pd = 3 GeV/c. So the excellent
threshold measurement could not be translated into an accurate value of the η
mass. The large uncertainty of the beam momentum leads to an uncertainty in the
mass of ∆mη ≈ 720 keV/c2.

In order to achieve a mass value at COSY-ANKE comparable in accuracy with
results of recent experiments, i.e., ∆mη ≈ 50 keV/c2, it was necessary to increase
the precision of the beam momentum determination by an order of magnitude to
∆pd/pd = 10−4.
This task was realised by using the so called resonant depolarisation technique or
spin-resonance method exploiting the spin dynamics of a polarised beam. The tech-
nique is based on the resonant depolarisation of a polarised beam with an artificial
spin resonance induced by a horizontal radio frequency magnetic field of a solenoid.
It was applied for the first time at COSY to a vector polarised deuteron beam
during an ordinary beam time. The COSY beam momentum determination will be
described in detail in Chapter 5, starting with the explanation of the underlying
physical principle in Section 5.1.

However, it is worth noting that this method is solely applicable to beams stored
at a fixed energy in COSY. That is why it cannot be used for beams continuously
ramped in momentum. Only the start and stop momenta of the ramp could be
determined, so that momenta in between would have to be calculated. This requires
information not easily accessible, e.g., the variation of the absolute orbit length
during the momentum ramp. Using the beam positions monitors the absolute
orbit length cannot be measured with sufficient precision. A much more detailed
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3. Method for mass determination at COSY-ANKE

discussion about advantages and disadvantages of measuring at fixed energies or
with a momentum ramp can be found in [Gos08].
During the η mass beam time the reaction d p→ 3He η was studied at several fixed
energies. By that the beam momentum was measured individually for each data
point using the resonant depolarisation technique.

The work of T. Mersmann [Mer07, M+07a] showed that a high precision η mass
measurement is in principle feasible at COSY-ANKE. But therefore new techniques
and analysis methods that go beyond the conventional ones had to be implemented
and developed. It initiated a lot of ideas and analysis methods, which were used
for the mass measurement.
One approach was to use the simple kinematics of a two body reaction to verify and
improve the detector calibration. This method was developed further and pursue
consequently in the analysis of the η mass beam time in order to guarantee a
correct final state momentum determination. It is discussed in detail in Chapter 6.
The basic ideas and most crucial steps in the final state momentum analysis are
introduced in Section 6.1.

3.2.2. Achievable precision of threshold extrapolation

Having discussed the method to measure the η mass at COSY-ANKE in the pre-
vious sections, it is clear that the precision and position of the measured data set
(pd, pf ) will specify the accuracy of the extrapolation to threshold and by that the
accuracy of the obtained η mass value. The different data points were chosen in
an excess energy range from Q = 1 − 11 MeV, because in this range ANKE has
full geometrical acceptance. In addition the total cross section is well known and
constant as shown in Figure 3.3. This allows to collect similar statistics, even very
close to threshold, without expending excessive measuring time. Although it would
increase the precision of the threshold determination, it would be pointless to take
data even closer to threshold, i.e., below Q = 1 MeV, because here the total cross
section shows very strong variations and the beam momentum spread must be taken
into account. Small variations of the beam momentum could imply a shift below
threshold, so no data of the reaction d p→ 3He η would be recorded for this energy
setting.

In order to achieve the best possible accuracy, the amount and positions of the
individual beam momenta were optimised using Monte Carlo simulations. The
simulations showed that a robust threshold determination is feasible by using twelve
beam momenta, which are listed in Table 3.2. The two possible η mass values
were reconstructed with nearly same precision [Gos08] by the threshold fit. The
uncertainties for final state and beam momenta assumed in simulations are based
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on results of previous and preparatory measurements, which will be explained in
the following.

Data Beam momentum Q/ (MeV) for Q/ (MeV) for
Points pd / (MeV/c) mη = 547.3 MeV/c2 mη = 547.9 MeV/c2

1 3146 1.6 1.0
2 3147 1.8 1.2
3 3148 2.1 1.5
4 3150 2.6 2.0
5 3152 3.0 2.4
6 3154 3.5 2.9
7 3158 4.5 3.9
8 3162 5.4 4.8
9 3167 6.6 6.0
10 3171 7.6 7.0
11 3176 8.8 8.2
12 3183 10.5 9.9

Table 3.2.: The chosen beam momenta for the η mass measurement at COSY-
ANKE and the associated excess energies are listed for the two
"possible" η mass values.

For the first feasibility test of beam-energy calibration using the resonant depolar-
isation technique [S+07b, S+07a], a deuteron beam was used at a nominal beam
momentum of pd = 3118 MeV/c close below the d p → 3He η reaction threshold.
It showed that the precision in momentum was increased by more than an order
of magnitude to ∆pd/pd < 5× 10−5 in comparison to the conventional momentum
determination3. The beam momentum was measured with an uncertainty of below
100 keV/c, i.e., pd = (3115.98 ± 0.09) MeV/c. It deviated up to 2 MeV/c from the
desired value. In Monte Carlo simulations a constant uncertainty for all twelve
energy settings (see Table 3.2) was assumed. This is reasonable because it is not
expected that the precision changes strongly in the narrow beam momentum range
of pd = 3100− 3200 MeV/c. For a conservative estimation of the precision of the η
mass determination, an uncertainty of

∆pd = 150 keV/c (3.21)

3 Conventionally the beam momentum is calculated by the nominal orbit length and revolution
frequency.
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was used in Monte Carlo simulations. It is important to note that the first beam-
energy calibration at COSY was carried out under optimised conditions, i.e., all
influences on the beam during the cycle were reduced. Therefore, the ANKE cluster-
jet target was switched off as well as all cavities after acceleration. By that an
unbunched coasting beam was used for the first beam-energy calibration using the
spin-resonance measurement.

The estimation of uncertainties for final state momenta is based on outcomes of the
analysis of data recorded with the continuously ramped beam [Mer07]. During this
beam time nearly 400000 3He η events were collected from threshold to Q ≈ 11 MeV
and subdivided into 200 bins. Each bin contains 2000 η events. As result of the
high statistics and a precise calibration of the ANKE forward detector system, the
final state momenta were reconstructed for each bin with an statistical uncertainty
of below 400 keV/c. For the η mass beam time it was expected to record ten times
more statistics, i.e., 20000 3He η events for each of the twelve data points. This
would lead to a decrease of the uncertainty to ≈ 130 keV/c. As for the beam
momenta a more conservative value of

∆pf = 150 keV/c (3.22)

was used in Monte Carlo simulations.

Figure 3.4 presents the threshold extrapolation and thus the η mass determina-
tion for Monte Carlo simulated data. In this simulations the PDG η mass value
was chosen and the twelve different beam momenta according to Table 3.2 were
used. The final state momentum (black) and its square (red) are plotted against
the deuteron laboratory beam momentum. The horizontal and vertical error bars,
discussed above, are so small that they fall within the symbols. The extrapolation
to threshold is performed with Equations (3.13) and (3.15) in which the η mass is
chosen as free fit parameter. An additional scaling factor S is introduced by multi-
plying the right hand side of Equation (3.15) pf = pf (pd,mη, S) in order to reduce
the sensitivity of the method to systematic errors in the spectrometer calibration.
The next subsection will give reasons for introducing the scaling parameter and its
significance for the analysis will be motivated.
When using the "function minimisation and error analysis" package MINUIT of
ROOT4 the least square fit to the data reproduces the η mass assumed in simula-
tions with an uncertainty of below 25 keV/c. The precision of the extracted mass
4 ROOT is a framework programmed in C/C++ with all the functionality needed to analyse
large amounts of data in a very efficient way. It is standard for analysis of nuclear and particle
experiments. More informations at http://root.cern.ch .
The software framework for extracting physics at ANKE, the ROOTSORTER, is also based
on ROOT. It was extended by an additional software package named "Reconstruction" for
simplifying the event analysis [Pap13, Mie13].
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is practically almost independent of the value used in simulations. The difference
of 600 keV/c2 referring to two "possible" mass values presented in Table 3.2 causes
a change in uncertainty of 3 keV/c2.
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Figure 3.4.: Determination of the η mass through the identification of the
d p → 3He η production threshold. The twelve Monte Carlo
points are described with the correct relativistic Equations (3.13)
and (3.15), pf = pf (pd,mη, S) in black and p2

f = p2
f (pd,mη, S) in

red, and the η mass is extracted. Assuming an uncertainty of
150 keV/c for the final state and beam momenta the mass can
be determined with an precision below 25 keV/c2. The error bars
are too small to be shown on the figure.

It is important to mention that in first order the function p2
f = p2

f (pd) depends
linearly on pd near threshold. Nevertheless, a linear fit to the data would result in
a slightly shifted threshold momentum of about 50 keV/c, leading to an 11 keV/c2

higher η mass value. By taking into account the quadratic term,

p2
f = p2

f (pd, a, b, c) = b (pd − a) + c (pd − a)2 , (3.23)

the fit results in the correct threshold momentum, represented by the fit parameter
a. Due to the additional fit parameter the uncertainty of the threshold momentum
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as well as that of the η mass value increases nearly by a factor of two. Instead
of using the linear approximation the measured data set was described by the
relativistic correct Equations (3.15) and (3.13) to avoid such possible systematic
errors.

In conclusion, Monte Carlo simulations clearly prove that the η mass can be de-
termined at COSY-ANKE with a statistical uncertainty of below 25 keV/c2. This
is competitive and comparable to results of recent experiments. However, finally
it should be mentioned that in this estimation systematic errors of beam or final
state momentum determination are not factored in.

3.2.3. Benefits of the threshold extrapolation approach

The previous section tried to explain why the COSY-ANKE method was the chosen
approach for a new measurement. There are four important benefits:

1. Contrary to previous missing mass approaches [P+92, AB+05] the kinematic
quantities are investigated for twelve different energies instead at a single
one. This allows to study systematic effects in the spectrometer and beam
momentum calibration.

2. In opposition to earlier missing mass experiments, in which only forward and
backward scattered 3He nuclei were detected, the ANKE spectrometer pro-
vides full geometrical acceptance for the reaction of interest close to threshold.
This feature can be exploited to improve the spectrometer calibration, dis-
cussed in Chapter 6.

3. By using the resonant depolarisation technique the beam momenta were mea-
sured for the first time entirely independent of the spectrometer calibration
in a missing mass experiment (see Chapter 5).

4. The most important benefit of the threshold determination method is that
it does not require a perfectly absolute spectrometer calibration. This is
illustrated in Figure 3.5.

Small imprecisions of the spectrometer’s calibration parameters having effect on
all twelve data points in a similar way. For example minor inaccuracies in the
determination of the interaction vertex relative to the detection system can bring
about a possible systematic energy dependence of the final state momentum and
the missing mass. However, this effect disappears at reaction threshold. If it is not
taken into account, such systematic errors would influence the threshold fit using
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3.2. Determination of the η meson mass using the reaction d p→ 3He η

Equation (3.15), leading to a shift in the extracted η mass value. This effect must
be taken into consideration and can be disentangled from the extracted η mass
value by introducing an additional scaling factor S chosen as free fit parameter in
the threshold extrapolation. Therefore, the right hand side of Equation (3.15) is
multiplied by a scaling factor. It can be seen as additional calibration parameter,
representing a further fine tuning of the spectrometer. In any case, it is crucial
to note that its introduction does not affect the value obtained for the threshold
momentum as well as the mass mη.

An energy dependence of the final state momentum pf =
√
p2
x + p2

y + p2
z can be

provoked in Monte Carlo simulations by multiplying its individual components
px, py and pz using same or different scaling parameters. However, both cases,
same or different scaling parameters, can be corrected by the threshold fit using
pf = pf (pd,mη, S).
Figure 3.5 illustrates as one example Monte Carlos simulations with a scaling of 20%
of the transversal momentum component p⊥ = √px + py in the laboratory system
introducing a scaling in pf . It is evident that a higher final state momentum (red
crosses) implies a lower missing mass value, whereas a lower one (blue crosses)
involves a higher value for the missing mass due to the mathematical definition.
While the threshold extrapolation taking into account the scaling parameter pf =
pf (pd,mη, S) provides the correct threshold momentum as well as η mass value, the
missing mass is not constant any more. Consequently, using the simple missing
mass method for mass determination one would get a slightly different value at
each of the twelve energies studied.

35



3. Method for mass determination at COSY-ANKE

 / (GeV/c)
d

beam momentum p
3.14 3.16 3.18

 / 
(G

eV
/c

)
f

fi
n

al
 s

ta
te

 m
o

m
. p

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 / (GeV/c)
d

beam momentum p
3.14 3.16 3.18

2
 / 

(G
eV

/c
)

2 fp

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

 / (GeV/c)
d

beam momentum p
3.14 3.15 3.16 3.17 3.18 3.19

)2
 / 

(G
eV

/c
x

m
is

si
n

g
 m

as
s 

m

0.544

0.546

0.548

0.550

0.552

Figure 3.5.: The influence of a possible energy dependence on the measured
3He momenta is shown for both, the threshold extrapolation (top)
and the missing mass analysis (bottom). The scaling in pf was in-
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energy dependent.
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4. ANKE facility at COSY

Simulations, former and preparatory measurements demonstrated that the ANKE
facility at COSY is very well suited for an η meson mass experiment. Such kind of a
high precision measurements makes high demands on the experimental equipment
used. On the one hand the beam momentum of the COSY accelerator has to be
measured and controlled to highest accuracy. On the other hand, the reaction of
interest has to be identified and the 3He momenta have to be determined with
ANKE.

This chapter is intended to provide an overview of the experimental devices used
during the beam time. After having presented COSY in the first part, the devices
for the beam momentum determination will be introduced: the EDDA detector and
the radio frequency1 solenoid. Afterwards, the ANKE setup will be discussed and
finally the experimental conditions during the beam time will be summarised.

4.1. COSY - COoler SYnchrotron and its radio
frequency cavity system

COSY, the COoler SYnchrotron of the Forschungszentrum Jülich, depicted in Fig-
ure 4.1, is an accelerator and storage ring for experiments in medium energy
physics [Mai97]. The name is based on two cooling systems, the electron and
stochastic cooling, installed in the ring to reduce the beam phase space. The main
components of this facility are the ion sources, the injector isochronous cyclotron
JULIC, the 100 m long injection beam line, and the cooler synchrotron, providing
four internal experimental areas equipped with different detector setups ANKE,
EDDA, WASA, and PAX. Furthermore, the beam can be extracted and used for
the TOF experiment and two external areas serving for preparatory measurements
of devices for the PANDA or CBM detector. In future these two detectors will be
installed at the facility FAIR in Darmstadt.

1 In the following radio frequency will be abbreviated with the acronym rf.
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Stochastic Cooling

Figure 4.1.: The COSY accelerator facility. The cyclotron JULIC provides
unpolarised or polarised proton and deuteron beams for injection
into the COSY ring, where they are accelerated and stored. The
position of the ANKE spectrometer with the internal cluster-jet
target is shown, as are those of the radio frequency solenoid for
depolarising the deuteron beam, the barrier bucket cavity for
compensating beam-target energy losses, and the EDDA used as
beam polarimeter.
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4.1. COSY - COoler SYnchrotron and its radio frequency cavity system

The storage ring consists of 24 dipole magnets bending the beam onto two 52m
long arcs, as well as of 56 quadrupole magnets used for beam focussing. The in-
ternal target experiments are installed at the two straight sections, each of them
40 m long. So in total the ring has a circumference of 184 m. The different ion
sources produce unpolarised as well as polarised negatively charged hydrogen or
deuterium ions (H−, D−). This is done by hydrogen (or deuterium) scattering at
caesium H(D) + Cs → H−(D−) + Cs+. The ions are injected in the cyclotron and
pre-accelerated to an energy of 45 MeV for hydrogen and 90MeV for deuterium,
respectively. Afterwards, they are transferred into the storage ring via stripping
injection by penetrating a charge exchanging carbon foil. The particles are acceler-
ated with the rf cavity to the desired energy in the COSY momentum range from
0.3 − 3.7 GeV/c, associated to revolution frequencies from 0.26 − 1.6 MHz. COSY
delivers proton or deuteron beams with up to 1011 unpolarised or 1010 polarised
particles. The beam intensity for polarised beams is typically lower by one order
of magnitude, due to the reduced ion current of the polarised source. The main
features of the COSY accelerator can be found in Table 4.1.

Feature Comment
Beams p, d and ~p, ~d
Momentum range pbeam = 0.3− 3.7 GeV/c

Cooling electron cooling pbeam < 0.6 GeV/c
stochastic cooling pbeam = 1.5− 3.3 GeV/c

Momentum spread without cooling: ∂p/p = 10−3

with cooling and cavity: ∂p/p = 10−4

Number of particles stored protons unpol.: 1.5× 1011, pol.: 1.0× 1010

deuterons unpol.: 1.3× 1011, pol.: 6.0× 109

Table 4.1.: Main features of the cooler synchrotron COSY.

The application of cooling systems and cavities allow to improve the beam quality,
compensating the beam deterioration caused by intrabeam scattering and beam-
target interaction. By that the beam momentum spread of typically ∂p/p = 10−3

is reduced down to 10−4, loosing a negligible amount of beam intensity only. The
electron cooling system can be applied up to a momentum of 600 MeV/c and is
complemented by a stochastic cooling, operating in the upper momentum range
from 1.5 − 3.7 GeV/c. In addition to the accelerating and decelerating rf cavity a
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4. ANKE facility at COSY

broadband barrier bucket2 cavity is installed at COSY since 2007 [S+08b]. Contrary
to the rf cavity the signal of the bb cavity is generated by up to 20 harmonics. This
allows to store a single board bunch filling 80 − 90% of the ring comparable to a
debunched beam [GAMM83]. The combination of bb cavity and stochastic cooling
is well suited for compensating the intensity and mean energy losses provoked by
the introduction of thick internal targets in the ring, e.g., the ANKE cluster-jet
target or the WASA pellet target.

4.2. Equipment used for beam momentum
measurement

During the beam time for the η mass measurement, the accelerator beam momenta
were measured by the use of the so-called resonant depolarisation technique or spin
resonance method3. It is based on the resonant depolarisation of a polarised beam
with an artificial spin resonance induced by a horizontal radio frequency magnetic
field of a solenoid. Therefore, the beam polarisation was measured with the EDDA
detector (see Section 4.2.1) as function of the radio frequency of the longitudinal
magnetic field produced by a solenoid (see Section 4.2.2).

The other important quantity necessary for the beam momentum determination is
the revolution frequency of the circulating COSY beam. This one was measured
by using the Schottky noise of the beam (see Section 5.2). The Schottky noise was
recorded by means of the beam pickup and the standard "swept-type model HP
8595E" spectrum analyser of the stochastic cooling system of COSY.

4.2.1. EDDA detector as beam polarimeter

The internal target experiment EDDA [A+05]4 was designed to study proton-proton
elastic scattering excitation functions in the COSY energy range. The detector is
composed of two cylindrical detector shells made of scintillating material, which are
mounted around the COSY beam pipe. Figure 4.2 illustrates a schematic drawing
of the detector.

As result of the compact design EDDA covers almost 85% of the whole solid angle
and 30◦ to 150◦ in ϑCM for elastic proton-proton scattering. The inner detector shell
2 In the following barrier bucket will be abbreviated with the acronym bb.
3 The underlaying physical principles and results of the spin-resonance method will be discussed
in detail in Section 5.

4 More detailed explanations are provided by the references therein.
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The EDDA Collaboration (M. Altmeier al.): Excitation functions

z

y

x

1m

B
R
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HELIX
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P

COSY beam

COSY beam pipe

Inner shell (HELIX)

Outer shell (B, R, FR)

CH2 fiber target

Figure 4.2.: Sketch of the EDDA detector, consisting of two cylindrical de-
tector shells made of scintillating material, an inner shell HELIX
and an outer shell (FR, B, R) [Sch99].

(HELIX) is made of four layers of scintillation fibres helically wound in opposite
direction. The outer shell comprises scintillator bars (B) arranged parallel with
the beam pipe, surrounded by semi-rings (R) and such once of scintillating fibres
(FR). There are three different kinds of targets which can be used at EDDA: a
polypropylene CH2 fibre target, a pure carbon target, or a polarised hydrogen
atomic gas beam target.

In the context of his PhD work V. Schwarz developed a technique for using the
EDDA detector as fast internal beam polarimeter at COSY [Sch99]. This method
was applied to determine the vector polarisation of the polarised deuteron beam
during the spin-resonance measurements in the η mass beam time. In contrast to
the case of a spin-half fermion such as an electron or proton, the deuteron is a spin-
one boson. It can be placed in three magnetic substates m = −1, 0,+1 with respect
to a quantisation axis. That is why the resulting polarisation phenomenology is
more complex. Eight independent parameters are necessary to characterise a spin-
one beam, three for the vector polarisation and five for the tensor [Ohl72]. However,
the vector polarisation

PV = (N+ −N−)/N , (4.1)

was measured by EDDA solely, because this one can be determined to a higher
precision than the tensor one. Here Nm is the number of particles in state m and
N = N+ +N− +N0 is the total amount of particles.

Due to the spin-orbit coupling, the scattering of a polarised beam at an unpolarised
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4. ANKE facility at COSY

target generates an asymmetry ε in the azimuthal angle φ event distribution. The
asymmetry is defined by the multiplication of the beam polarisation P with the
corresponding analysing power A. For a perfectly vertically polarised beam with
regard to the beam axis, i.e., in y direction, the following equation applies:

ε = Py · Ay = NR −NL

NR +NL

. (4.2)

The asymmetry is manifested in the difference between the number of hits in the
left NL and right NR hemisphere of the detector. It is determined by using the fast
polarisation measurement method of EDDA. For obtaining absolute polarisation
values, a calibration measurement of the EDDA detector at all twelve energies had
to be required. However, for the beam momentum determination it is sufficient
to consider a quantity merely proportional to the polarisation, e.g., the left-right
asymmetry ε. By that one can omit a time- and money-consuming calibration
measurement. That means that for all spin-resonance spectra in Section 5.3 relative
polarisation is applied.

4.2.2. RF solenoid for inducing an artificial spin-resonance

Using the spin-resonance method for beam momentum determination an artificial
spin-resonance is induced by a longitudinal rf magnetic field from a solenoid. It
aims to affect the spin motion of the polarised beam particles stored in COSY. The
rf solenoid, shown in Figure 4.3, is made of a single-layer water-cooled copper coil
wound on semi-cylinder of Plexiglas. This one was installed around one of COSY’s
ceramic vacuum pipes in order to guarantee a good transmission of the longitudinal
magnetic rf field on the accelerator beam. The solenoid generates magnetic fields
within a frequency range of 0.5− 1.5 MHz. The integrated value of the maximum
longitudinal rf magnetic field is

∫
Brmsdl = 0.67 Tmm at a rf voltage of 5.7 kV

rms.

May 26th, 2008 1235th COSY-PAC Meeting

The tool:
RF-solenoid constructed and installed for 
and by SPIN@COSY

Figure 4.3.: The solenoid generates a longitudinal magnetic rf field to influ-
ence the spin dynamics of a polarised beam stored in COSY.
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4.3. Magnetic spectrometer ANKE

4.3. Magnetic spectrometer ANKE

The acronym ANKE stands for "Apparatus for Studies of Nucleon and Kaon
Ejectiles" [B+01]. The detector is located at an internal target station of the stor-
age ring, shown as a schematic drawing in Figure 4.4. The main components are
three dipole magnets D1, D2, D3, internal target, and detection setup, composed
of four elements: spectator detector, positive (Pd), negative (Nd) and forward (Fd)
detection setup.

1m

Fd-System
(p, d, 3He)
  DC
  MWPCs
  Scintillators

D1

D2

D3

z

x

COSY beam

Cluster-jet target (p,d)

Spectator detector
STT (silicon tracking telescope)

Pd-System (π+, K+)
  MWPCs
  Scintillation Counters
  Focual-surface telescopes

Nd-System (π-, K-)
  Cherenkov Counters
  Scintillation Counters
  MWPCs

Figure 4.4.: Schematic drawing of the ANKE detector including its main com-
ponents: three dipole magnets D1, D2, and D3, target, and four
detection systems: spectator detector, positive (Pd), negative
(Nd), and forward (Fd) detector. Negatively charged particle
tracks are illustrated in blue and those with positive charge in
red.

The Pd, Nd, and Fd system consist of various particle detectors like drift or mul-
tiwire proportional chambers, scintillation or cherenkov counters, and focal-surface
telescopes. ANKE can be equipped with three different types of targets:

• an unpolarised strip target of carbon, polyethylene, or other solid materials,
• an unpolarised cluster-jet target of hydrogen, or deuterium,
• or a polarised storage-cell hydrogen gas target.
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4. ANKE facility at COSY

The cluster-jet target makes it possible to achieve luminosities of 1030−1031 s−1cm−2,
corresponding to areal target densities of 1014−1015 atoms/cm−2. Double polarised
experiments can be performed when using the polarised gas target reaching lumi-
nosities of 1028 − 1029 s−1cm−2.

The detector setup was designed for investigating reactions close to threshold at low
excess energies. Therefore, at a fixed target experiment, it is of prime importance
to detect the particles produced under small angles. They would normally escape in
the beam pipe, because of their small transversal momenta and their large Lorentz
boost. At ANKE this is realised by deflecting the COSY beam by using the three
dipole magnets D1, D2, D3 through a chicane in the ring.
First D1 deflects the circulating beam by an angle α off its straight path onto the
target; the spectrometer dipole magnet D2 separates the produced particles from
the beam for momentum analysis; finally D3 leads the unscattered beam particles
back onto the nominal orbit.
The spectrometer dipole magnet D2 having a gap of 200 mm separates the pro-
duced particles in terms of their rigidity, that means ratio of their momentum and
charge. Negatively charged particles like π− or K− are deflected onto the nega-
tive detector placed on the left hand side of the beam; on the contrary, positively
charged ones with low momenta onto the positive detector. Due to their high rigid-
ity, positively charged particles with high longitudinal momenta in the LS frame
as protons, deuterons, or 3He nuclei are deflected only slightly by the D2 magnet.
Consequently, they move on trajectories very close to the beam pipe and are de-
tected by the forward detector system.
The design requires the D2 magnet and components of Pd, Nd, and Fd system to
be placed in common on a platform movable in horizontal direction perpendicu-
lar to the beam. The deflection angle of the beam α, depends on the position of
the platform. Angle (0◦ ≤ α ≤ 10.6◦), magnetic field strength of D2 (≤ 1.57 T),
and beam momentum cannot be chosen independently of each other. By adjusting
these three parameters it is possible to increase the geometrical acceptance for the
reaction of interest.

The tracks of charged particles detected by the various ANKE detection systems can
be traced back to the interaction point through the precisely known magnetic field.
This leads to a momentum reconstruction for registered particles. In addition to the
three parameters mentioned, i.e., magnetic field, deflection angle, and interaction
point, the positions of the tracking detectors, the drift and wire chambers, have to
be determined with high accuracy, too. This requires a precise calibration of the
detection system. For the Fd system alignment and calibration the kinematics of a
two-body reaction were used. This will be presented in Chapter 6.

In the next section the components of ANKE needed for the investigation of the
reaction d p→ 3He η will be presented in detail.
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4.3.1. Münster type cluster-jet target

The cluster-jet target, built up in Münster [D+97, K+99], has become the most often
used target for the ANKE experiment because it fulfils the particularly contrary
demands of an internal target.
On the one hand, accelerator physicists prefer a very thin and closely localised
bunch of matter as target. So the beam deterioration originated primarily by
beam-target interaction can be compensated with coolings, cavities, and optics
of the accelerator. On the other hand, physicists who study nuclear reactions and
rare processes want high density targets to achieve high luminosities and high event
rates.
From this point of view a windowless cluster-jet target is the optimal choice for an
unpolarised internal target experiment, because solid state targets provide too high
densities (1022 atoms/cm2) and gas-jet targets too low ones (1012 atoms/cm2).

Figure 4.5 depicts a schematic drawing of the cluster-jet target designed at the
Westfälische Wilhelms-Universität Münster which is installed at the ANKE ex-
periment at COSY. It is composed of three main components: cluster-jet source,
scattering chamber, and cluster-jet beam dump. The target provides hydrogen as
well as deuterium cluster-jets, produced when gas passes a so called Laval nozzle
under high pressure and at low temperatures. The expansion of the pre-cooled
gas in the nozzle leads to a further cooling due to the Joule-Thompson effect for
real gases, that results in a condensation of the atoms forming a narrow supersonic
beam of clusters.

The production process of clusters in a Laval nozzle is shown in Figure 4.6 and
illustrated by the reduction of relative momenta of atoms building up clusters via
three body collisions. The produced clusters comprise 103−106 atoms depending on
the experimental conditions. Size and velocity of the clusters as well as the density
of the cluster-jet beam depend strongly on the shape of the trumpet part and the
diameter of the Laval nozzle. In addition to that, there is a powerful dependence
on pressure and temperature of the gas before entering the nozzle. The range from
10−100µm represents typical values for the nozzle diameter; 1−20 bar can be used
for the gas pressure; and 20 − 50 K for temperature. These operation parameters
allows to adjust the target areal density in a range of 1012 − 1015 atoms/cm2 in a
distance of ≈ 0.5 m behind the nozzle.

Till today the cluster production process in a Laval nozzle still hides many secrets
and is not entirely understood yet. Systematic measurements of the target areal
density as function of pressure and temperature show a structure in the previously
adopted homogenous cluster-jet beam [Köh10], depicted on the photography of
the right hand side of Figure 4.6. This occurs when the target is driven at low
temperatures and high pressures (> 10 bar), so that the hydrogen is in fluid phase.
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Figure 4.5.: The cluster-jet target installed at ANKE consists of three main
parts: the cluster-jet source, the scattering chamber and the
cluster-jet beam dump.
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Figure 4.6.: Left: The cluster production process in a Laval nozzle and the ex-
traction and shaping of the cluster-jet beam using a skimmer and
collimator. Right: Photograph of the cluster-jet beam impinging
on the skimmer [Köh13].

In contrast to other cluster-jet targets this is a special feature of the Münster-type
one. By extraction the brightest part of the cluster-jet, the target density can be
increased by at least one order of magnitude. Although the target areal density
decreases with the distance squared from the source, it allows to provide a high
dense target with areal densities of 1015 atoms/cm2 even at larger distances. This
is necessary for the future PANDA experiment at the FAIR facility in Darmstadt.
Due to the detector geometry the PANDA target has to provide an areal density
of 4× 1015 atoms/cm2 at a distance of 2.1m. This aim will be achievable with the
new cluster-jet target [oC12, T+11, Täs12, Köh13], already designed and build up
in near future in Münster.

When producing clusters only a very small part of gas condensates to the cluster-
jet beam, which is separated from the enormous residual gas load by an conical
orifice, the so-called skimmer with a diameter of 0.7 mm, installed closely behind
the nozzle. A second orifice, the collimator, defines the shape of the cluster-jet
beam in the scattering chamber (see Figure 4.5 and 4.6). During the transition
of the cluster-jet beam into the COSY ring vacuum the residual gas has to be
retained effectively because the pressure in the scattering chamber may not exceed
a value of 10−6 − 10−7 mbar. By using a combination of roots and rotary vane
pumps the pressure in the skimmer chamber can be reduced to 10−1 mbar. The
collimator chamber is subdivided into two pumping stages, the first one with a
turbo molecular pump decreasing the pressure up to 10−4 mbar and the second one
with a self-constructed cryopump in order to bring the pressure into line with the
vacuum conditions of the synchrotron ring.

The part of the cluster-jet beam, which does not interact with the COSY beam,
is collected in the beam dump. It consists of three stages equipped with three
self-constructed cryopumps and one turbo molecular pump mounted at the end.
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The vast majority of the cluster-jet beam is removed by the turbo molecular pump.
The residual gas load generated by the evaporation and blow out of the cluster-jet
beam is retained by differential pumping with cryopumps. By that the pressure
level is adapted to that of the ring.

4.3.2. Forward detection system

Although ANKE is equipped with a variety of detectors, it is only the Fd system
that was used for the η mass measurement detecting the 3He nuclei from the reaction
d p → 3He η. Nevertheless, the Pd and Nd systems5 were also switched on for
the investigation of the ABC-effect appearing in the two-pion production reaction
d p→ 3He π+ π− [ABC60, Mie13].

The ANKE Fd system is placed between the D2 and D3 magnet (see Figure 4.4),
designed for identification of heavy particles as protons, deuterons, and helium
nuclei with high momenta scattered in forward direction. It consists of a multiwire
drift chamber, two multiwire proportional chambers (MWPC) and two layers of
scintillation hodoscopes, shown in Figure 4.7. Optionally, the Fd system can be
extended by Cherenkov radiation counters for proton-deuteron separation, or by
an additional layer of plastic scintillators, typically the Pd sidewall. During the η
mass beam time this device was used for additional energy loss measurements. The
acceptance of the Fd system is limited by the 0.5 mm thin forward exit window
with dimensions of 240 mm × 224 mm made of aluminium. Using ANKEGeant46
Monte Carlo simulation of the d p → 3He η reaction the position of the Fd system
was optimised. Figure 4.7 depicts such an ANKEGeant4 simulation for the reaction
d p → 3He η at an excess energy of ≈ 10 MeV. The blue tracks symbolise the 3He
nuclei impinging on the Fd system.

Drift and multiwire proportional chambers for tracking

Track and momentum reconstruction in the Fd system are realised by the use
of one drift and two multiwire proportional chambers [PZ02, D+04]. Because of
their position very close to the beam pipe they have to handle high counting rates
(> 107 s−1).
The drift chamber is installed shortly behind the forward exit window, consisting
of two modules, each with four sensitive wire planes forming drift cells with an
5 This detector components are described in detail in [B+01] and references therein.
6 AnkeGeant4 is a software package for simulating particle reactions at the ANKE facility. It is
based on Geant4 a toolkit for modelling the passage of particles through matter. More infor-
mations at http://geant4.cern.ch . In this framework "Pluto" was used as event generator
(see http://www-hades.gsi.de/?q=pluto).
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Figure 4.7.: The ANKE setup used for the determination of the η mass is
presented by an ANKEGeant4 Monte Carlo simulation of the
d p → 3He η reaction at an excess energy of ≈ 10 MeV. The
COSY deuteron beam (black arrow) hits the hydrogen cluster-jet
target (red point) and the helium nuclei produced (blue lines)
at small angles are separated by the D2 spectrometer magnet
to be detected by the ANKE Fd system, consisting of one drift
chamber, two multiwire proportional chambers (green), and the
scintillation hodoscope (yellow).

area of 10 mm× 10 mm [S+08a]. Each module comprises two planes with vertically
installed wires and two ones with wires rotated by 30◦, which allow to determine
the hit positions in the xz-plane. The main purpose of this chamber is to increase
the momentum resolution of the z-component. That one dominates the momentum
in the LS frame at a fixed target experiment. The hit positions can be determined
with an accuracy of 200µm by using the drift times reconstructed.
Two MWPCs, technically identical except for their size, are installed behind the
drift chamber. Each one is composed of one module with vertical wires in order to
determine the x hit position, the other one with horizontal wires for the y position.
The x and y modules contain two wire and one strip plane. The latter one is used
as active cathode inclined by 18◦ with respect to the wire orientation. Every time
a particle passes the wire chambers, the average number of wires fired in a plane is
close to unity making a high spatial resolution of 1 mm possible.
The combination of drift and multiwire proportional chambers with its good spatial
resolution provide a momentum resolution of ≈ 1 % (σ) for protons. Table 4.2
summarises the properties of the Fd multiwire chambers.
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Feature Drift chamber MWPC1 and MWPC2
Gas filling 80% Ar + 20% C2H6 85% CF4 + 15% C2H6

Number of x-planes 8 2
Number of y-planes – 2
Wire spacing /mm 5 1
Dimensons /mm 330× 320 428× 458 and 548× 535

Table 4.2.: Properties of Fd system chambers.

Scintillation hodoscope for energy loss and time of flight measurement

The Fd system scintillation hodoscope [C+02] provides energy loss and time of
flight measurement as well as trigger signals. It consists of two layers with 8 and
9 vertically orientated plastic scintillation counters, respectively. The layers are
shifted with respect to each other by the half counter width to avoid gaps in-
between. The scintillation light is read out via photomultipliers mounted on both
ends of the counters providing the timing and amplitude signal. The dimensions
for most of the counters are 360 mm× 80 mm× 20 mm (H×W×D), except for two
counters of the first layer and three ones of the second one close to the beam pipe.
The thickness is reduced to 15mm, while the width decreases gradually to 40mm,
because of the higher count rates in this region. In the η mass beam time one
scintillation layer of the Pd sidewall was placed behind the Fd hodoscope and used
for an additional energy loss measurement. This allows a much more effective 3He
online trigger in order to reduce the dead time (see Section 4.3.3). The Pd sidewall
layer is made of six equal scintillators with dimensions of 1000 mm × 100 mm ×
10 mm.

4.3.3. Trigger used during the η mass beam time

The data acquisition system7 at ANKE was designed for handling event rates of
103 Hz to 104 Hz. But for total trigger rates of ≥ 104 Hz, approximately only 50%
of the events are written on tape due to the increasing dead time [B+01]. Since the
Fd system is typically exposed to much higher event rates on the scale of > 106 Hz,
it was conclusively necessary to select just the events of interest, reducing the dead
time by an online trigger. The trigger system developed for ANKE permits to set
up four independent hardware triggers. Two of them, T1 and T2, were used during
the η mass beam time.
7 In the following data acquisition system will abbreviated with the acronym DAQ
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The amount of particles hitting the Fd system, is mainly dominated by protons
and deuterons. It is because the cross sections for reactions where these particles
are produced exceed those for helium production by far. The application of a dedi-
cated energy loss trigger T1 suited for helium identification provides a satisfactory
background suppression, i.e., proton and deuteron suppression.
For the first time this trigger was set up for studying the 4He η final state via the re-
action d d→ 4He η [W+05]. Afterwards it was successfully applied during the beam
time conducted for the investigation of the 3He η final state [Mer07, Pap13]. The
online trigger uses signals of the plastic scintillation counters of the Fd hodoscope,
which are directly proportional to the energy loss of the passing particles. The scin-
tillation counters are read out from both sides. This requires special integrating
modules providing summation and integration of two analogous signals. According
to the Bethe formula, which describes the energy loss of charged particles moving
through matter, the doubly charged helium nucleus gives rise to a larger energy
loss than single charged proton or deuteron. The discrimination threshold for each
counter was adjusted below the ∆E-p band of the 3He nuclei. The helium trigger
T1 required such high energy losses in coincidence in the first and second layer
of the Fd hodoscope (L1, L2). In addition to that the Pd sidewall layer (L3) was
incorporated into the trigger. To avoid gaps between its scintillator bars, they were
mounted overlapping at their ends (see Figure 4.7). Finally the helium trigger T1
reduced the dead time to about 30% requiring high energy loss in each scintillation
layer coincidently:

T1 = (L1 ∧ L2 ∧ L3) with High-Threshold .

The second trigger T2 was set up to record events in the forward hodoscope for
calibration and normalisation purposes. It focuses on reactions with protons and
deuterons in the final state. The d p elastic scattering should be mentioned as one
example. It serves for improving the chamber alignment as well as for determining
the luminosity. The trigger T2 required a coincident signal of both, the first and
the second layer of the Fd hodoscope at a lower threshold:

T2 = (L1 ∧ L2) with Low-Threshold .

Because of the enormous cross section for processes where protons and deuterons
are produced, the second trigger was imposed with a prescaling factor of 1024 in
order to reduce the total trigger rate increasing the DAQ efficiency. As a result the
trigger T2 contributed to the total trigger rate by only 10%.

At every beam time the Trigger T4 is used for reading out the scaler informa-
tion with a 10 Hz rate. The scalar serves for online monitoring the experiment.
By that the DAQ records COSY beam intensity, count rates of specific detectors
components, and trigger rates.
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4. ANKE facility at COSY

4.4. Experimental conditions at the beam time

Such a high precision η mass measurement like at COSY-ANKE needs special
experimental techniques, while taking data at the beam time. One of these methods
is the compensation for the accelerator beam energy loss by the bb cavity. Another
one is the possibility to drive the COSY accelerator in the so-called supercycle mode.
The supercycle is a special cycle setting comprising up to seven different energies.
The twelve accelerator beam energies presented in Table 3.2 were subdivided into
two supercycles for the experiment. The measurement of the (pd, pf ) data set
followed the subsequent schema:

111st beam momentum measurement:
Before starting the DAQ for recording data of the reaction d p→ 3He η with
ANKE using the COSY supercycle mode, each of the six beam momenta of
one supercycle was measured by using the resonant depolarisation method.
The measurement of one energy setting took 3 − 4 hours roughly, so that
in total nearly a whole day was needed when determining the six different
energies of one supercycle.

Data taking of the reaction d p→ 3He ηd p→ 3He ηd p→ 3He η with ANKE:
After the first beam momentum measurement the six different energies were
implemented in the supercycle. Then the ion source was switched from the
polarised to the unpolarised one. Over a period of five days approximately
COSY was running in the supercycle mode, while data being collected with
ANKE.

222nd beam momentum measurement:
After five days of data taking with ANKE the ion source was switched again
from unpolarised to polarised. That was necessary for measuring the COSY
beam momenta a second time in order to study systematic effects.

4.4.1. Energy loss compensations by barrier bucket cavity

For the high precision η mass experiment it was essential that the beam momentum
remained stable throughout the whole accelerator cycle. In a typical cycle of a
standard scattering experiment at ANKE, the beam is first injected into COSY
and accelerated to the nominal momentum. The rf cavity is then switched off in
order to provide a coasting beam filling the ring uniformly. This implies constant
count rates, which minimise the dead time of the DAQ.
However, the momentum as well as the revolution frequency change, because of the
energy losses through electromagnetic processes when the beam passes repeatedly
through the target [S+08c]. The revolution frequency would change by up to 103 Hz
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over a 180 s long cycle when using a deuteron beam and a hydrogen cluster-jet
target with a density of ρ = 1 × 1015 atoms/cm2. This corresponds to a shift in
beam momentum of 2.2 MeV/c over the whole cycle.
In order to compensate for this effect and to guarantee a constant beam momentum
over the whole cycle, a second cavity, the bb cavity [S+08b], was activated after
having switched off the rf cavity. By this way a bunched beam was produced filling
about 80% to 90% of the ring homogeneously leading to a reduction in the dead time
of the DAQ. As mentioned in Section 4.1, the COSY beam energy loss, originated
through the beam-target interaction, is compensated most effectively through the
combination of bb cavity and stochastic cooling. However, the stochastic cooling
was not used at the η mass beam time, because the COSY accelerator was driven in
a so-called supercycle mode, the best way to measure a large number of energies.

4.4.2. The supercycle mode and its cycle timing

The twelve closely spaced energies studied near the η threshold (see Table 3.2)
were divided alternately into two supercycles that can comprise up to seven dif-
ferent COSY machine settings. Each supercycle covered an excess energy range
from 1 − 10 MeV. In addition to six different energies above threshold one more
energy was implemented into both supercycles below η threshold at Q ≈ −5 MeV or
pd = 3120 MeV/c. It was implemented twice to collect sufficient data for a smooth
background description (see Section 6.2.4). So the first and the second supercycle
consist of seven different energies summing up to thirteen different momenta. The
exact cycle timing of the two supercycles is presented in Figure 4.8. The differ-
ent machine settings in the supercycles were imposed sequentially, after which the
supercycle was repeated. Each supercycle was used for five days of data taking
to collect sufficient statistics of the reaction d p → 3He η for a reliable final state
momentum determination. In parallel Schottky data were recorded continuously
to study the long term stability of the revolution frequency in COSY.

The reason for choosing supercycles instead of independent measurements at fixed
energies was to guarantee the same experimental conditions for each of the beam
energies in one supercycle. In this way the systematic uncertainties could be inves-
tigated in more detail, as will be discussed in Section 5.3.3 for the beam momentum
and in Section 7 for the threshold extrapolation.

Before starting each one of the five day blocks, the individual beam momenta were
measured using the spin resonance method. Therefore the spin-resonance spectrum
for each energy was recorded by measuring the beam polarisation with EDDA as
function of the frequency of the induced rf magnetic field from the solenoid. The
timing structure of the 36 s accelerator cycle is described in Table 4.3. After the
injection of the beam into COSY, the stored deuterons were accelerated by the
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time t / (s)

beam momentum p
d

 1648 s

subthreshold 

1st  Supercycle

2nd Supercycle

above
threshold

206 s

Figure 4.8.: Cycle timing of the supercycle. A cycle length of 206 s for one
energy implies a total time for the supercycle of 1648 s or 27
minutes and 28 seconds, respectively.

regular COSY rf cavity to the first nominal beam energy of the supercycle. At
t = 3.7 s this cavity was switched off and at t = 4 s the bb cavity was brought into
operation to compensate for the beam energy losses. At t = 20 s the amplitude
of the depolarising rf solenoid was linearly ramped from 0 to 2.4 kV rms to pro-
duce a

∫
Brmsdl = 0.29 Tmm in 200 ms, remained constant for 5 s, and was then

ramped down again in 200 ms. A five second long beam polarisation measurement
followed using the EDDA detector [A+05]. At t = 36 s, the cycle was terminated.
This procedure was repeated at the same beam energy but at different rf solenoid
frequencies in order to obtain the complete spin-resonance spectrum. After having
completed this first sub-measurement, the next beam energy of the supercycle was
used and the corresponding spin-resonance spectrum measured until complete data
was obtained at all the energies of the supercycle.

After having measured the spin-resonance spectrum, the supercycle was switched
on for five days of data taking with ANKE to investigate the reaction d p→ 3He η.
In addition to that the revolution frequency was monitored continuously by the
measurement of the Schottky noise to study long term stability of the COSY accel-
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erator. During this data taking time the polarisation measurements were omitted
and total cycle lengths of 206 s were used. Table 4.4 summarises the cycle timing.
After the three steps of injection, acceleration and starting the bb cavity, the data
taking with ANKE and the Schottky measurements were performed over a time
interval of t = 14−196 s. The seven beam energies, with one doubled, so that their
are really eight settings in one supercycle involved a total time of 1648 s. After
that time the complete supercycle was repeated for five days of data taking. Then
the system was reset to the first conditions shown in Table 4.3 in order to repeat
the measurement of the spin-resonance spectrum to control systematic effects.

At the η mass beam time the polarised ion source delivered a beam intensity that
was about one order of magnitude too low compared to that one required in the
proposal. Therefore, it was decided to use this ion source exclusively for the beam
energy measurement before and after the data taking with supercycles. As a con-
sequenc COSY was switched to the unpolarised ion source for data taking, which
allowed beam intensities up to nd ≈ 1 × 1010. It was very important to check
carefully that the same COSY beam energies were obtained when using the po-
larised and the unpolarised ion sources. To ensure this, the complete settings of
the cyclotron, the beam injection, as well as COSY itself, were fixed when switch-
ing from one ion source to the other one. The validity of switching the ion sources
was proven (see Section 5.2.4) by monitoring the revolution frequency of the stored
beam for the two different cases.

The high beam intensity of the unpolarised source made it possible to implement
a third supercycle with additional energy settings for the last two days of the
beam time [Gos08]. The main objective of the third supercycle was to collect
data at a supplementary energy below threshold for verification and improvement
of the background description. Besides that, also data at further energies above
threshold, e.g., Q ≈ 15 MeV, could be recorded. The lack of time allowed only
one beam momentum measurement for each energy. Consequently it could not be
considered for the η mass determination. However, it is intended to use the data
for the determination of total and differential cross sections [Fri13].
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Time t / (s) Process

0 Start of cycle: injection

0 – 3.7 Acceleration of the beam with rf cavity

3.7 Switch off rf cavity

4 Switch on bb cavity

20 – 25 rf solenoid on

25 – 30 Polarisation measurement with EDDA

30 Schottky measurement

36 End of cycle

Table 4.3.: Cycle timing used to determine the spin-resonance frequency spec-
trum with the polarised beam.

Time t / (s) Process

0 Start of cycle: injection

0 – 3.7 Acceleration of the beam with rf cavity

3.7 Switch off rf cavity

4 Switch on bb cavity

14 – 196 Data taking with ANKE

30 – 180 Schottky measurements every 30 s

206 End of cycle

Table 4.4.: Cycle timing used during data taking with ANKE with the unpo-
larised beam.

56



5. Beam momentum determination

Most of the analysis of the COSY beam momentum determination using the res-
onant depolarisation technique is already presented in a Diploma thesis [Gos08].
However, the analysis was finalised in context of this PhD thesis. The challenging
demands of the high precision mass measurement required a lot of effort in order to
extract the final beam momenta with highest accuracy. Afterwards the final results
were published in the journal "Physical Review Special Topics - Accelerators and
Beams" in 2010 [G+10]. This following chapter will present the method in more
detail and the main results will be summarised. One can find more specific aspects
in the two publications mentioned above.

In general, the momentum of a beam stored in a ring like COSY is given by the
velocity v of the beam particles. This quantity is determined typically by measuring
the revolution frequency f0 of the beam particles and their absolute orbit length s:

v = s · f0 . (5.1)

The measurement of the orbit length by, e.g., beam position monitors, limits the
achievable accuracy of this approach of typically ∆p/p ≈ 10−3. It is nearly impos-
sible to obtain the necessary increase in accuracy to ∆p/p ≈ 10−4 needed for the
η mass measurement by simply scaling up the number of beam pickup electrodes
because of technical restriction of such a macroscopic device. Therefore, the beam
momentum must be determined in some other way. A complete different approach
to overcome this limitation for a high precision beam momentum determination
is provided by the resonant depolarisation method focussing on spin dynamics of
polarised beams.

The physical principles of this method will be explained in Section 5.1; the deter-
mination of the two important measuring variables, i.e., the revolution frequency
f0 and the spin resonance frequency fr, will be discussed in Sections 5.2 and 5.3.
At the end, Section 5.4 summarises the final outcomes.
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5. Beam momentum determination

5.1. Physical principles of the resonant
depolarisation technique

The resonant depolarisation technique also named spin resonance method [S+76,
D+80] was developed at the electron-positron collider VEPP of the BINP "Bud-
ker Institute of Nuclear Physics" at Novosibirsk in the end of the 1970s. It was
applied very successfully for mass measurements of a wide variety of mesons from
the φ [B+87] over the J/ψ [A+03] to the Υ [A+82]1 at the VEPP accelerator.
The application was further developed at DORIS in Hamburg [B+84] and CESR
in Cornell [M+84], as well as LEP at CERN [A+92]. Although, it was developed
and applied to polarised electron or positron beams, there is in principle no rea-
son why the resonant depolarisation approach should not be equally applicable to
other beam particles with an intrinsic spin, such as protons or deuterons. Re-
cently the effect was confirmed at the hadron machine COSY in studies of the spin
manipulation of both polarised proton [L+04, M+04] and deuteron [M+05] beams.
The resonant depolarisation technique is based on the spin dynamics of particles
stored in polarised beams in a circular accelerator. The particle spin motion in an
accelerator is described by the Thomas-BMT equation.

5.1.1. Spin in synchrotron: Thomas-BMT equation

The spin motion of a particle stored in a synchrotron is defined by the interaction
between its magnetic moment and the magnetic structure of the ring. Every particle
with an intrinsic spin ~S generates a "spin" magnetic moment ~µ:

~µ = g
q

2m
~S. (5.2)

The constant of proportionality includes the particle’s charge q, mass m, and the
gyromagnetic factor g. The Dirac equation, which is defined for point-like par-
ticles with half integer spin like the electron, predicts exactly a value of two for
the g-factor. However, a value slightly larger was found experimentally. This is
explained by QED through the interaction of the electron with virtual photons2.
The deviation from the exact value of two is described by the anomalous magnetic
moment or gyromagnetic anomaly G defined as:

G = g − 2
2 . (5.3)

1 In addition the masses of neutral and charged kaons have been measured. More detailed
information can be found in the literature referenced therein.

2 The electron g-factor is one of the most precisely measured quantity in physics confirming the
predictions of QED.
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5.1. Physical principles of the resonant depolarisation technique

For different composite particles, like proton and neutron, the g-factor and so the
gyromagnetic anomaly varies in a wide range due to their inner structure of various
elementary particles. The gyromagnetic anomaly for deuterons is,

Gd = −0.142 987 272 5± 0.000 000 007 3 , (5.4)

and can be calculated from the ratios of the magnetic moments and masses of
proton and deuteron (see [Gos08] page 103 or [G+10] reference [19]).

The interaction between a magnetic moment and an external magnetic field ~B
results in a torque ~τ , aligning the spin vector (to the magnetic field vector):

~τ = d~S

dt
= ~µ× ~B . (5.5)

The equation of motion of the spin vector is given by

d~S

dt
= g

e

2m
~S × ~B . (5.6)

when inserting Equation (5.2) with elementary charge e into Equation (5.5). This
equation defines the spin motion in the rest frame of the particle in the presence of
a magnetic field. In order to describe the spin motion of a particle in a synchrotron
the well-known magnetic field structure of the accelerator in the laboratory system
has to be transformed into the rest frame of the particle, which results in the
Thomas-Bargmann-Michel-Telegdi equation3 [Tho27, BMT59]:

d~S

dt
= e

γm
~S ×

(1 + γG) ~B⊥ + (1 +G) ~B‖ +
(
Gγ + γ

γ + 1

)
~E × ~β

c

 . (5.7)

~E is the electric field, ~B⊥ and ~B‖ are the transverse and longitudinal components
of the magnetic field of the accelerator in the laboratory frame with respect to
the particle’s direction of movement, which is represented by the particle’s velocity
vector ~βc, in terms of which γ = 1/

√
1− β2.

The last two terms are negligible in first approximation in an ideal synchrotron,
in which the beam particles circulate exclusively on the nominal or closed orbit.
Moving on the nominal orbit the particles are affected only by the vertical beam
bending dipole magnetic fields, which are perpendicular to the particles’ motion
~B⊥, whereas all other magnetic multipoles of higher order with ~B‖ generated by
quadruple or sextuple magnets vanish. The cross product ~E × ~β is also equal zero
because the electric field of the rf cavity in an accelerator is always parallel to the
3 Abbreviated in following as Thomas-BMT equation.

59
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moving direction of the beam particles. Consequently, the spin motion depends
solely on the first term of the Thomas-BMT equation becoming a function of the
transverse magnetic fields ~B⊥ of the accelerator. This leads to a spin precession
around the vertical fields of the guiding dipole magnets of the synchrotron. The
polarisation of the beam is merely preserved in this vertical y-axis of a curvilinear
coordinate system4 denoted as spin stable direction or quantisation axis. According
to Equation (5.7) the number of spin precessions during one single circuit in the
machine, the so-called spin tune νs, is given by

νs = Gγ (5.8)

in the coordinate basis of the moving particle. The spin tune frequency becomes
νs = 1 + Gγ in the laboratory frame when taking into account the extra rotation
associated with the one single circuit of the beam particles. The correlation between
spin tune and the particle’s Lorentz factor γ and hence the momentum or energy
can be exploited for a high precision beam momentum determination.

5.1.2. Imperfection and intrinsic depolarising resonances

In a real synchrotron the motion of beam particles is much more complex than
described by the closed orbit. Due to unavoidable field errors, misalignments of
magnets, and the focussing and defocussing magnetic fields of the quadrupoles, the
particles are exposed higher order magnetic fields with ~B‖ 6= 0 disturbing the spin
precession around the spin stable direction. Each "perturbation field" induces a
deflection of the spin vector with respect to the x-axis of the curvilinear coordinate
system. If the frequency of a perturbation field coincides with that spin-precession
νs, the beam will depolarise. Such depolarising resonances occur only at fixed beam
momenta since the spin tune frequency is a function of the relativistic γ factor. This
important fact has to be taken into account for acceleration of polarised beams. A
detailed description of the spin dynamics in a synchrotron as well as methods to
preserve the polarisation during acceleration can be found in [Lee97].

Imperfection resonances

One kind of first-order resonance is the "imperfection resonance". It is caused by the
vertical closed-orbit errors due to field errors and misalignments of the magnets.
4 A curvilinear coordinate system (x̂, ŷ, ŝ) is chosen for particle motion in synchrotrons with
respect to the reference orbit ~r0(s). The point in space for a particle is completely defined via
(x, y, s), whereas s represents the distance passed, x = x(s) horizontal, and y = y(s) the vertical
deviation of the reference or closed orbit. A more detailed description is given in [Hin08, Lee07].
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If the spin tune is an integer γG ∈ Z, then the horizontal imperfection fields of
the synchrotron can interact resonantly with the particle spin, building up effects
coherently turn by turn. The positions in momentum of the depolarising imper-
fection resonances depend on the gyromagnetic anomaly of the particle. In case of
protons (Gp = 1.792847) five resonances appear in the COSY momentum range;
the first one at a momentum of 464MeV/c. For deuterons (Gd = −0.142987) the
first resonance occurs at ≈ 13 GeV/c, which is well outside the COSY momentum
range. For the beam momenta used in the beam time (see Table 3.2) the spin tune
remains in the region of νs = 0.2775− 0.2818.

Intrinsic resonances

Another kind of first-order resonance is the "intrinsic resonance" caused by hori-
zontal fields of the vertical focussing. In a real synchrotron most particles do not
circulate on the closed orbit, but rather on a trajectory distributed around it. Such
a motion is denoted as betatron motion and results in a transverse oscillation of the
circulating particles around the closed orbit. Because of the betatron oscillation
frequency of the circulating beam, the particles encounter fields of the focusing
quadrupole magnets in resonance with the spin tune leading to a depolarisation.
The position in momentum of intrinsic resonances depends on the vertical betatron
tune νy and the superperiodicity P of COSY, which is given by the number of iden-
tical periods of the accelerator’s magnetic structure. At COSY the superperiodicity
can be chosen to be P = 2 or P = 6 and the resonance condition is described by

γG = kP ± (νy − 2) , (5.9)

where k is an integer. For a deuteron beam the intrinsic resonances occur also for
energies that are far beyond the COSY momentum range [Leh97, L+03].

5.1.3. Artificially induced depolarising resonance for beam
momentum determination

An artificially induced depolarising resonance can be generated by introducing a
local horizontal magnetic rf field from either a solenoid or dipole in the synchrotron.
Depending on the form of the field, this resonance can be used to depolarise the
beam, to measure the spin tune, or even to flip the spin direction of the beam par-
ticles. The spin-resonance frequency fr for a planar accelerator without horizontal
magnetic fields is given by [D+80]

fr = (k + γG)f0 , (5.10)

61



5. Beam momentum determination

where f0 is the revolution frequency of the beam, γG is the spin tune, and k is an
integer. If the rf frequency of this perturbation is close to the spin-resonance fre-
quency, the spin motion and consequently the beam polarisation will be maximally
influenced leading to a beam depolarisation. The magnitude of the depolarisation
depends on the resonance strength ε

ε = 1√
2π

e(1 + γG)
p

∫
Brmsdl . (5.11)

In this equation is p the beam momentum and
∫
Brmsdl the solenoid’s rms magnetic

field integral [M+04]. The intrinsic width w (FWHM) of the resonance is defined
by

w = 2 ε fr (5.12)

and can be estimated from the resonance strength ε and frequency fr [M+04].

During the η mass beam time the resonance with k = 1 was used for the deuteron
beam momentum determination because it matches the frequency range of the rf
solenoid installed at COSY (see Section 4.2.2). The particles’ kinematic γ factor
can be determined purely by measuring both, the revolution and spin resonance
frequency according to Equation (5.10)

γ = 1
Gd

(
fr
f0
− 1

)
. (5.13)

Consequently, the deuteron beam momentum pd can be calculated

pd = md β γ = md

√
γ2 − 1 , (5.14)

using the relation βγ =
√
γ2 − 1. It is important to note that horizontal magnetic

fields in the accelerator lead to modifications of the spin tune, i.e., Equations (5.8)
and (5.10). In order to avoid such complications in the beam momentum de-
termination, all solenoidal and toroidal magnets in the COSY ring were switched
off during the beam time. Residual shifts in the resonance frequency arising from
field errors and vertical orbit distortions were estimated and found to be negligibly
small. These effects are discussed in more detail in Section 5.3.3.

According to Equations (5.13) and (5.14) a high precision beam momentum deter-
mination can be realised by measuring the revolution frequency f0 (see Section 5.2)
and the corresponding spin resonance frequency fr (see Section 5.3) of a polarised
beam.
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5.2. Revolution frequency

The radio frequency signal of the accelerating cavity predetermines the revolution
frequency of the stored beam in a circular accelerator. The radio frequencies of
the bb cavity for the thirteen different energies5 used in the η mass beam time are
listed in Table 5.1.

Data Beam momentum bb cavity
Points pd / (MeV/c) frequency f0 / (Hz)

0 3120 1400771
1 3146 1403831
2 3147 1403947
3 3148 1404064
4 3150 1404296
5 3152 1404529
6 3154 1404761
7 3158 1405224
8 3162 1405686
9 3167 1406261
10 3171 1406720
11 3176 1407292
12 3183 1408089

Table 5.1.: Frequencies of the bb cavity measured with an oscilloscope for the
thirteen different energy settings.

The deuteron beam momenta in a range of 3100 − 3200 MeV/c correspond to bb
cavity frequencies of 1.401 − 1.408 MHz. These quantities do not represent the
true revolution frequency because the bb cavity signal was measured by an oscillo-
scope with a large measurement uncertainty. Additionally, possible orbit variations
in time have to be taken into account. The measurement of the Schottky noise
of the beam provides a much more precise technique for determining the orbital
frequency.
5 The subthreshold data at Q ≈ −5 MeV and Q ≈ −4 MeV below η production is marked in all
further tables as "data point 0".
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5.2.1. Schottky Noise of the circulating beam

In the beginning of the 20th century Walter Schottky discovered that a current cre-
ated by a finite number of charge carriers always has some statistical fluctuations,
denoted as "Schottky noise" [Sch18]. A beam stored in a circular accelerator rep-
resents such a current consisting of a finite number of charged particles. These are
distributed statistically in the beam leading to such random current fluctuations. If
the beam passes a beam pickup electrode in the ring the fluctuations will induce a
voltage signal. The Fourier transform of this voltage-to-time signal by a spectrum
analyser delivers the frequency distribution around the harmonics of the revolution
frequency of the beam. As mentioned in Section 4.2, the beam pickup and spectrum
analyser of the stochastic cooling system of COSY were used for the measurement
of the Schottky noise. The analyser measures primarily the Schottky noise current,
which is proportional to the square root of the number of the particles in the beam.
Therefore, the amplitudes of the measured distribution needed to be squared to
get the Schottky power spectrum representing the momentum distribution of the
beam [Bou87]. The spectrum analyser was operated in the range of the thousandth
harmonic, i.e., at about 1.4 GHz, but, because of the twelve different energies and
hence revolution frequencies (see Table 5.1), harmonics from 997 to 1004 were also
measured.

5.2.2. Method for determining revolution frequencies

The Schottky noise spectra were recorded every 30 s throughout the whole beam
time so that altogether nearly 16 000 distributions were collected, sorted, and as-
signed to an energy. More than 99 % of them were used for the further analy-
sis [Gos08], i.e., roughly thousand spectra for each energy. Only one spectrum was
recorded in each cycle during the 36 s long cycles of the spin resonance measure-
ments. Conversely, six spectra were measured during the 206 s long cycle used for
the ANKE data taking (see Tables 4.3 and 4.4). The large amount of Schottky
spectra allows to study the long term stability of the revolution frequency, which
will be discussed in Section 5.2.4.

Figure 5.1 shows one example for such a spectrum, normalised to the first harmonic,
for the first beam momentum above threshold (pd = 3146 MeV/c) of the first su-
percycle. Due to the short Schottky measuring time the frequency distribution is
not really smooth and the data points show strong fluctuations. However, the large
amount of spectra provides good statistics allowing for a precise determination of
the revolution frequency.

In context of the Diploma thesis [Gos08] two different methods were used to calcu-
late a mean orbital frequency for each energy.
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Figure 5.1.: Single Schottky power spectrum, recorded at t = 30 s, for the
first energy above threshold of the first supercycle, normalised to
the first harmonic.

In the first case the weighted arithmetic mean frequency was calculated for each
single Schottky spectrum. The average of all these mean frequencies for all the
Schottky spectra at one particular energy represents the mean revolution frequency
for this accelerator setting.
Another way for the determination of the revolution frequency is given by calcu-
lating a mean Schottky spectrum from all the spectra recorded under the same
conditions at a particular energy. Therefore, an intensity mean value was calcu-
lated from all spectra for each frequency value on the abscissa. Figure 5.2 depicts
such a mean Schottky power spectrum extracted from the Schottky measurements
over the five days of data taking.

The full width of half maximum is in the region of 40 Hz to 50 Hz for all energies.
The position of the mean distribution of the circulation frequency is stable for the
whole cycle time, but within the cycle, a small tail is seen at lower frequencies.
This corresponds to beam particles that escaped the influence of the bb cavity, e.g.,
because of beam-target interaction, but still circulated in COSY. By calculating the
weighted arithmetic mean of the orbital frequency distribution, an average revolu-
tion frequency was estimated. The results for the mean revolution frequency of both

65



5. Beam momentum determination

 / (MHz)
0

revolution frequency f
1.4036 1.4037 1.4038 1.4039

in
te

ns
ity

 (a
rb

. u
ni

ts
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 5.2.: Mean Schottky power spectrum extracted from measurements
over the five day of data taking at a beam momentum of
3146MeV/c. The statistical error bars lie within the data points.
An average revolution frequency of f0 = 1 403 831.75 ± 0.12 Hz
was deduced by calculating the weighted arithmetic mean.

methods agree within their statistical uncertainties, which are below ±0.2 Hz. The
statistical uncertainty depends on both the number of measured Schottky spectra
and on the distribution variations.

5.2.3. Results of the revolution frequency analysis

By the use of the two methods described in the previous section the behaviour of
the revolution frequency in COSY was studied in detail [Gos08]. In the following
the most important results will be summarised exclusively. First the long term
stability of the circulating frequency will be discussed. Afterwards the extracted
mean revolution frequencies of the spin resonance measurements with the polarised
source are compared with those ones for the data taking time with ANKE using
the unpolarised source.
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Long term stability of the revolution frequency in COSY

The large number of Schottky measurements allow to investigate the long term
stability and to identify the magnitude of the variations of the revolution frequency
in COSY. For this purpose only spectra were used which were recorded during the
five days of data taking with ANKE in the supercycle mode.
In the first step the mean revolution frequencies for each energy over the five days
were extracted from the mean Schottky spectrum. In the second one the revolution
frequencies for these data were calculated for each of the five days to study the
daily variation of the circulation frequency. The differences between the daily mean
revolution frequency and the average frequency for all the five days of data taking
are presented in the left part of Figure 5.3 for the first energy of the first supercycle
exemplarily.
In order to investigate the variations of the revolution frequency over one day, the
same procedure was carried out for Schottky data measured every four hours. The
differences between the mean revolution frequency for every four hours and the
mean frequency of the whole day are presented in the right part of Figure 5.3.
The horizontal bars represent the time intervals for which the revolution frequency
was evaluated. As it can be seen from Figure 5.3 the analysis points out that the
revolution frequency over one day and also over five days is very stable at COSY.
The variations are very small being in the order of 1Hz at circulation frequency of
f0 ≈ 1.4 MHz for all energies.
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Figure 5.3.: Stability of the revolution frequency f0. In the left panel the dif-
ferences between the mean revolution frequencies for each single
day and the average one for five days of Schottky data taking are
shown. In the right panel the differences between the mean revo-
lution frequencies of four hour time periods and the average one
for this single day are shown. From these plots it is clear that the
orbital frequency at COSY is very stable, with variations below
1Hz at a circulation frequency of f0 ≈ 1.4 MHz.
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5. Beam momentum determination

Additionally, a brief COSY switch off during the beam time allowed to verify the
reproducibility of the revolution frequency at COSY. The analysis of the Schottky
mean power spectra before and after the COSY shutdown shows that the extracted
circulation frequencies are consistent within their uncertainties.

Comparison of the mean revolution frequencies for the polarised and
unpolarised source mode

As pointed out in Section 4.4.2 the polarised beam was used exclusively for the spin
resonance measurements, whereas the unpolarised one was used for data taking
with ANKE in order to reach the required luminosity. Due to the fact that all
COSY settings are identical for these two situations the beam momentum must be
equal [PS08]. A comparison of the circulating frequencies for these two cases, i.e.,
for polarised and unpolarised source, allows to prove this statement. Therefore,
the different timing cycle lengths have to be taken into account (see Tables 4.3
and 4.4). While during the spin-resonance measurements using a polarised beam
the Schottky spectra were recorded at t = 30 s in the t = 36 s long cycle, with
unpolarised beam a spectrum was measured every 30 s in the t = 206 s long cycle.
Due to beam-target interactions beam particles can escape the influence of the
bb cavity and circulate then with lower frequencies in COSY. This is represented
by a tail at 1.4036-1.4038MHz in Figure 5.2. The amount of particles in the tail
increases and the lowest frequency of the tail decreases within the cycle leading to
a reduction of the mean revolution frequency of about 6Hz within the cycle period
of 206 s [Gos08].

By considering only the spectra measured at t = 30 s during the 206 s long cycle
for the calculation of the mean Schottky power spectrum the revolution frequen-
cies with polarised source and with unpolarised source can be directly compared.
Because in this case the two revolution frequency distributions represent the same
situation of the beam in COSY. The comparison revealed for the first and second
supercycle deviations from −3 Hz to 5 Hz, but showed for the third supercycle that
the revolution frequencies agree within their uncertainties [Gos08].
One reason for the variations of the circulation frequencies may be the switching
from one ion source (polarised) to the other one (unpolarised). Another possibility
for the variations is given by the preparation of the Schottky spectrum analyser.
While for the third supercycle the frequency range of the spectrum analyser was
the same polarised and unpolarised source, it was changed for the first and second
supercycle to optimise the resolution.

In addition it was observed that through the adjustment of the frequency range of
the spectrum analyser the measured revolution frequency deviated randomly by up
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to ±6 Hz from measurement to measurement [Gos08]. This justifies the assump-
tion that the extracted mean revolution frequencies are distributed in an interval
of ±6 Hz in an uniform probability distribution. This systematic uncertainty of the
spectrum analyser can be regarded as statistical one because of the random varia-
tions of the extracted revolution frequency. For an uniform probability distribution
the rms uncertainty of the mean value is calculated by dividing the interval width by√

12 leading to an uncertainty of ∆f0 = ±3.5 Hz. The total statistical uncertainty
is combined from the error of the spectrum analyser ±3.5 Hz and those one when
extracting the mean revolution frequency from the average spectrum ≈ ±0.2 Hz.
Consequently, it is entirely dominated by the first one whereas the second one is
negligible.

5.2.4. Revolution frequencies for beam momentum
determination

The comparison of the mean revolution frequencies between the beam momentum
measurement and data taking with ANKE points out that the beam situation in
COSY do not change by switching from polarised to unpolarised ion source and vice
versa. The frequencies agree within the intrinsic uncertainty limits of the Schottky
spectrum analyser. The total statistical uncertainty is dominated by this intrinsic
one of ±3.5 Hz.
Table 5.2 lists the mean revolution frequencies used for beam momentum deter-
mination for all thirteen energy settings6. These values were determined from the
average Schottky power spectra. Additionally, it is worth noting that the devia-
tion to those ones the bb cavity was operated with is in the range of ±6 Hz, the
experimental resolution of the Schottky spectrum analyser.

6 The subthreshold data, marked in the table as "data point 0", were measured at Q ≈ −5 MeV
and Q ≈ −4 MeV below threshold corresponding to two different revolution frequencies.
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Data Beam momentum Mean revolution Uncertainty

Points pd / (MeV/c) frequency f0 / (Hz) ∆f0 / (Hz)

0 3120 1400771.1 / 1400767.1 3.5

1 3146 1403831.8 3.5

2 3147 1403945.8 3.5

3 3148 1404066.7 3.5

4 3150 1404298.2 3.5

5 3152 1404524.2 3.5

6 3154 1404755.9 3.5

7 3158 1405225.2 3.5

8 3162 1405688.2 3.5

9 3167 1406260.3 3.5

10 3171 1406719.3 3.5

11 3176 1407288.2 3.5

12 3183 1408088.2 3.5

Table 5.2.: Revolution frequencies of the twelve energy settings used for the
beam momentum determination.
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5.3. Spin resonance frequency

In order to determine the spin resonance frequency fr for each of the 13 energies
the spin resonance spectra were recorded twice, once before and once after the five
days of data taking with ANKE as described in Section 4.4. For this purpose the
polarisation of the polarised deuteron beam was measured as function of the radio
frequency of the induced artificially magnetic field form the solenoid. Therefore, the
angular asymmetry was detected with EDDA when scattering the polarised beam
on a carbon target [Sch99]. For the beam momentum determination an absolute
calibration of EDDA was not required and a quantity merely proportional to the
polarisation such as the left-right asymmetry was sufficient.
Figure 5.4 shows one example of a spin-resonance spectrum for the first energy
above the η production threshold (pnominal = 3146 MeV/c) of the first supercylce.
The non-normalised polarisation ("relative polarisation") is plotted as function of
the radio frequency of the induced horizontal magnetic field generated by the
solenoid.

The resonance condition given by Equation (5.10) is not fulfilled for magnetic fields
with frequencies of 1.0116MHz and 1.0120MHz resulting in a high beam polar-
isation. In contrast the particles’ spin was maximally influenced and the beam
depolarised when the frequency of the solenoid coincided with that one of spin-
precession. For all energies a full width at half maximum in the region of 80−100 Hz
was found. Unlike the earlier spin-resonance test measurement with a coasting
beam, i.e., no cavities and no internal target [S+07b, S+07a], the spin-resonance
spectra are not smooth. They do not have a pure Gaussian shape as those one
in [S+07b, S+07a]. The structures, especially the double peak in the centre, are
caused by the interaction of the deuteron beam with the bb cavity. However, by
comparing the spin-resonance spectra measured for an unbunched and a bunched
beam with the standard accelerating rf cavity or even with the bb cavity, it was
found that the centres of gravity of the spectra were the same [Gos08].

5.3.1. Method for determining spin resonance frequencies

In order to extract the correct spin-resonance frequency from the spectra, the
shapes, especially the structures in the centre had to be studied in more detail.
Therefore all 26 distributions were fitted with Gaussians and then shifted along
the abscissa so that the mean value of each individual spectrum becomes zero. In
addition, each spectrum was shifted along the ordinate so that the off-resonance
polarisation vanished. Finally, the data was scaled to a uniform height and dis-
played together in a single plot to allow a comparison of all spectra. The resulting
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Figure 5.4.: Spin-resonance spectrum (closed circles) at a nominal beam mo-
mentum of pd = 3146 MeV/c measured with the cycle timing
described in Table 4.3. The open symbols represent results ob-
tained for an extended cycle time, where the perturbing solenoid
was switched on after 178 s.

global spin-resonance spectrum, shown in the top part of Figure 5.5, is symmet-
ric around zero and smooth, except for the structure at the centre. This region
is shown in greater detail in the inset. In order to improve the visibility of the
structures close to the minimum, the size of the frequency bins was increased and
the results displayed in the bottom part.

A structure with a symmetric double peak and a narrow oscillation appears in
the centre of the spin resonance, clearly visible in the global spectrum, whereas
indicated weakly only in the individual spectra. Consequently the spin resonance
spectrum is a superposition of a Gaussian function and this pattern. However, it is
important to note that the Gaussian mean value, i.e., the spin-resonance frequency,
can be disentangled and is not influenced by this structure. This was checked by
making fits to the global spectrum as well as to each single one, where the data
points at the centre were excluded. Within the uncertainty limits the extracted
spin-resonance frequencies agree with those extracted by a fit to the spectra with
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Figure 5.5.: Top: The spin-resonance spectra normalised by a Gaussian.
Bottom: The same but with larger bins on the abscissa. The
spin-resonance shape is symmetric about zero and smooth except
in the centre, where a double peak structure is seen. The struc-
tures, especially the double peak, are caused by the interaction
of the deuteron beam with the bb cavity. The insets show the
resonance valley in greater detail.
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all data points. By this, the validity of extracting the spin-resonance frequency fr
by making a Gaussian fit to the spin-resonance spectrum have been verified. The
description with a Gaussian gave a χ2/NDF in the region of 2−3 for all 13 energies.
The statistical uncertainties of the spin-resonance frequencies are in the order of
0.9− 1.4 Hz at fr ≈ 1.01 MHz.

5.3.2. Results of the spin resonance frequency analysis

For the interpretation of the spin-resonance measurements it is important to know
to what extent the position of the observed spin-resonance frequencies are stable
over the finite accelerator cycle in the presence of a thick internal target. There-
fore, various measurements were conducted at the beginning of the beam time
in order to investigate the influence of different effects on the spin resonance fre-
quency [Gos08].

Influences on fr from cycle timing and cluster-jet target

The cycle timing for the resonant depolarisation measurements, listed in Table 4.3,
has to be chosen in a way to guarantee that the beam is first accelerated to the
constant beam momentum and afterwards influenced by the induced magnetic field
of the solenoid. If the solenoid is switched on too early the measured spin-resonance
spectrum will reflect a situation of beam acceleration. To find the point in time,
at which the beam momentum remains constant for the whole cycle, the timing of
the switch-on of the solenoid was changed and the spin resonance spectrum was
measured. Four different measurements were conducted with the switch-on at 4,
8, 12, 20 s. While the values for the extracted spin resonance frequencies for the
measurements at 8, 12, 20 s agree within their uncertainties, the frequency measured
with the switch-on after 4 s deviates by about 20Hz [Gos08]. In this case the spin
resonance spectrum is still influenced by the beam acceleration. Due to this fact
all further resonant depolarisation measurements were carried out using the setting
listed in Table 4.3 with switching on the magnets after 20 s for ensuring a stable
beam situation in COSY.

In contrast to the first test measurement [S+07b, S+07a], the spin resonances were
measured in the presence of a thick internal cluster-jet target during the η mass
beam time to guarantee the same conditions for the beam for the two different
cycle modes (see Tables 4.3 and 4.4). The impact of the cluster-jet target on fr was
investigated by an additional measurement of the spin resonance spectrum using
the cycle timing listed in Table 4.3 with and without target [Gos08]. Thereby no
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significant effect was observed. In a special much more time-consuming measure-
ment the switch-on of the rf solenoid was delayed from 20 s to 178 s in order to
investigate the position of the spin-resonance frequency close to the end of the long
cycle (see Table 4.4). The observed data, depicted as open symbols in Figure 5.4
showed a resonance position which agreed with those at the beginning of the cycle
to within 2Hz [Gos08].

Shifts between first and second spin-resonance measurement

The stability of the position of the spin-resonance frequencies could be investigated
in detail by comparing the resonant depolarisation measurements before and after
the five days of data taking with ANKE. Both supercycles show collective shifts
of the spin resonance frequencies in the range of 4Hz up to 18Hz, which probably
originated from changes in the orbit length in COSY of about 3mm. Figure 5.6
illustrates the shifts between the first and second resonant depolarisation measure-
ments as red triangles for all 13 energies.

The frequencies in the first supercycle decrease between 4 − 10 Hz for all energy
settings corresponding to a decrease in the beam momentum of 40−100 keV/c. For
the second supercylce they increase in the range of 12 − 18 Hz and hence 130 −
190 keV/c in the beam momentum. Due to the fact that the revolution frequency
was found to be stable as described in Section 5.2.4, the change could only be
attributed to a shift in the orbit length s.

The velocity v of the particle is given as product of the revolution frequency f0 and
the orbit length s according to Equation (5.1), so that the relativistic γ factor can
be written as

γ = 1√
1− s2f 2

0 /c
2
. (5.15)

When inserting this expression Equation (5.13), the orbit length can be calculated
from the revolution and the spin-resonance frequency:

s = c

 1
f 2

0
−
(

Gd

fr − f0

)2
1/2

. (5.16)

This allows an extraction of the absolute orbit lengths with a precision better than
0.3mm for each of the 13 energies7 resulting in a relative accuracy of ∆s/s ≤
2× 10−6. The shift in the spin-resonance frequency corresponds to a change in the
orbit length of up to 3mm, which is presented for all energy settings in Figure 5.6
as blue circles. The shifts of the spin-resonance frequencies suggest an increase in
7 A more detailed discussion and the calculated values can be found in [Gos08].
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the orbit length in the range of 0.7− 1.6 mm for the first supercycle and a decrease
of 2.0− 2.8 mm for the second one.
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Figure 5.6.: The spin-resonance frequencies were measured twice, once before
and once after the five days of data taking. The red triangles rep-
resent the shift of the spin-resonance frequency fr from the first
to the second measurement. These shifts correspond to changes
in the orbit length, which are shown as blue circles. For the first
supercylce, the spin-resonance frequencies decrease between the
two measurements in a range of 4− 10 Hz, which corresponds to
an increase in the orbit length in the range of 0.7− 1.6 mm. For
the second supercylce an increase of the spin resonance in the
range of 12 − 18 Hz was observed, i.e., a decrease in the orbit
length of about 2.0− 2.8 mm.

The shift in fr, which implies a shift of the beam momentum, had to be factor in
the threshold extrapolation. It defines the dominate systematic uncertainty of the
determined beam momentum and as will be shown later also the systematic error
of the obtained η mass value (see Section 7).

76



5.3. Spin resonance frequency

5.3.3. Spin resonance frequencies for beam momentum
determination

Average values of the two spin resonance frequencies, measured before and after
data taking, are calculated for each of the twelve energy settings for precise beam
momentum determination according to Equations (5.13) and (5.14). These average
values are listed in Table 5.3.

Data Beam mom. Spin resonance Stat. error Syst. error

Points pd / (MeV/c) frequency fr / (Hz) ∆f stat.r / (Hz) ∆f syst.r / (Hz)

0 3120 1012008.6 0.7 8.7

1 3146 1011810.0 1.0 8.7

2 3147 1011805.4 0.8 8.7

3 3148 1011791.8 1.0 8.7

4 3150 1011777.6 0.8 8.7

5 3152 1011753.0 0.9 8.7

6 3154 1011732.9 0.7 8.7

7 3158 1011682.3 0.9 8.7

8 3162 1011640.2 0.8 8.7

9 3167 1011565.4 0.8 8.7

10 3171 1011517.3 0.7 8.7

11 3176 1011431.1 0.7 8.7

12 3183 1011325.6 0.6 8.7

Table 5.3.: Spin resonance frequencies of the twelve energy settings used for
the beam momentum determination

While the statistical uncertainty is given by Gaussian error propagation, the sys-
tematic uncertainty was estimated from the collective shifts in fr as described in
the following. The average values differ by up to 10Hz from the two single spin-
resonance measurements for each energy. Nevertheless, the maximum uncertainty
for these mean values was conservatively extended to 15Hz in order to consider
the collective shifts of 4Hz to 18Hz. This corresponds to a maximum shift of
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±164 keV/c in the beam momentum. The origin for the collective shifts is likely
to be caused by steady tiny changes in the deuteron orbit inside the synchrotron
over the measuring period of five days. That means the orbit changed linearly
in time and it is reasonable to assume that the true spin-resonance frequencies
or beam momenta give a uniform probability distribution over this interval. The
systematic uncertainty of the averaged spin-resonance frequencies is therefore esti-
mated to be ∆fr = 8.7 Hz8, resulting in a systemic beam momentum uncertainty
of pd, syst. = 95 keV/c. Evidence in favour of the approach adopted here was found
by comparing the η mass results obtained for the individual supercycles, which is
discussed in Section 7.

For the sake of completeness all other possible systematic effects, which may affect
the spin tune, and their contributions to the accuracy of the spin resonance fre-
quency were evaluated and presented in the following. The evaluation showed that
their contributions to the systemic error are smaller by several orders of magnitude
compared to the collective shifts in fr, so that they are completely negligible.
According to Equation (5.10), one obvious limitation on the spin-resonance method
is given by the uncertainty in the deuteron gyromagnetic anomaly Gd (see Equa-
tion (5.4)). This contribution can be safely neglected, because it leads to a con-
tribution in the beam momentum of ∆p/p = 5 × 10−8, which is three orders of
magnitude lower than that of the spin-resonance frequency.
As mentioned above the first-order uncertainties in the momentum measurement
depend on the accuracies to which the spin resonance and revolution frequencies
are determined. As described in Section 5.2.4 and listed in Table 5.2 and 5.3, these
are 8.7 Hz/1.01 MHz = 8.6×10−6 and 3.5 Hz/1.40 MHz = 2.5×10−6, respectively.
The error therefore arises primarily from the measurement of the spin-resonance
frequency.

Another limit on the achievable accuracy may be imposed by the intrinsic width of
the spin-resonance. In this experiment, the integrated value of the solenoid’s maxi-
mum longitudinal rf magnetic field of 0.29Tmm gives, according to Equation (5.11),
a resonance strength of about ε ≈ 4.5× 10−6, which leads to a spin resonance with
a FWHM of ≈ 9 Hz (see Equation (5.12)). This is much smaller than the observed
width of 80 − 100 Hz, which is therefore dominated by the momentum spread of
the beam. Higher order contributions bring about an additional spread in the
spin frequencies caused by nonlinear synchrotron and betatron motion [LPS86]. It
should be stressed that these higher order effects, which are negligible compared
to the calculated resonance width, do not contribute to a shift of the resonance
frequency.
8 The true spin-resonance frequencies are assumed to be distributed in a uniform interval of
30Hz. The uncertainty of the average value is given by the deviation of the interval width with√

12, leading to ∆fr = 30 Hz/
√

12 = 8.7 Hz
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Systematic shifts of the spin-resonance frequency may be caused by deviations
from idealised conditions in a real accelerator like COSY. The possible effects and
their contribution to the accuracy of the resonance frequency determination were
estimated and are summarised in Table 5.4.
Radial and longitudinal fields in the accelerator may lead to a modification of
Equation (5.10) [Lee97], i.e., to a systematic shift of the resonance frequency. Even
though all solenoidal and toroidal fields, which may act as partial Siberian Snakes,
were turned off for this experiment, field errors and vertical orbit distortions could
generate some net radial or longitudinal fields [B+87, A+92]. These effects were
estimated for the experimental conditions and found to be negligible small. The
typical field errors of the main magnets, ∆B/B ≈ 2 × 10−4, would induce a shift
in the spin-resonance frequency of ∆fr/fr < 1.4 × 10−9. Similarly, the observed
vertical orbit displacement of ∆yrms < 1.8 mm give rise to a shift of ∆fr/fr <
6.0× 10−9.
However, the largest input to a systematic shift of the resonance frequency could
come from the vertical closed orbit deviations in the quadrupole magnets of the
ring. This contribution of ∆fr/fr < 4 × 10−8 is comparable to the in-principle
limiting of the method arising from the knowledge of the deuteron G factor. In
summary, all discussed contributions are over two orders of magnitude below the
accuracy achieved in the experiment and therefore entirely negligible.

Source ∆fr/fr
Resonance accuracy from depolarisation spectra 8.6× 10−6

Spin tune shifts from longitudinal fields (field errors) 1.4× 10−9

Spin tune shifts from radial fields (field errors, vertical correctors) 6.0× 10−9

Spin tune shifts from radial fields (vertical orbit in quadrupoles) 4.1× 10−8

Table 5.4.: Accuracy and possible systematic shifts of the spin-resonance fre-
quency fr.

5.4. Determination of the deuteron beam momenta

The kinematic γ factors and beam momenta were calculated according to Equa-
tions (5.13) and (5.14) from knowledge of revolution and spin-resonance frequencies
(see Tables 5.2 and 5.3). The accuracies to which both frequencies are determined
are dominated by systematic effects. Nevertheless, both systematic errors have to
be treated in different ways.
The systematic error of the revolution frequency, caused by the preparation of the
Schottky spectrum analyser, can be handled in the error propagation as statistical
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one, due to the fact that the measured frequencies are randomly distributed around
the true value. The revolution frequencies are subject to an uniform distribution.
The beam momentum’s statistical uncertainty is given by the revolution and spin-
resonance frequencies through error propagation. It is entirely dominated by that
of the revolution frequency of ∆f0 = ±3.5 Hz, which corresponds to a statistical
uncertainty in the beam momentum of ∆pstat.d = 29 keV/c. An example of the re-
constructed beam properties with statistical uncertainties is presented in Table 5.5
for the lowest and highest energy setting above the η production threshold.

Nominal beam mom. 3150.5 MeV/c 3187.5 MeV/c
Revolution freq. (1403831.8± 3.5) Hz (1408088.2± 3.5) Hz
Spin-resonance freq. (1011810.0± 1.0) Hz (1011325.6± 0.6) Hz
Orbit length (183.4341± 0.0002) m (183.4579± 0.0002) m
Relativistic γ factor 1.9530± 0.0001 1.9706± 0.0001
Spin tune νs 0.27925± 0.00001 0.28177± 0.00001
Beam momentum (3146.409± 0.029) MeV/c (3184.874± 0.028) MeV/c

Table 5.5.: Results of import beam features are shown only with statistical
uncertainties for the lowest and highest energy above the η pro-
duction threshold, exemplarily.

An important fact, which was discovered at the beginning of the beam time by
a fast analysis of the first spin-resonance measurements, was that the measured
beam momenta differed by about 4.5MeV/c from the nominal requested ones. By
that the excess energy values (see Table 3.2) would be lowered by about 1.1MeV.
Therefore, all COSY energy settings were increased by 4.5MeV/c in order to correct
for this deviation.

The main uncertainty of the beam momentum is caused by the systematic and
collective shifts of the spin-resonance frequencies. The maximum shift of the av-
erage were estimated conservatively to be ∆fr = ±15 Hz corresponding to a shift
in the beam momentum of ±164 keV/c. As discussed in Section 5.3.3 it is rea-
sonable to assume that the beam momentum changed linearly in time to give a
uniform probability distribution of the momenta over this interval. The systematic
uncertainty of the averaged beam momentum values is therefore estimated to be
∆psyst.d = 95 keV/c (rms). A confirmation of the assumed approach for the uncer-
tainty determination is given by the comparison of the individual η mass results
obtained for each of the two supercycles, which is discussed in Section 7. In total,
the twelve beam momenta in the range of 3100− 3200 MeV/c were measured with
an overall accuracy of ∆pd/pd = 3× 10−5. This is over an order of magnitude bet-
ter than ever reached before for a standard experiment in the COSY ring and it is
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sufficient to satisfy the needs of a competitive η mass measurement. The quantities
are listed with their statistical and systematic uncertainties in Table 5.6.

Data Desired mom. Determined mom. Stat. error Syst. error
Points pd / (MeV/c) pd / (MeV/c) ∆pstat.d / (MeV/c) ∆psyst.d / (MeV/c)

0 3120 3120.166 0.028 0.095
1 3146 3146.409 0.029 0.095
2 3147 3147.353 0.028 0.095
3 3148 3148.449 0.029 0.095
4 3150 3150.417 0.028 0.095
5 3152 3152.454 0.029 0.095
6 3154 3154.485 0.028 0.095
7 3158 3158.705 0.029 0.095
8 3162 3162.779 0.028 0.095
9 3167 3168.055 0.029 0.095
10 3171 3172.153 0.028 0.095
11 3176 3177.515 0.029 0.095
12 3183 3184.874 0.028 0.095

Table 5.6.: Precise determined beam momenta for the twelve energy settings
used for the threshold extrapolation.

According to Equations (5.10) and (5.15) two further quantities, the beam momen-
tum smearing ∂p/p and the smearing of the orbit length distribution ∂s/s, can be
extracted from the spin-resonance spectra. As discussed in Section 5.3, the mea-
sured spin-resonance width of 80−100 Hz are dominated by the momentum spread.
Assuming a Gaussian distribution in the revolution frequency with a FWHM ≈
50 Hz (see Section 5.2.2), and neglecting other effects, then the width of the spin-
resonance distribution requires a momentum spread of (∂p/p)rms ≈ 2× 10−4. This
upper limit on the beam momentum width corresponds to a smearing of the orbit
length of (∂s/s)rms ≈ 4×10−5. For a verification of these quantities the momentum
spread was checked from the frequency slip factor η, which was measured at each
energy. Using the equation

∂p

p
= 1
η

∂f0

f0
, (5.17)

this leads, for example, at pd = 3158.705 MeV/c to (∂p/p)rms = 1.4 × 10−4, which
is consistent with the limit obtained from the resonance distribution.
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determination

The η mass evaluation at COSY-ANKE relies on the identification of the production
threshold referring to the reaction d p → 3He η by investigating the increase of
the final state momentum as function of the beam momentum, as described in
Section 3.2. Corresponding to the twelve fixed beam momenta, it is essential to gain
an accurate knowledge of the associated CM momenta of the 3He η final state. The
final state momentum determination as well as the final η mass value are already
published in [G+12]. This publication briefly explains the pf analysis focusing on
the most important steps, exclusively. That is why a more detailed discussion will
be presented in this thesis. Naturally some of the following text passages, i.e., ideas
and contributions, will be very similar, partly identical with its predecessor. So in
this case, there will be very few text references with the exception of contributions
or ideas made by other authors.

An accurate 3He η final state momentum determination depends on a precise mo-
mentum reconstruction for registered particles in the forward system. This in turn
relies on a careful calibration of the ANKE spectrometer, achieved in a two step
procedure.
The standard Fd system calibration, based on the investigation of different reference
reactions explained in Section 6.2.1, was verified and improved by a so called fine
tuning of calibration parameters. This technique, discussed in Section 6.3, takes
advantage of the simple two-body kinematics of the reaction of interest d p→ 3He η.
Such procedure is only possible because ANKE has full geometrical acceptance for
the reaction in the energy range considered. The initial idea for this kind of fine
tuning was initiated by T. Mersmann shortly outlined in [Mer07] and further de-
veloped in the presented analysis. The main ideas and their crucial points will be
discussed at the beginning of Section 6.1 by using Monte Carlo simulations.

The analysis followed three main objectives in order to tune the calibration param-
eters and determine precise final state momenta:

1. The reaction d p → 3He η had to be separated clearly and accurately from
background reactions. Therefore, the 3He particles were identified and the
raw background was suppressed in the event selection. It mainly consists
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of deuterons and protons from the d p elastic scattering and protons from
deuteron breakup. Their contributions were suppressed by cuts on the energy
loss and path length of charged particles in the Fd system. The remaining
background, originating primarily from some residual deuteron breakup and
multi pion productions, was described and subtracted by the use of data taken
below η threshold at an excess energy of Q ≈ −5 MeV (see Section 6.2).

2. In the second step it was indispensable to study and to verify the pure 3He η
signal in greater detail. The reconstructed momenta can be shifted in compar-
ison to the true ones caused by resolution or smearing effects always present
in any real detector. These effects will be explained in detail in Section 6.1.
A careful study of the momentum reconstruction of the Fd system of ANKE
was mostly necessary for understanding and compensation for such resolution
effects. After having calibrated the spectrometer by measuring a variety of
other nuclear reactions in the scope of the standard Fd system calibration
method, the requisite precision was achieved by using the so called refined
calibration tuning. Thereby it is demanded that the magnitude of the true
3He momentum from the d p → 3He η reaction should be identical in every
direction in the CM frame. This check was only possible because of the 100%
angular acceptance of ANKE for the reaction of interest (see Section 6.3).

3. Finally, in the third step, the influence of smearing effects on the final state
momentum were described and quantified by implementing them into Monte
Carlo simulations (see Section 6.4). These simulations allow for calculating
correction parameters for the measured final state momenta in order to extract
the true values. Final results and estimated uncertainties are presented in
Section 6.4.3.

6.1. Main ideas and their crucial points

As previously mentioned, kinematics of the d p→ 3He η reaction provide one option
for fine tuning of calibration parameters. The central idea is based on the fact that
the final state momenta of a two-body reaction at a fixed centre-of-mass energy are
distributed on a perfectly symmetric momentum sphere in the px, py and pz space,
i.e., on an infinitely thin surface. The constant radius represents the final state
momentum pf

~pf = (px, py, pz) = |pf | · (cosφ sinϑ, sinφ sinϑ, cosϑ) (6.1)

pf =
√
p2
x + p2

y + p2
z =

√
p2
⊥ + p2

z (6.2)
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as indicated in Figure 3.1 and discussed in Section 3.1.2. The amount of the final
state momentum vector is given by Equation (3.15). By this it should be isotropic
and independent of its direction. The basic concept for the fine tuning is the
requirement for symmetry and isotropy of the momentum sphere according to pure
"mathematical" kinematics.

It was necessary to study carefully the reconstructed momentum pf of reconstructed
events in all directions, i.e., as a function of the polar and azimuthal angle ϑ and φ,
in order to verify if the symmetry condition is fulfilled by the ANKE standard
calibration. This examination was only successful because of four reasons:

• Full geometrical acceptance of the ANKE spectrometer for d p→ 3He η

• High statistics collected during the beam time

• Effective event selection (Section 6.2.3)

• Background description and subtraction (Section 6.2.4).

In purely kinematic terms the pf distribution can be approximated by a delta
Dirac function with vanishing width. The pf signal measured in an experiment has
a shape similar to a Gaussian-like distribution with a certain width. It differs from
pure kinematics because of the measuring process, i.e., the influences of smearing
and resolution effects.
That means the detector response in a real experiment, composed of smearing and
resolution effects and the track- and momentum reconstruction algorithms, can
affect and change the isotropic momentum sphere. It was clearly indispensable to
explore these influences on the reconstructed 3He momentum and the missing mass
distribution for the d p→ 3He η reaction in order to improve calibration parameters
and extract correctly the final state momenta.

The next section will emphasise the impact of resolution and smearing parameters
on the reconstructed final state momentum signal, i.e., on the momentum sphere.

6.1.1. Influence of momentum resolution on reconstructed final
state momentum

The impact of momentum resolution on the reconstructed final state momentum
was studied by the use of Monte Carlo simulations, which is explained and illus-
trated by the two-dimensional (p⊥, pz) sketch shown in Figure 6.1.
The momentum sphere can be visualised in a simplified manner by plotting the
magnitude of the transverse momentum, p⊥ =

√
p2
x + p2

y, versus the longitudinal
momentum pz. Such a depiction means a transformation of the three-dimensional
momentum sphere in px, py, and pz into a two-dimensional semi-circle by merging
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Figure 6.1.: Influence of resolution on the determination of the final state
momentum. The ideal pf sphere of panel (a) (black) is changed
by finite resolution in the longitudinal (z) direction along the
horizontal (red) arrow. Resolution effects in the transverse di-
rection are indicated by the vertical (blue) arrow. Panels (b) –
(e) show the possible distortions at Q = 1.0 MeV, evaluated in
Monte Carlo simulation. The mean values for individual cosϑ
and φ bins are shown without (black line) and with momentum
smearing in the z-direction (red circles) and transversely (blue
crosses) for both the final state momentum and the missing mass
distribution.
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the px and py component to the transverse momentum p⊥
1.

As usual in particle physics the z-direction of the coordinate system was chosen to
lie along that one of the accelerator beam, y was defined by the upward normal to
the flat ring, and x̂ = ŷ × ẑ points to the outwards of the accelerator ring2.
The upper part of Figure 6.1 shows the semi-circle for the reaction d p → 3He η
for an excess energy of about Q ≈ 1 MeV assuming the PDG η mass value. One
single event of the investigated reaction is characterised as a single point on this
semi-circle with its own final state momentum vector. The angle between the ~pf
vector and pz axis defines the polar angle ϑ. Whereas the azimuthal angle is located
between ~pf and the px axis.

In the ideal case of a measurement with perfect resolution, the final state momenta
of the reaction events are distributed on a sphere with constant radius pf as indi-
cated by the black line. In this case the pf distribution can be described by a Dirac
delta function with vanishing width. Then, both the missing mass and final state
momentum are isotropic, i.e., independent of cosϑ and φ as illustrated by the black
horizontal line in Figures 6.1(b)-(e).

In a real experiment, however, the momenta reconstructed in the laboratory frame
are smeared by the finite resolution for the individual components px, py, and pz
associated with the detector setup and reconstruction algorithms. By that an
angle dependent displacement of pf is introduced, resulting in a deformation of the
perfect sphere. The final state momentum peak becomes similar to a Gaussian shape
distribution with a finite width, dominated by these resolution effects. Dependent
on the individual smearing for each component, the peak structure does not even
have to be symmetric. If the pf signal is studied for various angle bins in ϑ and φ,
the displacement and width will vary according to the different resolutions in px,
py, and pz.

Assuming in Monte Carlo simulation that exclusively the z component of the
momentum in the laboratory frame was smeared with a Gaussian width of say
σz = 30 MeV/c, an event on the momentum sphere, indicated by the black arrow in
Figure 6.1(a) representing pf , could be shifted along the red horizontal arrows. It is
important to note that it is just for precf < ptruef that events are shifted toward lower
|cosϑ|, whereas the reverse is true for precf > ptruef . By extracting the mean values
of the smeared pf distributions for the various angle bins it becomes clear that this
effect leads to a pf dependence on cosϑ (see Figure 6.1(b), red circles). The mo-
mentum sphere is stretched for large longitudinal momenta and compressed for high
1 The relation of p⊥ versus pz shows a momentum ellipsoid in the laboratory system. The
ellipsoid changes into a circle when transforming the frame of reference into the CM one by
Lorentz transformation. This is why the transformation affects the pz component only as shown
in Section 3.1.1. In greater detail in [BK73], page 37 et seqq. and in [Hag63], page 53 et seqq. .

2 The coordinate system is illustrated in Figure 4.4.
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6. Final state momentum determination

transverse ones. For simple kinematic reasons, the missing mass shows the inverse
behaviour (see Figure 6.1(d)). The smearing was assumed to be independent of px
and py in this simulation, and hence φ. It is the constancy of the reconstructed
momentum or missing mass that reflects this aspect in the Figures 6.1(c) and (d)
as red points. However, the measured quantities differ from the true values; the
final state momentum value is higher, whereas the missing mass is lower than the
true one, ptruef and mtrue

x .

If only the transverse momenta are smeared, but with different Gaussian widths,
e.g., (σx, σy, σz) = (10, 20, 0) MeV/c, the reconstructed momentum will have the
opposite dependence on cosϑ. This is indicated by blue arrows in Figure 6.1(a)
as smearing of the transverse momentum and shown by the blue crosses in Fig-
ure 6.1(b). The final state momentum pf decreases for cosϑ ≈ ±1 and increases
for cosϑ ≈ 0. Additionally, different resolutions in px and py introduce a de-
pendence on φ, too, leading to oscillations3 in both, the reconstructed final state
momentum precf and the missing mass mrec

x in the plots of Figures 6.1(c) and (e).
The amplitude and the phase of these oscillations depend on the ratio σx/σy.

In reality, all three momentum components are reconstructed with finite and gen-
erally different resolutions so the effects described above will be superimposed.
The outcome will be dominated by the component having the worst resolution,
typically pz for fixed target experiments. Casually speaking, the perfect isotropic
sphere transforms into the shape of an oval "American Football" in pz with an oscil-
lation in px and py. However, it is still symmetric in cosϑ and φ, i.e., in px, py, and
pz. The COSY-ANKE analysis takes advantage of this symmetry requirement for
verifying as well as improving the momentum calibration discussed in Section 6.3.

These kinematic resolution effects have to be taken into account for determination
of the η meson mass. If not, the value extracted for mη will depend on the pro-
duction angle. The analysis of the current ANKE experiment showed differences in
mη of up to 0.5 MeV/c2 between cosϑ = ±1 and cosϑ = 0 without correction. The
angular distribution of the d p → 3He η reaction could slightly modify the effects
of the resolution. But even this is of little consequence for the determination of
mη, because the angular distribution is linear in cosϑ all over the Q-range stud-
ied [M+07a, Mer07]. The linearity does not influence the symmetry in cosϑ shown
in Figure 6.1(b).

Nevertheless, the angular distribution was implemented in Monte Carlo simulations
in order to avoid an additional systematic uncertainty. It was seen in the analy-
sis that the impact on the final η mass value is completely negligible, i.e., below
1 keV/c2, in contrast to other contributions.
3 This can be illustrated by plotting the py versus px component for small | cosϑ|, e.g., | cosϑ| <

0.1, considering different resolutions for both.
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6.1.2. Deviation of reconstructed final state momentum

For η mass determination it is important to take into account that the average of
the reconstructed final state momentum over all cosϑ and φ is shifted to a higher
value compared to the true one. As explained above and indicated in Figure 6.1
this is a result of resolution effects. The black horizontal line in Figure 6.1(c) stands
for the kinematically correct value, whereas the measured pf one is calculated as
average of all red points or blue cross. According, to the mathematical construction,
the missing mass is shifted to a lower value (see Figure 6.1(e)).
So a precise determination of the resolutions in (px, py, pz) is absolutely essential
for correcting the measured kinematic variables by Monte Carlo simulations. The
resolution quantities were fixed by making use of the pf = pf (cosϑ) and the pf =
pf (φ) structures shown in Figure 6.1(b-c), because they are a direct consequence
of these.

The momentum smearing was implemented into Monte Carlo simulations by smear-
ing the three momentum components in the laboratory system by Gaussian distri-
butions with different width (σx, σy, σz). The individual momentum spreads were
determined for each of the twelve energies, separately. The explicit method for
their determination will be discussed in more detail in Section 6.4.1.
However, an average momentum resolution was calculated for ANKE from all twelve
energies above threshold. But this is just valid for 3He nuclei with laboratory mo-
mentum in the range from 2.63−2.68 GeV/c. The mean momentum spreads in the
laboratory frame were found to be (σx, σy, σz) = (2.8, 7.9, 16.4) MeV/c. As expected
for a fixed target experiment, the absolute resolution in pz is the poorest by far.
Furthermore, the px resolution is better than that for py because of the particular
construction of the wire chambers and the fact that the spectrometer works in the
xz-plane, exclusively.

Figure 6.2 shows the deviation, i.e., the required correction, of the measured mo-
mentum from the original one, when implementing the average smearing in Monte
Carlo simulations. A beam momentum binning of 1MeV/c and the PDG estima-
tion for the η mass were used in this simulation.
It should be noted that the η mass value assumed in simulation has only very
small impact on the correction parameters. Consequently, the final outcome of the
COSY-ANKE experiment is nearly independent of the mass used in simulations.
The systematic uncertainty introduced by this is negligible in comparison to other
contributions (see Section 7).

The deviation is plotted versus the kinematically correct value. It is about 2.5MeV/c
for the lowest excess energy of Q ≈ 1 MeV, decreasing with pf to 0.7MeV/c for the
highest one of Q ≈ 10 MeV steadily. If the resolution factors σi are mainly in-
dependent of the beam momentum, the correction will vary like ∼ 1/pf . Such a
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Figure 6.2.: Deviation of the reconstructed final state momentum from the
true one due to resolution effects. The deviation was evalu-
ated by Monte Carlo simulations using the average resolution
of ANKE for 3He nuclei in a laboratory momentum range from
2.63− 2.68 GeV/c. The resolution was implemented by smearing
the three components with Gaussian distributions with differ-
ent width (σx, σy, σz) = (2.8, 7.9, 16.4) MeV/c. The deviation is
shown for an 1MeV/c beam momentum binning using the PDG
estimation for η mass.

behaviour arises for this correction because it depends on the ratio of the ANKE
momentum resolution to the size of the momentum sphere. Confirmation of such
a dependence is offered by the red curve, which is a 1/pf fit to the data.

It is essential for an accurate determination of final state momenta and consequently
for the production threshold to compensate for the resolution effects at the ANKE
detector. Without this correction the pf values would be adopted too high, so that
the resulting value for the η mass would be reduced, consequently (see Section 3.2).
This would lead to a lower η mass value by about 150 keV/c2 for the presented
COSY-ANKE data set - a certainly wrong result.
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6.2. Identification of the reaction d p → 3He η

The kind and amount of particles produced in d p scattering experiments depend
on luminosity, total CM energy, and cross sections of the possible various reactions.
So, the d p → 3He η reaction would be completely overshadowed by the proton
background without a powerful event selection4 because cross sections for mostly
simple processes where deuterons, protons, and neutrons are produced5 exceed
those ones for fusion to helium.

The first step in the event selection was the usage of a dedicated online hardware
trigger for 3He nuclei via the energy loss during the beam time as described in
Section 4.3.3. Although the trigger reduces the proton and deuteron background
as well as the dead time effectively, the background reactions cover the signal of
d p→ 3He η in almost all spectra completely. It is neither in the missing mass, nor
in the final state momentum spectrum that a 3He η signal is visible.

The background was reduced even further by using cuts on the two-dimensional
energy loss versus momentum spectra (∆E/p) and by cuts on those for path length
in the offline analysis, explained in Section 6.2.3. Therefore a precise momentum
reconstruction is necessary for registered particles. It is clear that this requires a
careful momentum calibration of the ANKE detector, accomplished in a two step
process. The standard Fd system calibration, presented in the next Section 6.2.1,
was verified and improved by a following fine calibration parameter tuning. The
next two sections will emphasises the momentum reconstruction at ANKE and the
standard Fd system momentum calibration.

6.2.1. Methods for momentum reconstruction at ANKE

The track and momentum reconstruction phases are separated in the ANKE soft-
ware. Firstly, straight tracks are formed by the hit positions of particles impinging
on the tracking detectors, i.e., the drift chamber and the two MWPCs. Secondly,
with the knowledge of the magnetic field of the D2 spectrometer magnet in addition,
their three-momenta are reconstructed at the vertex production point.

The ANKE software provides three different methods for momentum reconstruction
of the Fd system [Dym01, D+04]:
4 For example: There are more than 104 protons produced from the d p elastic scattering at each

3He nuclei from the d p → 3He η reaction, because the total cross section of the d p → 3He η
reaction amounts to σ ≈ 400 nb [M+07a], as discussed in Section 3.2.1, whereas that one for
the d p elastic scattering is σ ≈ 10 mb [KSTY85] at a deuteron beam momentum range from
2.0− 3.7 GeV/c.

5 For example: The d p elastic scattering or the deuteron breakup.
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1. "Box field" method [Mer03]

2. "Polynomial approximation" by transforming straight line track parameters
on the D2 forward exit window into the three-momentum at the interaction
point

3. "Runge-Kutta-Nyström tracing" by fitting the experimental hits

All three methods make use of the same track finding algorithm. It reconstructs a
straight track between the drift, the wire chambers, and the hodoscope layers from
the hits in the tracking detectors.

The box-field approach is the fastest reconstruction method but the obtained results
for the momenta show larger deviations in comparison to the other two methods.
This is why this specific method was not used in the analysis and will not be
discussed in the following. The polynomial approximation method is faster than
the Runge-Kutta-Nyström tracing, but not as accurate, because it depends on a
larger number of parameters. These ones have to be generated by simulations
introducing potential sources for inaccuracies. The Runge-Kutta-Nyström tracing
has the advantage of not being dependent on simulations, that is why it was used for
the standard Fd system calibration as well as for the fine tuning of the calibration
parameters exploiting the kinematics of the d p → 3He η reaction. The Runge-
Kutta-Nyström tracing will be presented in the following, whereas that one for the
polynomial approximation method is summarised in the appendix in Section A.2.

Particle trajectories are commonly characterised by a finite number of track pa-
rameters. One example for such a parameter is the three-momentum vector. The
track parameter propagation is the process of transporting back track parameters
through the magnetic field and material of the detector to the initial production
point. It is a basic part of any track- and momentum reconstruction algorithm
for physical quantities. In particle physics experiments the Runge-Kutta-Nyström
method is the most favourite one [MB79, BM81]. It was developed to solve second-
order differential equations, such as the equation of motion of a particle with mass
m, charge q, velocity ~v, and momentum ~p in a magnetic field ~B:

∂~p

∂t
= q ~v × ~B . (6.3)

The basic ansatz of the Runge-Kutta-Nyström method relies on dividing the in-
tegration interval into steps and by solving the equation of motion in an iterative
procedure at these different points. This is realised at ANKE by subdividing the
three-dimensional magnetic field map of D2 into small cubes with constant mag-
netic field strength. The hit positions of a particle in the wire chambers are traced
back through the magnetic field to the vertex position. This allows to determie the
ratio of charge and momentum. The Runge-Kutta-Nyström method is the slowest
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one, but it provides the best precision for momentum reconstruction. That is why
it was used for the calibration of the detector as well as for the final data analysis.

At this point it is important to note that the final η mass outcome is independent
of the reconstruction method used in the analysis. This was verified by opposing
the result of the polynomial approximation method to that one of the Runge-
Kutta-Nyström one. The η mass values agree within their uncertainty limits as
expected.

However, both methods need an accurate knowledge of the D2 magnetic field.
The three-dimensional magnetic field maps for different field strengths were calcu-
lated by using the MAFIA code, which has turned out to be the most appropriate
tool [SKBK01]. The theoretical calculations were experimentally verified. For this
a field-mapping machine from GSI was in use. Thus, the combination of theoretical
calculations and experimental measurements provides accurate three-dimensional
magnetic field maps of the spectrometric D2 magnet, which allow a precise mo-
mentum reconstruction. The results obtained by the floating wire technique gave
the necessary confidence in the correctness of the momentum reconstruction pro-
cedure [SKBK01].

6.2.2. Standard momentum calibration of the forward
detector

A precise momentum reconstruction of detected particles at ANKE depends equally
on various parameters due to its moveable construction as indicated in Section 4.3.
These are magnetic field strength of the spectrometric D2 magnet, deflection an-
gle of the beam, position of the interaction point, and locations of the tracking
detectors, i.e., the drift and wire chambers.

The standard momentum calibration procedure [Dym09] was developed and carried
out by S. Dymov. The positions of drift and wire chambers on the moveable
platform are aligned at first by using data taken at the beginning of the beam time
at a deflection angle of 0◦ and no magnetic field in D2. Doing this the ejectiles
move on straight tracks starting from the nominal interaction point in the overlap
region of the COSY beam and the cluster-jet target. An analysis of these tracks
makes it possible to determine the positions of the Fd chambers relative to the D2
magnet as well as the target position. These parameters are well known by direct
measurement, but it is by this analysis, one can increase their precision.

After having made this first alignment the global positions of drift and wire cham-
bers are defined by their location on the moveable Fd system platform. Although
the positions of the platform and interaction vertex are already known by direct
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measurements, a much more precise determination of their values was possible by
investigating a series of reference reactions at all the twelve energies. These reac-
tions are:

1. Small angle d p→ d p elastic scattering with the fast forward deuteron being
detected

2. Large angle d p→ d p elastic scattering with both final state particles being
detected

3. d p→ p p n charge-exchange with two fast protons being detected

4. d p→ 3He π0 with the 3He nucleus being detected

In a first iteration the analysis examined an event sample of about 1000 events for
each energy. This was increased to 10000 for the second iteration in order to confirm
the obtained results for vertex and Fd system platform positions. Deuteron-proton
elastic scattering in the backward hemisphere allows to verify energy momentum
conservation in the reconstructed four momenta. For the other reactions, the min-
imisation of the deviation of the missing mass from the expected PDG value was
used to adjust the positions of the interaction vertex and the Fd system platform.

Figure 6.3 shows the missing mass deviation from the PDG neutron mass estimation
at a beam momentum of pd = 3146 MeV/c as one specific example. The missing
mass was calculated for two detected protons from deuteron breakup. In this case
the signal is almost background free because of the clear signature of the two protons
in the Fd system.
A Gaussian with a straight line background was used in order to describe the missing
mass signal for all four reactions. The Gaussian mean values defines the deviation
from the expected value. Thereby the missing mass deviates by (0.9± 0.2) MeV/c2

only from the PDG neutron mass for this energy, but the discrepancy increases up
to 3 MeV/c2 for higher energies.

The missing masses for all four channels were reconstructed to an accuracy of
≈ 3 MeV/c2 when using the determined calibration parameters after optimisation.
Although reaching a good quality, it is manifestly insufficient for a competitive
determination of the η mass. Therefore, a more refined technique was needed for
fine tuning calibration parameters, explained in Sections 6.1 and discussed in 6.3.

The classical calibration method, i.e., the study of kinematic variables in measured
reactions with known masses, is standard for magnetic spectrometers. That is why
it was used at the other η missing mass experiments [P+92, AB+05] in such a similar
manner to such an extent. In contrast to those experiments having forward and
backward acceptance, only, the ANKE facility has full geometrical acceptance for
the d p → 3He η reaction up to an excess energy Q ≈ 15 MeV. For this case the
standard calibration could be improved significantly by studying the dependence
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Figure 6.3.: Deviation from the PDG neutron mass for the missing mass of two
detected protons in the Fd system. Data for a beam momentum
of pd = 3146 MeV/c is shown.

of the final state momentum on the 3He CM angles. The calibration fine tuning
requires a clean separation of the 3He η signal from the background and this was
the first step of the analysis, discussed in the next section.

6.2.3. Event selection

The identification of the d p → 3He η reaction was achieved by a two step event
selection, consisting of an online part during the beam time and an offline part
when analysing the data afterwards.
In the first step, the online hardware trigger adjusted for 3He particle selection cut
back the largest amount of proton and deuteron events during the process of data
taking. It is explained in detail in Section 4.3.3.
In the second step, that means in the offline analysis, the raw background was
suppressed even further by cuts on the energy loss and path length of charged
particles in the Fd system. The raw background consists mainly of protons from
deuteron breakup.
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Energy loss versus momentum cut

The signals of the Fd system scintillation hodoscope allow for separating the dif-
ferent particle species because they are directly proportional to the particle energy
loss in a medium. The Fd hodoscope needed to be calibrated in order to calculate
the correct energy loss from the voltage signals of the photomultipliers, which are
caused by the scintillation light of the counters. It is because of the technical reali-
sation, e.g., different amplification, discriminator thresholds and other parameters,
that the voltage signals differ from counter to counter. The Fd system hodoscope
was calibrated in the scope of a Bachelor thesis by comparing the counter voltage
signals to the output of Geant4 simulations [Fri11].

When moving through matter or an absorber, relativistic charged heavy particles
loss primarily energy by ionisation. The energy loss per distance travelled −dE/dx
is well-described by the Bethe-Bloch equation (see for example [N+10]) :

−dE
dx

= K
z2

β2
Z

A

(
1
2 ln 2mec

2β2γ2Tmax

I2 − β2 − δ(βγ)
2

)
. (6.4)

The contribution of the absorber material to the energy loss is specified by the ratio
of proton and nucleon number Z/A, the mean excitation energy I, the density
effect correction δ, and the constant factor K = 4πNAr

2
emec

2 with Avogardo
constant NA. It is of great importance for particle separation, that the energy loss
of the penetrating particle is directly proportional to the square of the charge z and
inversely proportional to the square of its relativistic velocity β = v/c :

−dE
dx
∼ z2

β2 . (6.5)

The mass of the penetrating particle is also taken into account by the maximum
kinetic energy Tmax which can be transferred in a single collision to a free electron.
According to Equation (6.5) the energy loss ∆E is high for low particle momenta,
i.e., velocities, decreasing with growing momentum up to the region of minimal
ionising particles. That is why each particle species populates its characteristic
band in the ∆E/p spectrum, depending to the first order on the particle’s charge
and secondly on its mass. In contrast to single charged protons and deuterons
the double charged 3He particles deposit more energy in the scintillation counters,
travelling through them.

Figure 6.4 shows the two-dimensional distributions of energy loss in the forward
scintillation hodoscope versus the particle laboratory momentum for simulations
of the reaction d p → 3He η (left row) and data (right row). The upper column
stands for one typical counter of the 1st layer (6th counter) and the lower column
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6.2. Identification of the reaction d p→ 3He η

for one of the 3rd layer (4th counter). The energy loss of 3He particles in the 1st
layer (≈ 27 MeV) is a factor of two higher in comparison to that one in the 3rd
layer (≈ 14 MeV). It is because the counter thickness in the 1st layer is twice
the thickness from the 3rd one. When simulating solely the two body reaction
d p → 3He η, then the 3He nuclei populate only a narrow momentum range from
2.5 − 2.8 GeV/c in the ∆E/p spectrum. Analysing data shows a clear 3He nuclei
band with an inhomogenous event distribution. The appearing structures there can
be assigned to various contributions from the π0, (ππ)0, and η production. The
three pion production contributes to the band, too, but can not be clearly identified
because of its low cross section and small geometrical acceptance at ANKE.

A cut on the 3He nuclei was already applied in the ∆E/p spectra. It was adjusted
on the basis of the ∆E×β2/p spectrum, depicted on the left hand side in Figure 6.5.
The decreasing ∆E/p band was transformed into a nearly constant line over a wide
momentum range by multiplying the energy loss with the square of the particle’s
velocity β. A projection of this two-dimensional distribution onto the ordinate gives
a clear peak with a low background, shown in the right hand side of Figure 6.5.
A very loose cut at a 6σ level was used in the analysis, but changing this to 3σ
has only a tiny effect on the value obtained for the η mass as will be discussed in
Section 7.

Path length cut

A further reduction of the background was achieved by exploiting timing signals of
the Fd scintillation hodoscope to determine the time of flight and also path length
of the tracks reconstructed with the ANKE Software. Therefore, only events were
taken into account with exactly three hits in the scintillation hodoscope, i.e., exactly
one hit in each layer. Most of these hits were caused by 3He nuclei of η, single, or
multi pion production and a track and momentum was reconstructed. Nevertheless,
background events from proton and deuteron reactions pass the hardware trigger
as well as the three hit restriction, too, contributing to the background.

The validity of a track can be verified by its path length, calculated from the time
of flight signal. Therefore, the time of flight difference tdiff between the hit in the 3rd
layer and an average timing value of hits in the 1st and 2nd layer was calculated for
each event. The average timing value was used in order to increase the resolution
of the timing signals, which was possible because of the short distance between 1st
and 2nd layer. It is important to note that the timing signals of the 1st and 2nd
layers are reconstructed by track information, whereas the timing of the 3rd one is
not assigned to a track.
The path length s = βtdiff was determined for hits of each counter in the 3rd layer,
by multiplying the particle’s relativistic velocity with the timing difference. The
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Figure 6.4.: The two-dimensional distributions of energy loss in the forward
scintillation hodoscope versus the particles’ laboratory momen-
tum is depicted for simulations of the reaction d p → 3He η (left
row) and data (right row). While the upper column displays the
∆E/p spectra for event hits in the 6th counter of the 1st layer, the
lower one shows the spectra for the 4th counter of the 3rd layer
(Pd sidewall), in which for both a 3σ cut is applied on the 3He
signal in the ∆E × β2 spectra (see text). In data a clear 3He
band becomes visible consisting of the single-, two-pion, and η
production.
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Figure 6.5.: Two-dimensional distribution of energy loss times the square of
the particle velocity versus its laboratory momentum (left-hand
side). The energy loss cut on 3He was adjusted by projecting
this distribution onto the y-axis giving a peak with little back-
ground (right hand side). Data within a ±6σ cut were retained
for further analysis.

particle’s relativistic velocity was calculated by energy and momentum β = p/E
of the reconstructed track, assuming the mass and charge of 3He nuclei. The path
length distribution determined for the 4th counter of the 3rd layer is shown in
Figure 6.6 as one typical example. The path length has arbitrary units because the
timing signals of the Fd scintillation hodoscope were not calibrated.

However, a two peak structure is visible in the path length spectrum consisting of
a narrow peak at short path lengths and a much broader one at larger ones. The
peak at small flight length belongs mostly to 3He particles, whereas the distribution
at larger path length is caused by events, for that the 3rd layer’s counter timing is
not connected with the reconstructed track. This distribution appears in a similar
manner for all six counters of the 3rd layer. The population of the large path length
peak increases for counters close to beam pipe, because they are exposed to a much
larger particle flux building up such background events6. Exclusively, events within
a 3σ level were taken into account for the final analysis in order to reduce the
background further. The influence of this cut on the final η mass outcome was
estimated by varying the σ range as will be discussed in Section 7. A reduction to
2σ showed in comparison to other contributions a negligible impact, only.
6 The particle flux impinging on the Fd system increases close to the beam pipe because of protons
from the deuteron breakup.
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Figure 6.6.: The path length spectrum shows a peak at small path length be-
longing mostly to 3He particles, whereas the distribution at larger
path length is caused by events where the 3rd layer’s counter tim-
ing is not connected to the reconstructed track. By taking only
events within a 3σ level into account, the background is reduced.

Signal of the reaction d p → 3He η

The background, consisting mainly of protons and deuterons was strongly reduced
by the application of the two-stage event selection, i.e., the online hardware trigger
as well as energy loss and path length cuts in the offline analysis. The same event
selection cuts were applied for all thirteen energies measured during the beam time.
The events from the d p→ 3HeX reactions pass the cut conditions, so the signal of
the η production is not overshadowed anymore in most spectra. It becomes visible
as a clear peak in the missing mass and final state momentum depicted in Figure 6.7
for two different excess energies, the lowest and highest one (Q ≈ 1 MeV, 10 MeV),
according to Table 3.2. The spectra show exclusively a narrow range for missing
mass as well as final state momentum for focussing on the η production. The
single and two pion production signals become visible, too, when increasing the
axis range. This is already indicated in the ∆E/p spectra (see Figure 6.4) and
shown more clearly in the appendix by the final state momentum histogram A.1.
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Figure 6.7.: Missing mass (upper panel) and final state momentum distribu-
tions (lower panel) of events passing the event selections cuts for
data taken at the lowest (blue, Q = 1 MeV) and highest (red,
Q = 10 MeV) excess energy. A clear peak of the d p → 3He η
reaction is visible in both spectra, respectively. Although the
measuring time and cross sections for the two energy settings are
almost the same, there is a difference in the hight of the back-
ground because of luminosity fluctuations.
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For data taken at Q = 1 MeV excess energy a narrow peak occurs at a missing mass
of ≈ 548 MeV/c2 due to η production. On the right hand side of the peak there is no
background signal, because the kinematical limit is at about 549 MeV/c2, defined
by the total CM energy and adjustable by the beam momentum. The kinematical
limit grows on in the missing mass when increasing excess energy. The amount of
measured η mesons is nearly the same for the two energies because of an almost
constant luminosity and cross section for each energy.
The final state momentum spectrum shows the rising of the η production peak to
higher values when increasing the beam momentum or excess energy, respectively.
The width is dominated by the momentum resolution of ANKE and remains con-
stant.

The remaining physical background below the η peak originates mainly from some
residual deuteron breakup and multi pion production in the d p→ 3HeX reaction,
where X = (ππ)0, (πππ)0, or even X = (ππππ)0. At the lowest excess energy, the
signal to background ratio is around 11 but this decreases with rising excess energy
to ≈ 1.8 at Q ≈ 10 MeV. The difference in the height of the background for Q ≈
1 MeV and Q ≈ 10 MeV is caused by small luminosity fluctuations in the almost
same measuring time for each energy. The shape of the multi pion background
under the η peak stays nearly constant and exhibits no significant variation in
the narrow excess energy range up to 10 MeV. The background description takes
advantage of this fact discussed in following Section 6.2.4.

6.2.4. Background description

The remaining physical background had to be described and subtracted in order to
determine precise final state momenta of the 3He η production and to gain a deeper
understanding of the peak’s shape. This is feasible using different methods.
One kind is given by modelling the background spectrum by phase space Monte
Carlo simulations. In this process all contributing reactions have to be taken into
consideration. These are the two-, three-, and four pion production, plus a com-
ponent arising from the misidentified protons from the intense deuteron breakup
reaction. This method was applied at a previous analysis, investigating the total
and differential cross sections of the reaction d p → 3He η at excess energies of
Q = 20, 40, 60 MeV [R+09, Rau09]. The accurateness of this ansatz depends on a
precise implementation of the ANKE detector in simulations for estimating its geo-
metrical acceptance of the different reactions. A lot of simulation parameters have
to be under control and might influence the quality of the background description
when applying this approach.
Another way for characterising and subtracting the background is provided by ex-
ploiting data taken below the production threshold of the reaction of interest. This
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6.2. Identification of the reaction d p→ 3He η

subthreshold data needs to be kinematically transformed to positive excess energies
for comparison with results obtained above threshold7. And it must be corrected
for luminosity, too.

The main idea is based on the assumption that the shape of physical background
remains practically unchanged in the narrow excess energy range. Therefore two
requirements must be fulfilled:

1. The geometrical acceptance of the detection system needs to be almost con-
stant for the various background reaction in the energy region examined.

2. The cross sections as well as the kinematical phase space behaviour of the
background reactions should show negligible modifications only, so that the
shape of the physical background do not change. This is fulfilled as long
as no new dominant background reaction channel opens when increasing the
CM energy. Depending on its cross section it might influence the background’s
shape.

The four pion production dp →3 He(ππππ)0 is such a candidate in the energy
range chosen in the η mass measurement. Due to the difference in the masses for
charged and uncharged pions, the neutral four pion production is already present
in the subthreshold data at an excess energy of Q4π0 ≈ 3 MeV, while the channels
with two or four charged pions occur at higher energies. However, previous studies
figured out that the contribution of the four pion production is negligible up to
an excess energy of Qη = 20 MeV for describing background of the d p → 3He η
reaction [Mer07, Rau09]. One reason therefore might be a very small cross section
close to the η production threshold.

The subthreshold data was scaled according to the available phase space and lu-
minosity ratio in order to subtract the background in final state momentum or
missing mass spectra. The kinematical transformation was achieved on an event
by event basis by scaling up the reconstructed subthreshold momentum in the lab-
oratory system ~p subth.

LS with the ratio of desired and subthreshold beam momentum
p desired

beam /p subth.
beam . In this way the kinematically correct momentum ~p desired

LS was cal-
culated for the desired excess energy above threshold in the laboratory system:

~p desired
LS = p desired

beam
p subth.

beam
· ~p subth.

beam . (6.6)

A SATRUNE-SPES III experiment has done pioneering work by applying this
background-subtraction technique in order to investigate the near ω threshold pro-
duction in proton-proton collisions (p p → p p ω) [H+99]. For the first time this
7 The energy, the subthreshold data should be transformed to, is denoted in the following as
"desired" momentum or excess energy, when explaining Equation (6.6).
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method was used at ANKE for determination of the cross section of the reaction
d d → 4He η by A. Wronska [W+05]. The analysis technique was used in both ex-
periments for missing mass spectra only. T. Mersmann showed in his PhD thesis,
researching the reaction d p → 3He η, that it is equally applicable to final state
momentum spectra [M+07a, Mer07].

During the η mass beam time subthreshold data were collected at an excess en-
ergy of Q = −5.1 MeV in the 1st and 2nd supercycle. In addition, a measurement
was also undertaken at Q = −4.0 MeV in the 3rd supercycle in order to provide
further systematic test of the background changes with beam momentum (see Sec-
tion 4.4.2). The final state momentum distributions are shown all together in
Figure 6.8. According to Equation (6.6) data was transformed kinematically from
the 3rd supercycle to the excess energy value of the 1st and 2nd one for comparison.
The 2nd and 3rd supercyle were corrected for luminosity and adopted to the 1st one.
The three distributions, shown in red, blue and black, coincide perfectly. Their dif-
ference is consistent with zero, which is exemplarily shown in grey for the 1st and
3rd supercycle. The same perfect matches were found even when investigating the
polar and azimuthal angle dependence of the background signal by subdividing it
for twenty bins, each in cosϑ and φ. Due to the fact that all subthreshold data from
different supercycles resulted in the same distribution, that is why it was jointly
considered in the analysis, increasing the statistics by about a factor of three and
providing a much smoother background description.

Figure 6.9 illustrates the background description and subtraction for the final state
momentum distribution measured at a beam momentum of pd = 3162 GeV/c cor-
responding to an excess energy of Q = 4.8 MeV (see Table 3.2). Therefore, the
subthreshold data was scaled according to the available phase space and luminosity
ratio as explained above. The luminosity was adapted by ratio of the histogram
sums outside the η peak region of ±4σ level. The measured data after event se-
lection is shown as black line, the smooth background description as grey line, and
the resulting background-subtracted pure d p → 3He η signal is shaded grey. All
that remains in the difference spectra is a 3He η Gaussian like peak with a width
of σ ≈ 8 MeV/c sitting on a vanishing background. The background description
has same quality for all the twelve energies above threshold8. The peaks are quite
slightly asymmetric because of different resolutions in the three momentum com-
ponents.

The width is composed of various contributions as the beam momentum smearing
or the intrinsic η width, but, it is dominated by the momentum resolution of the
ANKE Fd system. The influences of resolution effects on the pf distribution was
be investigated in greater detail by studying the cosϑ and φ dependence of the
8 For completeness the spectra for all twelve excess energies above threshold are shown in the
appendix in Section A.4.
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Figure 6.8.: Final state momentum background distributions shown for data
taken in the 1st (red SC1), 2nd (blue SC2), and 3rd (black SC3)
supercycle. For comparison they are luminosity corrected and
transformed to the excess energy of the 1st and 2nd supercycle.

3He η final state momentum peak. Due to the very high statistics collected during
the beam time, the distribution in pf was investigated for twenty bins each in cosϑ
and φ. This is illustrated in Figure 6.10 and 6.11, where examples of the pf spectra
summed over φ are shown for the lowest and highest excess energy, Q = 1.0 MeV
and Q = 9.9 MeV. Similar spectra are produced for the φ dependence after having
integrated over ϑ.

Mean values of the 3He momentum pf peaks as well as their widths were extracted
from the background-subtracted d p→ 3He η distributions by making Gaussian fits
for the different cosϑ and φ bins. A variation of the width of 4-12MeV/c (rms) was
found, as well as a displacement of the mean value, both of which depended upon
the polar and azimuthal angles. This striking effect, as mentioned above, results
from the different resolutions of the ANKE Fd system in px, py, and pz as it was
explained in Section 6.1.1.

Such a careful investigation of the angular dependence of the pf signal was indis-
pensable for the η mass determination, because it brought two important benefits.
First, the "angular dependence analysis" was used to verify and improve the stan-
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Figure 6.9.: The CM distribution of the 3He momentum is shown for a beam
momentum of pd = 3162 GeV/c corresponding to an excess energy
ofQ = 4.8 MeV. The measured data after event selection is shown
as black line, the background estimated from subthreshold data
as grey line, and the resulting background-subtracted d p→ 3He η
signal is shaded grey.

dard calibration by the parameter fine tuning. It exploits the symmetry requirement
of the momentum sphere for the two-body reaction d p→ 3He η as it was discussed
in Section 6.1. The refined momentum calibration fine tuning will be presented in
the next Section 6.3.
In the second step, resolution and smearing effects were quantified by studying the
modification of the sphere provoking an anisotropy of the measured pf signal. This
allowed to calculate correction parameters for the extracted pf in order to guarantee
an accurate pf determination (see Section 6.4).

The contribution of the background description to the final η mass error is negligible
in contrast to other effects. This is because of its sturdiness and insensitivity
regarding to the other analysis steps. For example, when affecting the signal to
background ratio by changing the event selection parameters, this results in an η
mass shift of below 5 keV/c2. Even smaller, i.e., below 1 keV/c2, is the influence
that is caused by varying the region of a ±4σ level chosen for fixing the scaling
parameter for luminosity adaption of the subthreshold data.
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Figure 6.10.: CM distributions of the 3He momentum from the d p→ 3HeX
reaction for twenty polar angle bins at the lowest excess en-
ergy, Q = 1.0 MeV. The experimental data summed over φ is
shown by the black line and the background estimation from
subthreshold data by the grey one. The resulting background
subtracted d p→ 3He η signal is shaded grey.
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Figure 6.11.: CM distributions of the 3He momentum from the d p→ 3HeX
reaction for twenty polar angle bins at the highest excess en-
ergy, Q = 9.9 MeV. The experimental data summed over φ is
shown by the black line and the background estimation from
subthreshold data by the grey one. The resulting background
subtracted d p→ 3He η signal is shaded grey.
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6.3. Refined momentum calibration fine tuning

The shapes of the momentum spheres were investigated for all twelve energies above
threshold in order to verify and improve the standard calibration settings. The mo-
mentum spheres for data at two different excess energies, 1.5MeV and 9.9MeV, are
visualised in Figure 6.12 as semi-circles by plotting the magnitude of the transverse
momentum p⊥ versus the longitudinal momentum pz for reconstructed events. This
is the same depiction as described in Section 6.1.1.

Solid lines indicate the expected mathematical kinematic loci for the two reactions
d p → 3He η (small circle) and d p → 3Heπ0 (large circle). The radii of the semi-
circles are exactly the final state momenta associated to the available CM energy.
At first glance, the semi-circles for data match with the calculated ones very well.
Obviously, they are much broader because of resolution effects.
It is clear that the number of events varies along the circles due to the differential
cross sections, but the method used for fine tuning calibration parameters depends
exclusively on the position of a kinematic curve and not on its population. For
better visualisation of the angular distribution, each event was weighted with a
factor 1/p⊥ as it was done in previous works [Mer07]. In addition to single meson
production, one can notice a large accumulation of events near the forward direction
for pf ≈ 350 MeV/c. This corresponds to the two-pion production, d p→ 3He (ππ)0

reaction.

The figure makes clear, that ANKE has full geometrical acceptance for the reaction
of interest, so that the complete shape of the momentum sphere can be investigated.
This was executed by studying the pf signal as function of the polar ϑ and azimuthal
angle φ. Figure 6.13 illustrates another representation of the momentum sphere
for the low excess energy of 1.5MeV by plotting pf versus cosϑ and φ in a two
dimensional histogram.

These illustrations hint at the structures caused by the momentum smearing effects
originated by the measurement process. It turns out that the final state momentum
increases for cosϑ → ±1, oscillating in the φ spectrum. The structures are only
barely visible, so that the maxima at φ = ±180◦,±90◦, 0◦ cannot be clearly iden-
tified in particular; so a quantification of resolution effects is impossible. This fact
emphasises the need for another representation. Figures 6.12 and 6.13, which show-
ing the final state momentum, do not allow to draw conclusions about the quality
of the calibration. They are not sensitive enough. Additionally, the pf signal of the
3He η final state is not background free, so it could be shifted or modified.

A more accurate investigation of the pf dependence is apparently provided by the
background-subtracted d p→ 3He η distributions for twenty individual cosϑ and φ
bins (see Figures 6.10 and 6.11).
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Figure 6.12.: The momentum spheres as semi-circles for 1.5MeV (top) and
9.9MeV (bottom) with respect to the η threshold. The mag-
nitude of the reconstructed transverse CM momentum p⊥ in
the d p → 3HeX reaction is plotted against the longitudinal
CMcomponent pz. For better visualisation of the angular dis-
tribution, each event is weighted with a factor 1/p⊥. The small
and large circle indicated as solid black lines correspond to the
kinematical loci for the d p→ 3He η and d p→ 3Heπ0 reactions,
respectively. ANKE covers the full solid angle for η production
near threshold. In contrast, it is for single pion production only,
that the forward 3He nuclei are detected.
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Figure 6.13.: Two-dimensional histograms for the final state momentum pf
of a event versus its cosϑ (top) or its φ angle (bottom) for an
excess energy of Q = 1.5 MeV.
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6. Final state momentum determination

6.3.1. Fine tuning of the momentum calibration parameters

The background subtracted pf peaks for different cosϑ and φ bins as shown in Fig-
ures 6.10 and 6.11 allow for a precise study of the momentum sphere. They were
described by Gaussian fits as mentioned in Section 6.2.4, so that mean values and
widths were extracted. Figure 6.14 shows mean values, i.e., the pf = pf (cosϑ) and
pf = pf (φ) dependence, at an excess energy of Q = 1.0 MeV as one of twelve ex-
amples. The markers px, py, pz, and p⊥ indicate the momentum component, which
dominates the final state momentum in the corresponding cosϑ and φ range.
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Figure 6.14.: Mean values of the twenty individual cosϑ and φ final state mo-
mentum distributions for the standard calibration at an excess
energy of Q = 1.0 MeV.

This depiction illustrates better than Figures 6.12 and 6.13 that the momentum
sphere, represented by pf , is neither centred nor symmetric.
The momentum sphere is shifted to higher pz. It is on average for all twelve energies
that pf is higher for 3He when produced in the forward direction (cosϑ = 1) than
in the backward (cosϑ = −1) one. The semi-circle must be perfectly centred
around zero for a perfect calibration. A shift to the left or to the right might have
two different reasons. A shift in pz could be caused by assuming a wrong beam
momentum when changing from the laboratory system to the CM frame. This is
highly improbable and can be excluded because the beam momenta were measured
in an independent manner. The other reason might be an insufficient calibration.
If, for example, one adopts a slightly different magnetic field strength of the D2
magnet, this assumption will imply a really wrong pz reconstruction as will be
shown later.
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6.3. Refined momentum calibration fine tuning

The oscillation in the φ spectrum is also far from being symmetric, and this is
particularly evident at φ ≈ ±90◦, where the py momentum component dominates.
The px component fulfils the requirement for symmetry at is its best.

However, the asymmetric pattern is rather similar at all twelve energies and this
stresses the need to improve the calibration for determining correct momenta. This
is especially necessary because, otherwise, the deviations between the measured
final state momenta and the true ones cannot be quantified.

The different calibration parameters were optimised at COSY-ANKE by study-
ing the deformation of the momentum sphere, i.e., the modification in the pf =
pf (cosϑ) and pf = pf (φ) behaviour, when varying one selected calibration param-
eter. For this so called fine tuning of the spectrometer, it was necessary to identify
and choose useful calibration parameters. Therefore, the best would be if each mo-
mentum component was adjusted mainly by one selected parameter, whereas the
impact on the others would be negligible.
On account of the movable design as mentioned in Sections 4.3 and 6.2.1, one can
find a lot of calibration parameters at ANKE, for example: target vertex posi-
tion, deflection angle of the beam, D2 field strength, and positions of the tracking
detectors of the Fd system.

At magnetic spectrometers the amount of a particle’s momentum is measured by
the determination of its rigidity, i.e., its radius of curvature in the magnetic field.
For a fixed target experiment, it is evident that, the reconstructed momentum in
the laboratory system is primarily dominated by the pz component, whereas the
contributions of px and py are smaller. The three components, especially px and
pz, are interdependent at the track- and momentum reconstruction of the ANKE
software. Nevertheless, it is for each momentum component that one corresponding
calibration parameter was identified having high impact and twice negligible one
on the other two components.

The pz component mainly depends on the particle’s radius of curvature in the
magnetic field. On the one hand, it can be changed by adjusting the magnetic field
strength of D2 and on the other by shifting the tracking detectors or the target
vertex position in xz-plane.
In the first place the px component is defined by the beam deflection angle where
the target is hit, in the second one, by the incident angle of the produced particles
on the chambers. The px component can be optimised, firstly, when rotating the
chambers about the y-axis or when changing the COSY beam deflection angle.
The py component is reconstructed from the y hit positions of the particle track
in the first and second MWPC. The py component can be adjusted, if one changes
the y position of the second chamber relative to the first one.
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6. Final state momentum determination

The relative positions of the Fd system tracking detectors as well as their global
position on the moveable platform were optimised in the standard calibration9. In
this procedure, one particular centre of interest was put on the position in the xz-
plane because of the interdependence of these two momentum components. The fine
tuning of the spectrometer was executed without changing the xz-positions of the
forward tracking detectors, but, by focusing on the other calibration parameters:

• The magnetic field strength of D2 was optimised to correct for pz

• The deflection angle of the COSY beam was used to rectify px

• The component py was adjusted by changing the y position of the second
MWPC relative to the first one.

Starting from the standard calibration the following three step procedure was ap-
plied for the calibration fine tuning.

Step one: Each of the three calibration parameters was changed separately to
investigate the corresponding modifications in the pf = pf (cosϑ) and pf =
pf (φ) spectra. By minimising the asymmetry of pf at these spectra a new
value was fixed for the associated calibration parameter.

Step two: The stability of this new setting was confirmed by repeating step one
using smaller parameter variations. In both cases, the first fifth of all the data
collected during the beam time was used in order to observe reliable changes
in the pf spectra.

Step three: This kind of calibration procedure was also applied on the last fifth of
data in order to get an additional cross check for the stability of the calibration
parameters. By this, possible systematic variations were able to be revealed
during the beam time.

It should be mentioned, that the computation time was reduced for practical reasons
by using a reduced amount of data for the calibration. It makes no sense to increase
the precision of the calibration by increasing the amount of data used, because
its contribution to the final η mass uncertainty is very small compared to other
factors. The changes for each single calibration parameter will be discussed in the
following.

9 See page 93.
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6.3. Refined momentum calibration fine tuning

6.3.2. Magnetic field strength of D2 and its correction for pz

The reconstruction of the pz momentum component was optimised at COSY-
ANKE by using the magnetic field strength of D2 as calibration parameter. For
the twelve energy settings above threshold the magnetic field of D2 ranged from
BD2 = 1.4162 T to BD2 = 1.4350 T. It was changed for each energy above threshold
by ± 0.01 T in the first step and by ± 0.005 T in the second one of the calibra-
tion fine tuning. Figure 6.15 shows the impact on the final state momentum for a
change of ± 0.01 T for an excess energy of Q = 1.1 MeV in an exemplary manner.
The curves are in black for the standard calibration, in blue for decreasing the
magnetic field and in red for increasing it.
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Figure 6.15.: Influence on pf when changing the magnetic field strength of D2
by ± 0.01 T at 1.4T; in black for the standard calibration, in
blue for decreasing, and in red for increasing the magnetic field.

While pf = pf (φ) is showing negligible modifications, pf = pf (cosϑ) is changing
dramatically. When increasing the magnetic field the final state momentum is rising
for forward scattered 3He nuclei (cosϑ→ 1) and decreasing for backward scattered
ones (cosϑ → −1). The process of lowering the magnetic field strength is causing
an inverse behaviour. Finally, a variation of the magnetic field strength leads to a
shift of the semi-circle in ±pz direction, figuratively, On the other side there are no
significant modifications in px and py. This behaviour is similar, if not, even equal
for all twelve energies.

In order to optimise the magnetic field strength, each of the three different pf =
pf (cosϑ) spectra (black, blue and red) were described by a second order polynomial
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6. Final state momentum determination

pf = pf (cosϑ) = a+ b cosϑ+ c (cosϑ)2 , (6.7)

as shown in Figure 6.15. The linear term b, representing the slope, was used as
control parameter for the symmetry requirement in pz. That means if b becomes
equal zero, the momentum sphere will be perfectly symmetric in pz. By that a set
of three slope parameters (•, •, •) was determined for each of the twelve energies.

Figure 6.16 summarises all twelve sets of slope parameters. The slopes marked

• as black points belong to the standard calibration

• as red points to the increased magnetic field strength

• as blue points to the decreased one.

A straight line from a linear fit connects one set of slope parameters corresponding
to one single excess energy.

Figure 6.16.: Determination of the correct magnetic field strength by a simple
linear fit to the three slope parameters for one excess energy.

The figure shows clearly, that the magnetic field strengths chosen in the standard
calibration are systematically too high for all twelve energies. The slope parameters
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6.3. Refined momentum calibration fine tuning

range from (0.6 ± 0.1) MeV/c to (1.6 ± 0.1) MeV/c, resulting in an average value
of 1.0MeV/c. Within the bounds of their uncertainties they are not in agreement
with zero. The process of increasing the magnetic field led to an average slope of
about 12.0MeV/c and that one of decreasing to −10.0 MeV/c.

The optimal magnetic field strength was fixed for each energy by using a simple
linear fit through the three various slopes. Presenting the field strength as function
of the slope parameter as it is done in Figure 6.16 was an ideal method to extract
the optimal value. The offset of a linear function, i.e., the intersection with the
y-axis, stands in fact for the optimal value of the magnetic field strength. At this
point the slope is equal zero. Consequently, pf = pf (cosϑ) is perfectly symmetric
in pz.

It is just a reduction by up to 0.0015T at a magnetic field strength of 1.4T, i.e.,
a change of the order of 0.1%, that was necessary for adjusting the pz component.
The comparison between the values of the standard calibration and the new ones is
summarized in Section A.5 of the appendix. The fine calibration made it possible
to reduce the slope by one order of magnitude for nearly each energy down to
≈ (0.1 ± 0.1) MeV/c. Within their uncertainty limits the slope parameters are
consistent with zero and by that in agreement with the results of Monte Carlo
simulations. The simulation shows also an average slope of about (0.1±0.1) MeV/c ,
equally.

It is every time that the fine calibration resulted in the almost same values for
magnetic field strength, even when it is repeated using smaller changes in step two
or when using the last fifth of data in step three. A difference of only ±0.0001 T
was observed standing for the systematic uncertainty of this method. It should
be mentioned that the new determined magnetic field strengths do not necessarily
match with the true values, because the reconstruction of pz also depends on the
positions of the tracking detectors or the vertex position in the xz plane. Another
correction for pf in pz would also be possible by adjusting these other parameters.

6.3.3. Vertical position of the multiwire proportional chambers
and its correction for py

The py component compared to the other two ones has the largest asymmetry in
pf . It was corrected by changing the y-position of the second MWPC relative to
the first one. In contrast to the magnetic field strength this parameter is identical
for all twelve energies. Therefore it cannot be changed for each setting individually.
According to the standard calibration the first chamber is placed at −0.11 mm of
the axis and the second one at 0.73mm. Figure 6.17 emphasises the variation in pf
caused by a change of the y-position for the second MWPC by ±1 mm. The colour
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6. Final state momentum determination

coding is the same as for the pz case. The black points stand for the standard
calibration, blue for decreasing and red for increasing the y-position. One has to
keep in mind that step two reduced the variation to ±0.3 mm, whereas step three
used the last fifth of data as input.
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Figure 6.17.: Influence on pf when changing the y position of the second
MWPC by ±1 mm; in black for the standard calibration, in
blue for decreasing, and in red for increasing the y-position of
the 2nd MWPC.

The strongest changes occur in the pf = pf (φ) spectrum at angles of ±90◦, where
the final state momentum is dominated by the py momentum component. The
pf = pf (cosϑ) spectrum indicates slight modifications, too. At first glance, it
seems that they are not negligible at such big changes in the y-position. Finally,
the position was corrected by a much smaller value, so that a really significant
modification at the pf = pf (cosϑ) spectrum did not appear at all.

Again a slope factor, but this time from a linear function was in use as control
parameter for the symmetry requirement in py. Therefore, the entries at φ = ±90◦
only were taken into account at the pf = pf (φ) spectra, i.e., the entries for the bins
±81◦ and ±99◦. In contrast all other values were removed. Describing these last
four data points by a linear functions leads to a slope parameter, which is exactly
a measure for the asymmetry of pf in py.

A set of three slopes was extracted for each of the twelve momentum spheres. They
are depicted in Figure 6.18, by plotting the MWPC position against the slope, i.e.,
asymmetry parameter. This kind of representation as well as the colour coding
are the same as for the pz component. The asymmetry in py is shown in black
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6.3. Refined momentum calibration fine tuning

for the standard calibration, in blue for decreasing and in red for increasing the
y-position of the second MWPC. From the figure, it becomes more than clear that
the y-position was chosen too high in the standard calibration by about 0.4mm.

Figure 6.18.: Determination of the correct y position of the second MWPC
by a simple linear fit to the three slope parameters extracted
for each excess energy.

The optimal y-position for each of the twelve energies was determined by applying a
linear fit to the three different slopes. The intersection between the linear function
with the y-axis provides the correct y-position of the second MWPC. At this point
the slope is equal zero and thus pf perfectly symmetric in py. The new y-positions
range from 0.3mm to 0.36mm for the twelve various energies. The further analysis
made clear that an average value of (0.34± 0.02) mm was valid and could be used
for all energies. So it is only by a tiny change of ≈ 0.39 mm from 0.73mm to
0.34mm for the y-position of the 2nd MWPC, that the shape of the momentum
sphere could be corrected in py. The scale of this correction proves the sensitivity
of the method. Even when repeating the procedure using smaller variations in
the y-position or referring to the last fifth of the data leads to an uncertainty of
±0.02 mm, only, showing the stability of the new calibration parameter.
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6. Final state momentum determination

6.3.4. Beam deflection angle and its correction for px

The deflection angle of the COSY beam caused by the D1 magnet was chosen in
order to optimise the symmetry requirement of pf in px. In the standard calibration
the deflection angle ranges from 5.803◦ to 5.816◦ at the different energy settings (see
Table A.1). Figure 6.14 clearly reveals that this component fulfils the symmetry
requirement at its best. Consequently, the corrections will be very limited, if not
even negligible. Figure 6.19 illustrates the modification in pf after having changed
the deflection angle by ±0.1◦ in the first step of the fine tuning. Afterwards a
variation of ±0.02◦ was carried out in the second step.
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Figure 6.19.: Influence on pf when changing the deflection angle of the COSY
beam onto the target by ±0.1◦; in black for the standard cal-
ibration, in blue for decreasing, and in red for increasing the
deflection angle.

As expected the strongest modifications appear in the φ spectrum at angles of
±180◦ and 0◦, where the px contribution dominates the final state momentum. It
is at φ = ±90◦, i.e., in py, as well as in the pf = pf (cosϑ) spectrum that the
figure does not show any significant changes. A slope parameter from a linear
function was used again as control parameter for the symmetry requirement in
px. Therefore, exclusively the entries for the bins ±9◦ and ±171◦ were taken into
consideration, exclusively. They were shifted by 90◦ for linear fitting. The slopes,
i.e., the asymmetry of pf in px, are shown for the three cases in Figure 6.20 for all
twelve energies. At the standard calibration almost all asymmetry parameters of
px are already distributed around zero, that means there is no significant systemic
deviation. This is contrary to the cases of pz and py. It is only the highest excess
energy revealing an asymmetry.
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Figure 6.20.: Determination of the correct deflection angle of the beam onto
the target by a simple linear fit to the three slope parameters
extracted for each excess energy.

As for both other components new calibration parameters, i.e., deflection angles,
were determined by using a linear fit. These are listed in Table A.1 of the appendix.
In the px case the corrections at deflection angles of 5.8◦ were below 0.03◦, that
means just 0.4%. The correction decreases even below 0.01◦ when excluding the
highest and most deviating excess energy. The variation of the deflection angle
becomes even less to about ±0.004◦ when repeating the fine calibration procedure
at smaller changes of ±0.02◦ in step two. The changes will even move in the same
scale as previously, if one considers the last fifth of the data as input. This is a
clear indicator for the stability of the new calibration parameters. The values for
some of the twelve new deflection angle match with the old ones in the scope of
their uncertainty limits. That means, a readjustment was not urgently necessary,
in principle.

However, a correction for the reconstruction of pz and py was inevitable for a precise
determination of resolution parameters (see next Section 6.4). The magnitudes
of the calibration parameter changes are so small that they have no impact on
the values of the missing masses for the different reactions used in the standard
calibration [Dym12]. The calibration parameters for both settings, the standard
ones and the improved ones, are compared in the appendix in Section A.5.
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6. Final state momentum determination

6.4. Determination of final state momenta

The previous discussion in Section 6.1.2 made clear that resolution effects cause a
deviation of the reconstructed final state momentum from the kinematically correct
value. Therefore, it is absolutely needed to extract from data the resolutions of the
individual momentum components (σx, σy, σz). This is indispensable in order to
quantify correction parameters for the measured pf by Monte Carlo simulations.

At two previous analysis [Mer07, Rau09], the resolution in px and py was not
considered separately, but merged into a smearing of the transverse component p⊥.
At that time this consideration was sufficient, because in contrast to the η mass
analysis, the previous ones focussed on the amount of events for extracting cross
sections, instead of the absolute position. A smearing of (σ⊥, σz) = (8, 22) MeV/c
was chosen for the excess energy range from threshold up to Q = 60 MeV in order
to realise the smearing of the 3He laboratory momenta in Monte Carlo simulations.
Those parameters were determined by studies of widths for missing mass peaks at
different cosϑ bins10.
Examining the shape of the momentum sphere, i.e., the dependence pf = pf (cosϑ)
and pf = pf (φ), allows one to determine the momentum smearing in the three
directions in a more elegant way. This was made only possible by the fine tuning
of the calibration parameters which improved the pf = pf (cosϑ) and pf = pf (φ)
spectra.

Figure 6.21 summarises exemplarily for one energy the success of the refined spec-
trometer fine tuning and it allows for an exact comparison. The top panel shows
the shape of the momentum sphere at the standard calibration, whereas the bottom
panel indicates the improved sphere after having fine tuned the spectrometer.
The asymmetric contributions in the pf = pf (cosϑ) and pf = pf (φ) spectra, i.e.,
the asymmetry of the momentum sphere, make clear that the standard calibration
was just able to provide a rough and inexact momentum reconstruction with regard
to the d p→ 3He η reaction. It is only by an exact fine tuning that the momentum
spheres become almost perfectly symmetric in the three momentum components.
The remaining structures are mainly due to resolution and smearing effects of the
ANKE setup as well as to momentum reconstruction algorithms as explained in
Section 6.1.1.
Monte Carlo simulations without smearing are represented by the red horizontal line
in Figure 6.21, showing the isotropy of pf . The red crosses symbolise simulations
with smearing effects, matching very well with the data. The implementation of
resolution parameters in Monte Carlo simulations allows one to calculate correction
parameters for the measured final state momenta.
10 The pf signal for cosϑ→ ±1 was used to extract σz and cosϑ→ 0 to fix σ⊥. This is composed

of σ2
⊥ = σ2

x + σ2
y.
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Figure 6.21.: Mean values of the pf distributions are shown for individual
cosϑ and φ bins for the standard (top) and improved (bottom)
calibration at Q = 1.1 MeV (black circles). The results of Monte
Carlo simulations are shown without (red, horizontal line) and
with momentum smearing (red crosses). The comparison of the
data with simulations permits the determination of the momen-
tum resolution in the three directions.
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6.4.1. Determination of resolution parameters

An iterative procedure was developed, then applied in order to determine the res-
olution parameters for the three momentum components. It turned out to be the
best and fastest way if focussing on three control parameters extracted from data.
The smearing (σx, σy, σz) was extracted for each of the twelve energies.

• The values for σx and σy were determined from the amplitude and the phase
of the oscillation in the pf = pf (φ) spectrum.

• The smearing σz was extracted from the magnitude of the quadratic term in
the pf = pf (cosϑ) spectrum.

• In addition, an important constraint is fixed by the measured width of the
3He η final state momentum signal when integrating over all cosϑ and φ.
This quantity covers all resolution and smearing effects at once and must be
reproduced by Monte Carlo simulations that comprises the ANKE resolution.

Firstly, the pf = pf (φ) spectra were described by a general sine function

pf = pf (φ) = a+ b sin(cφ+ d) (6.8)

in order to determine σx and σy. The boundary conditions for this case fix the
frequency parameter c and phase d (c = 2 and d = π/2), consequently the free
parameters are reduced from four to two. The least square fit takes into account
the offset parameter a and the amplitude of the oscillation b, exclusively.
The amplitudes for the twelve energies range from (1.07± 0.05) MeV/c to (0.73±
0.05) MeV/c, indicating a decrease with rising excess energy. These values comprise
information about the ratio of σx/σy. It is optimal how the simulations describe
the oscillation curves for each energy by using the extracted smearing parameters
listed in Table 6.1. In this case the amplitudes of the oscillations for data and
Monte Carlo simulations match within their uncertainty limits.

Secondly, the pf = pf (cosϑ) spectra were described by a polynomial function of
second order as explained in Section 6.3.2. The quadratic fit parameter11 c is a
direct measure for the magnitude of the smearing in pz. To be more precise, it is a
measure of the ratio σ⊥/σz. The quadratic term is (7.03±0.08) MeV/c for the data
closest to threshold and decreases steadily up to (2.75± 0.08) MeV/c with growing
excess energy. This behaviour is reasonable, because the final state momentum
rises with increasing excess energy, whereas the resolution stays nearly constant.
The same quadratic parameters were realised using Monte Carlo simulations, in
which the smearing of the laboratory pz component was modelled by Gaussian
distributions with the widths σz listed in Table 6.1.
11 See Equation (6.7) on page 116.
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6.4. Determination of final state momenta

Technically the ratio of σx/σy and σ⊥/σz can be extracted only, if one considers the
amplitude of the oscillation in pf (φ) and the quadratic term in pf (cosϑ), exclusively.
An additional parameter was needed in order to fix the absolute values and found in
the width of the pf signal. It ranges from (8.00±0.02) MeV/c to (8.17±0.02) MeV/c
for the twelve energies studied because of alignment and calibration limitations.
These one define the uncertainties for the determined resolution parameters.

Data Resolution
Points σx /(MeV/c) σy /(MeV/c) σz /(MeV/c)

1 4.5 7.5 16.7
2 4.2 7.6 16.5
3 3.6 7.7 16.1
4 3.8 7.9 16.1
5 4.0 7.2 16.5
6 3.4 7.3 16.9
7 2.4 7.7 16.7
8 3.0 8.0 16.2
9 2.0 8.2 16.4
10 1.1 8.5 16.5
11 1.0 8.5 16.2
12 1.0 9.1 16.4

Uncertainties
∆σx /(MeV/c) ∆σy /(MeV/c) ∆σz /(MeV/c)

±0.2 ±0.2 ±0.1

Table 6.1.: Individual smearing (σx, σy, σz) for the three momentum compo-
nents extracted from data and used in Monte Carlo simulations.

The smearing parameters (σx, σy, σz) were determined in an iterative way. The
values (σx, σy, σz) = (5, 7, 16) MeV/c were used as starting point for each energy.
These ones are average values from the peak widths extracted at special cosϑ and
φ bins where one of three momentum component clearly dominates pf . The final
values resulted from the iterative procedure by varying the resolution parameters as
long as all three control parameters, i.e., the amplitude of the oscillation in pf (φ),
the quadratic term in pf (cosϑ), and finally the total pf width, agreed for data and
Monte Carlo simulations. They are listed in Table 6.1 for all twelve energies. The
precision of the resolution parameters (∆σx,∆σy,∆σz) = (0.2, 0.2, 0.1) MeV/c is
defined by the uncertainty limits of the control parameters. Those ones in turn
depend on the calibration limitations.
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6. Final state momentum determination

In contrast to σz, which is constant within 1MeV/c, it seems as if σx is decreasing,
while σy is increasing with excess energy. This behaviour is reasonable because the
cone angle of the 3He ejectiles from the d p→ 3He η reaction increases with excess
energy. It is close to threshold, that the hit positions are located in a small area
near the centre of the wire chambers, whereas hits at higher excess energies are
more widely distributed. However, the transversal smearing σ⊥, calculated from
σx and σy, is nearly constant at about 8.5MeV/c for all twelve energies. This is a
similar value compared to that one used in previous analysis [Mer07, Rau09]. As
expected the resolution for pz is the worst at a fixed target experiment.

6.4.2. Correction of final state momenta

The resolution effects are optimally described for each energy when implement-
ing the smearing parameters listed in Table 6.1 in Monte Carlo simulations. The
widths for the individual cosϑ and φ bins are reproduced to high precision in com-
bination with the deformation of the momentum sphere, depicted in Figure 6.21.
Figure 6.22 proves the clear agreement of data and smeared simulations. It shows
the background subtracted distribution of pf integrated over all cosϑ and φ at an
excess energy of Q = 7.0 MeV12.

Due to resolution effects, the pf distribution for data shown as red filled area is
slightly asymmetric. It is reproduced in an almost identical manner by Monte Carlo
simulations depicted as black crosses. The vertical line indicates the kinematically
correct final state momentum without smearing effects.
Correction parameters were calculated for all twelve energies by comparing the
mean values from the Monte Carlo simulations with and without momentum smear-
ing. The deviation of the reconstructed mean value from the true one is directly
the correction for pf . The mean values of the smeared distributions were extracted
from a ±3σ region around the peaks as it was done for data. It is important that
the extraction of the average pf values was treated equally referring to data and
simulations. This is for avoiding an additionally systematic error. The determined
correction parameters are listed in Table 6.2 and plotted versus the kinematically
correct pf value in Figure 6.23.

The deviation is about (2.22 ± 0.08) MeV/c for the lowest momentum, decreas-
ing steadily down to (0.74 ± 0.04) MeV/c with growing final state momentum. It
should decrease exactly with 1/pf for a perfect calibrated detector as discussed
in Section 6.1.2. But there is still a scatter in the points about any smooth line,
because the input parameters, i.e., the smearing values, were obtained by fitting
12 For the sake of completeness the final state momentum distribution for all energies are shown
together for data and smeared Monte Carlo simulations in the appendix Section A.6
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6.4. Determination of final state momenta
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Figure 6.22.: Final state momentum distribution for background subtracted
d p→ 3He η data (filled red area) and simulation including reso-
lution effects (black crosses) at an excess energy ofQ = 7.0 MeV.
The vertical line indicates the kinematically correct final state
momentum.

experimental data (see Section 6.4.1). This approach includes alignment and cali-
bration limitations provoking in a deviation from the 1/pf fit, shown as red line.
The good χ2/NDF ≈ 0.9 of the fit proves the validity of the determined uncertain-
ties for the correction. The error bars result from error propagation, transforming
the uncertainties of the smearing values (∆σx,∆σy,∆σz) = (0.2, 0.2, 0.1) MeV/c
into those ones of pf correction parameters.

Mathematically, the correction parameters for pf are primarily defined by the res-
olution parameters. Nevertheless, they are also dependent on the η mass value
assumed in simulations.
For example the simulated pf momenta of the reaction d p → 3He η are higher,
when assuming a lower mass of mη = 547.3 MeV/c2 instead of the PDG value.
Consequently, the determined resolution parameters would be higher leading to
larger correction parameters and finally to a lower η mass value. The difference
of ∆mη ≈ 550 keV/c2 in simulations provokes a shift of the obtained η mass of
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6. Final state momentum determination

Data pf correction Uncertainty
Points parameter / (MeV/c) / (MeV/c)

1 2.22 0.08
2 1.94 0.06
3 1.69 0.06
4 1.57 0.05
5 1.35 0.05
6 1.28 0.04
7 1.07 0.05
8 0.95 0.04
9 0.88 0.03
10 0.84 0.04
11 0.76 0.04
12 0.74 0.04

Table 6.2.: Correction parameters for the measured pf estimated by Monte
Carlo simulations.

≈ 20 keV/c2. However, this is smaller than the finally systematic uncertainty of the
COSY-ANKE outcome.

The PDG estimation was used for the η mass in the COSY-ANKE analysis, mak-
ing it possible to determine a final COSY-ANKE η mass value. The analysis was
repeated a second time using the previous COSY-ANKE outcome as new input for
Monte Carlo simulations. The new result showed just a very tiny deviation of below
2 keV/c2 in contrast to the previous value. This examination underlines the insen-
sitivity to the mass assumed in simulations. In comparison to other contributions
its influence on the final uncertainty is very small. So it must be concluded that
the dependence of the correction parameters on the value assumed for the mass in
simulations is negligible.
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6.4. Determination of final state momenta
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Figure 6.23.: Deviation of the measured final state momenta from the true
ones due to resolution effects evaluated in Monte Carlo simu-
lations. The twelve measured final state momenta in the near
threshold region from Q = 1− 10 MeV have to be corrected by
values from 0.7 − 2.2 MeV/c in order to compensate for such
effects. The curve is a 1/pf fit to the points.

6.4.3. Reconstructed final state momenta

Table 6.3 presents the already corrected final state momentum values and their
statistical uncertainties for all twelve data points. These ones were used in the
threshold extrapolation.
The values of the pf averages were determined statistically within ±3σ limits from
the pure background subtracted pf distributions as shown in Figure 6.22 for a
typical energy. The good statistics of ≈ 1.3 × 105 3He η events for each energy
meant that the uncorrected value for pf could be extracted with an uncertainty
of ≈ 23 keV/c. The experiment collected ≈ 1.5 × 106 3He η events in total. After
having applied the resolution correction for the measured pf , the total uncertainty
increased. By this, it was dominated by the errors of the correction parameters, as
indicated in Table 6.3.
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6. Final state momentum determination

Data Final state mom. Uncertainty
Points pf / (MeV/c) ∆pf / (MeV/c)

1 32.46 0.08
2 35.56 0.07
3 39.00 0.06
4 44.09 0.06
5 49.25 0.05
6 53.66 0.05
7 61.70 0.05
8 68.77 0.04
9 76.92 0.04
10 82.64 0.05
11 89.81 0.04
12 98.64 0.04

Table 6.3.: Final state momenta and their statistical uncertainties for all
twelve energy settings used in the threshold extrapolation.

Although the pf distributions for data and simulations match mostly acceptably
(see Figure 6.22), this is not perfect naturally, especially in the high momentum
tail. Such discrepancies might arise from slight imperfections in the spectrometer
calibration, 3He scattering in the wire chambers, or limitations in the background
subtraction approach. If data and simulations matched perfectly, the corrected pf
averages would be completely independent of the interval used for their determina-
tion. The explanation of this fact is very simple: By changing the pf interval for
average extraction, a slightly different average is expected. This small difference
will be compensated by the correction parameter if its interval is adapted in the
same manner.

But in real, the small deviation in the pf distributions for data and simulations
must to be taken into account as an additional systematic uncertainty. In order to
quantify this systematic contribution the interval was varied between ±2σ to ±4σ,
where σ represents the peak width. Such a variation leads to a collective shift in
the extracted final state momenta of approximately 0.16MeV/c. This systematical
error is not included in Table 6.3 because the values in there are of purely statistical
nature. However, its contribution must be taken into consideration at the final η
mass determination, introducing a systematic uncertainty of 12 keV/c2.

A more detailed discussion about systematic uncertainties of pf and their impact
on the final η mass value will follow in the next section.
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7. COSY -ANKE η mass result

In order to obtain a robust value for the mass of the η meson, it was necessary
to extrapolate the experimental data with high precision to threshold as described
in Chapter 3. The beam momentum at threshold corresponds directly by Equa-
tion (3.16) to the η mass. Table 7.1 lists the set of twelve COSY beam momenta and
associated corrected final state momenta (pd, pf ) which were used for this purpose
(see also Tables 5.6 and 6.3).

Excess energy Beam momentum Final state momentum
Q/ (MeV) pd / (MeV/c) pf / (MeV/c)

1.0 3146.41± 0.03 32.46± 0.08
1.2 3147.35± 0.03 35.56± 0.07
1.5 3148.45± 0.03 39.00± 0.06
2.0 3150.42± 0.03 44.09± 0.06
2.4 3152.45± 0.03 49.25± 0.05
2.9 3154.49± 0.03 53.66± 0.05
3.9 3158.71± 0.03 61.70± 0.05
4.8 3162.78± 0.03 68.77± 0.04
6.0 3168.05± 0.03 76.92± 0.04
7.0 3172.15± 0.03 82.64± 0.05
8.2 3177.51± 0.03 89.81± 0.04
9.9 3184.87± 0.03 98.64± 0.04

Table 7.1.: Values of the laboratory beam momenta pd and associated cor-
rected final state CM momenta pf with statistical uncertainties
are noted for all twelve different excess energies. The approxi-
mate values of Q quoted here are merely used to label the twelve
settings.
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7. COSY -ANKE η mass result

The extrapolation of the data to threshold is illustrated in Figure 7.1 for both
pf and p 2

f versus pd. As first sight p 2
f depends linearly on pd in the first ap-

proximation. However, the analysis take into consideration the full dependence
pf = pf (mη, S, pd) as given by Equations (3.13) and (3.15). The η mass only, cho-
sen as a free parameter, defines the production threshold. The scaling factor S,
discussed in Section 3.2.3, allows for a possible systematic energy dependence of
pf . This would represent yet a further fine tuning, describing the measurement
process. Nevertheless, it is crucial to note that its introduction does not affect the
value obtained for the threshold momentum and hence mη.

The overall least square fit to the data in Figure. 7.1 has a χ2/NDF = 1.28 pro-
viding the best value of the mass mη = (547.873 ± 0.005) MeV/c2. The error is
primarily statistical and quoted together with the final results in Table 7.2. The
corresponding deuteron momentum at threshold is pd = (3141.688±0.021) MeV/c2.
A linear fit of p 2

f versus pd, which is only an approximation of the kinematics as
already discussed in Section 3.2.2, would give a poorer reduced χ2 and a 10 keV/c2

higher mass value.

Supercycle Scaling factor S η mass mη / (MeV/c2)

1+2 1.008± 0.001 547.873± 0.005
1 1.008± 0.001 547.870± 0.007
2 1.008± 0.001 547.877± 0.007

Table 7.2.: Values of the η mass and scaling factor evaluated separately for
the two supercycles and for the complete data set. The errors do
not include the systematic uncertainties of COSY beam and pf
determination estimated in the analysis.

The scaling factor S = 1.008 ± 0.001 is well determined by the least square fit. It
differs very slightly from unity which means that the twelve momentum spheres
are about 0.8% bigger in average than expected. One consequence of this is that
the missing mass is not constant, so one would get a slightly different value at each
of the twelve energies. It would be necessary to improve the absolute momentum
calibration of ANKE in order to eliminate this behaviour, ensuring by this a scaling
factor of S = 1. This can only be realised by studying kinematics of other reference
reactions. However, the approach chosen in this analysis compensates such effects
and does not require an absolute calibration.
If one fixed S = 1.0 in the least square fit, the fit would deviate systematically from
the data points. This implies at the same time a jump of χ2/NDF to 24.7 that proves
a completely wrong description of the measured data. By this the extracted value
for the η mass would be lowered by 64 keV/c2 to 547.809 MeV/c2. The threshold
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Figure 7.1.: Corrected values of the final state CM momentum pf (black
crosses) and its square (red stars) plotted against the deuteron
laboratory momentum pd. The error bars are too small to be
shown on the figure. The extrapolation to threshold was carried
out on the basis of Equation (3.15), whereby a scaling factor S
was introduced. The lower panel shows the deviations of the ex-
perimental data from the fitted curve in pf . The errors shown
here do not include the total systematic uncertainty in pf listed
in Table 7.3.
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7. COSY -ANKE η mass result

determination method chosen at COSY-ANKE avoids such a systematic error as
shown in Section 3.2 by investigation a larger number of data points. In general,
a measurement at one single energy is not able to recognise a possible energy
dependence represented by S.

The totally systematic uncertainty of the obtained η mass is composed of various
systematic errors based on the COSY beam momentum determination and the
various steps in the final state momentum analysis. They are all summarised in
Table 7.3.
The dominant systematic error by far results from the determination of the absolute
COSY beam momentum value. The analysis showed a possible systematic variation
of ∆p syst.

d = 95 keV/c for the average COSY momentum, calculated from the values
of the first and second spin resonance measurement. According to the following
equation

∆mη = mp pd
(m3He +mη)Ed

∆pd = 23 keV/c2 (7.1)

the systematic COSY beam momentum uncertainty translates into one in the η me-
son mass of ∆mη = 23 keV/c2.
Besides that the various steps of the final state momentum analysis contribute dif-
ferently to the systematic uncertainty of the determined pf values. The biggest
error is caused when determining correction parameters to pf . If simulations and
data matched perfectly (see Figure 6.22), the corrected pf values should be inde-
pendent of the interval chosen for pf mean extraction as explained in Section 6.4.3.
However, this is not the fact because of limitations in momentum calibration and
determination of resolution parameters. This produces an almost normal system-
atic uncertainty. Variations between ±2σ to ±4σ region of the used interval for
determining the pf means provoke a collective shift in the extracted pf of about
160 keV/c. This translates into a systematic mass uncertainty of ±12 keV/c2.

In comparison, all other sources have less impact on the final state momenta and
consequently on the final η mass value.
For example, the "Experimental settings" summarise different effects from the time
stability and further contributions from the fine calibration. The first and last fifth
of data exclusively were used for fine tuning of calibration parameters, allowing
a verification of the time stability. The extraction of the η mass for both setting
shows a tiny negligible deviation of 2 keV/c2 only.
The variations of cuts in the event selection, i.e., energy loss cut and path length
one, are another possible source for systematic errors. They affect the background
description and so the final pf values. The systematic uncertainty of the event
selection cuts was estimated to be ≈ 5 keV/c2 by changing the cut intervals in the
analysis.
The mass value assumed in simulations also influences the final η mass value as
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Source Variation ∆mη/(keV/c2)

Absolute beam momentum 95 keV/c 23
Experimental settings 2
∆E × β2 cut 6σ → 2σ 5
Flight length cut 3σ → 2σ 1
mη assumed in simulations 20 keV/c2 < 2
pf correction parameters 4σ → 2σ 12

Total systematic uncertainty 27

Table 7.3.: Systematic uncertainties of mη determination. The small "Exper-
imental settings" include effects resulting from turning calibration
parameters. The PDG value of mη [N+10] was used in the simula-
tions but, if the COSY-ANKE one was applied, a 2 keV/c2 change
only would follow. Also listed are the effects when putting stricter
cuts on ∆E × β2 and the flight length.

discussed in Section 6.4.2. All individual systematic uncertainties give rise to a
totally systematic one of 27 keV/c2, resulting in a final COSY-ANKE η mass value
of

mη = (547.873± 0.005stat ± 0.027syst) MeV/c2 . (7.2)

In order to investigate more possible hidden systematic effects the data set (pd, pf )
obtained in the two supercycles were extrapolated separately. In this way each
supercycle represents an independent measurement. Table 7.2 shows the individual
values of the η mass and the scaling factor S with regard to the two supercy-
cles. There is only a very tiny difference of 7 keV/c2 between the two separately
determined η mass values, which is much smaller than the estimated systematic
uncertainty.
In addition the (pd, pf ) data set was subdivided into seven equally time periods
of approximately 18 hours for investigating possible systematic changes in time.
One example for a quantity which might change in time is the beam momentum
of COSY (see Section 5.3.3). Figure 7.2 illustrates the results of the threshold ex-
trapolation for the seven reduced data sets; in black for both supercycles together,
in red only for the 1st supercycle, and in blue only for the 2nd one. The minimum
and maximum of the ordinate of the plot were chosen in this way to cover the total
systematic uncertainty of about ∆msyst.

η = ±0.027 MeV/c2 of the COSY-ANKE
result. The black dashed line represents the final COSY-ANKE value. The time
dependence of the COSY-ANKE η mass value shows solely statistical fluctuations
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7. COSY -ANKE η mass result

and no systematic drift in time. The statistical variations are much smaller than
the total systematic uncertainty. This agreement supports the validity for taking
the mean values of the beam momenta which were determined at the beginning
and the end of the measuring period. Finally, it emphasises the correct handling of
systematic uncertainties.
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Figure 7.2.: Results of the threshold extrapolation using seven reduced data
sets, each one consisting of approximately 18 hours of data tak-
ing. The black points symbolise the results using data of both
supercycles together, the red one stand for the 1st supercycle, and
the blue for the 2nd one.
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8. Conclusions

The COSY-ANKE experiment determined the mass of the η meson in a missing-
mass approach by identifying precisely the production threshold in the d p→ 3He η
reaction. The final outcome is presented together with all the other results from
previous experiments in Table 8.1 and Figure 8.1.

Year Experiment η mass Stat. error Sys. error
(MeV/c2) (MeV/c2) (MeV/c2)

2012 COSY-ANKE [G+12] 547.873 0.005 0.027
2012 MAMI-CB (prel.) [Nik12] 547.851 0.031 0.062
2007 DAFNE-KLOE [M+07b] 547.874 0.007 0.029
2007 CESR-CLEO [A+07b] 547.785 0.017 0.057
2005 COSY-GEM [AB+05] 547.311 0.028 0.032
2002 CERN/SPS-NA48 [L+02] 547.843 0.030 0.041
1995 MAMI-TAPS [K+95] 547.120 0.060 0.250
1992 SATURNE-SPES [P+92] 547.300 0.150
1974 Ruth.Lab. [D+74] 547.450 0.250

Table 8.1.: Results of different η mass measurements in chronological order.
The notation "Experiment" comprises the used accelerator facility
and detector.

The η meson mass obtained is consistent with all recent measurements in which the
meson decay products were studied [L+02, A+07b, M+07b, Nik12]. The precision
achieved is similar to these works. It is important to underline the fact that the
deviation from the PDG best value [N+10] is only 20 keV/c2 which is less than the
systematic error. The COSY-ANKE outcome is the first missing mass experiment
that strengthens the higher η mass value. So the hypothesis of background dis-
tortion under the η peak, which might cause a shift in the missing mass, must be
discarded (see Section 5.4).
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8. Conclusions

It is worth to emphasise the almost perfect agreement with the KLOE result. It is
expected that together with the KLOE outcome the PDG estimation will be shifted
to a higher value in near future.
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Figure 8.1.: Results of different η mass experiments. It is only where two
error bars are shown, the heavy line indicates the statistical un-
certainty and the faint one the systematic. The earlier miss-
ing mass experiments, marked Rutherford Laboratory 74 [D+74],
SPES IV 92 [P+92], and COSY-GEM 05 [AB+05], all obtained
low values for mη compared to recent experiments identifying
the meson by its decay products, viz. NA48 02 [L+02], CLEO
07 [M+07b], KLOE 07 [A+07b], and MAMI-CB 12 [Nik12]. The
COSY-ANKE outcome is completely consistent with these more
refined experiments.

The final success of COSY-ANKE is based upon precise determination of the beam
momentum using the resonant depolarisation technique [Gos08, G+10], clear iden-
tification of the η signal, and systematic study of the measurement of the 3He η
final state momentum in the ANKE spectrometer [G+12]. The latter one was only
made possible by the complete geometric acceptance of ANKE for the d p→ 3He η
reaction close to threshold. Consequently, this allowed to verify if the CM momen-
tum in the final state is identical in all directions as demanded by kinematics. This
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symmetry requirement is a powerful technique for calibration purposes, that might
be useful for other two-body reactions, too.
Unlike the MAMI methodology focussed on yields [Nik12], the COSY-ANKE ex-
periment is purely based on kinematics to determine the threshold momentum and
thus the meson mass. However, it is important to keep in mind that the anomalous
behaviour of the production cross section, where the cross section jumps so rapidly
with excess energy, leads to the desirable high count rates near threshold.

The most accurate result for the η meson mass from COSY-ANKE differs by about
0.5 MeV/c2 from earlier missing mass evaluations [D+74, P+92, AB+05]. An intense
discussions with scientists of the other missing mass experiments could not explain
and clarify this discrepancy. It is, of course, impossible to speak for other exper-
iments, but never mind, at this points the effects revealed in the COSY-ANKE
analysis, which, in the end, would lead to a lower η mass value, will be shortly
summarised.
The careful analysis of the d p→ 3He η reaction showed a deviation of the measured
quantities, i.e., missing mass as well as final state momentum, from the kinemat-
ically correct one due to resolution effects. In the case of ANKE the strength for
the difference depends on the production angle cosϑ and azimuthal angle φ. This
is due to different resolutions and smearings of the three momentum components
(px, py, pz). Such effects must be quantified as well as disentangled in the analysis
for a precise mass determination.
In particular, if ANKE had access to events scattered in forward and backward
direction, only, one would found a deviation to a lower mass value of about ≈
500 keV/c2. It is without consideration of these resolution and smearing effects
that the missing mass will shift to ≈ 547, 3 MeV/c2 showing clearly the influence
on the final result.
If the detector has full geometrical acceptance, so that all the events on the whole
momentum sphere of the two-body reaction are taken into account, even then one
will always find a smaller deviation for the missing mass. In the case of the COSY-
ANKE experiment the is shift is about ≈ 150 keV/c2 to a lower mass value. This
shows very clearly that it is of highest importance to factor in such effects from
resolution when determining particle masses.

Finally, twelve energies above threshold were investigated, allowing a reliable ex-
trapolation for fixing the production threshold. Such an approach is intrinsically
subject to far fewer systematic uncertainties than a measurement at a single en-
ergy. Therefore, it is very evident that a missing mass approach taken with care can
compete with experiments reconstructing the η mesons by its decay products.
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A. Appendix

A.1. Invariant Mass and Missing Mass

Depending on construction and components of a detector facility and on the par-
ticle properties it is obviously not always possible to measure or detect directly
all particles produced at nuclear reactions. As described in Section 2.2 especially
unstable neutral charged particles, like the η meson, can only be reconstructed and
identified indirectly by the calculation of the invariant mass of its decay products
or by the determination of the missing mass.

Invariant Mass of decay products

There are two possible ways how particles can be produced in scattering experi-
ments. On the one hand they can be directly produced at various reactions and
on the other hand they can be generated by decays of heavier particles. The decay
of a particle x, which is not directly detectable, into lighter ones a, b, c is com-
pletely described by energy and momentum conservation via the relation of the
four momentum vectors:

Px = Pa + Pb + Pc . (A.1)

According to Equations (3.1) and (3.2) and due to "Minkowski metric" the absolute
of the sum of the four momenta of the particle system a, b, c gives the rest mass mx

of the particle x:
mx = |Pa + Pb + Pc| . (A.2)

If the four momenta of the particles a, b, c, produced in a scattering experiment and
detected with a detector are reconstructed the invariant mass (IM) spectrum can
be determined via:

IM = |Pa + Pb + Pc| . (A.3)

Particles coming from the direct production create a continuous distribution defined
by the reaction’s kinematics and cross sections. Particles from the decay of the
heavier particle x create due to Equation (A.2) a peak at the particle’s mass mx in
the invariant mass spectrum. In this way the unstable and not directly detectable
particle x can be reconstructed and identified.
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A. Appendix

Missing Mass reconstruction at a two-body reaction

Another method to reconstruct a not detectable particle or particle system x, that
is produced in the reaction a b → c x, is given by the calculation of the missing
mass spectrum. The reaction kinematics is specified entirely by the four momentum
equation

Pa + Pb = Pc + Px , (A.4)

whereas the four momenta of the initial state are given exclusively by energy and
momentum of the accelerator beam and the target. If the particle c is detected
with the detector setup and its four momentum reconstructed, the missing mass
MM of the particle or particle system x will be defined by

MM(Pc) = |Pa + Pb − Pc| = Px = mx (A.5)

and with it the invariant mass is determined. In the case that x is a particle
system a continuous missing mass distribution is calculated, which is defined by
the kinematics of this system, i.e., by the relative movement of the components.
If the reaction described by Equation (A.4) is a two-body reaction the missing
mass determination will give the rest mass of the particle x and the missing mass
spectrum will show a peak at the value of mx. The width of this peak is defined
by the decay width of the particle and the detector resolution for measuring Pc. of
the accelerator beam and the target.
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A.2. Polynomial approximation method for momentum reconstruction

A.2. Polynomial approximation method for
momentum reconstruction

All three components of the particle’s momentum in the laboratory system ~pLS are
approximated by a third order polynomial when using the polynomial approxima-
tion method [V+91]

pi =
3∑

k,l,m,n=0
Ci
k,l,m,nx

kyl tanm(θxz) tann(θyz) , (A.6)

with four track parameters

tan(θxz), tan(θyz), x, y . (A.7)

Thereby x and y represent the track coordinates on the D2 forward exit window
and tan(θxz) and tan(θyz) are the angles when projecting the particle’s track on the
xz and yz plane. In order to fix these parameters the straight track, reconstructed
with the track finding algorithm, is interpolated onto the D2 exit window. The
polynomial coefficients Ci

k,l,m,n are determined from a typical teaching sample of
events, produced by Geant4 simulations. This method is nearly 30% faster than
the Runge-Kutta-Nyström tracing, but relies on an accurate implementation of the
ANKE detector in simulations.
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A. Appendix

A.3. 3He meson production at COSY-ANKE

After having applied the 3He event selection cuts the different mesonic contributions
of 3He meson production become visible in the final state momentum distribution.
Due to their different masses the η production corresponds to the peak at lowest
final state momenta, whereas the single π0 production appears as a peak at ≈
0.5 GeV/c. The two pion production is present as a continuous distribution, because
it is produced in a three particle reaction for that only the 3He nuclei is measured.
It is mainly responsible for the continuous distribution from 0.1− 0.45 GeV/c.
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Figure A.1.: The 3He final state momentum distribution after having applied
the 3He event selection cuts. The different components, i.e. sin-
gle π0, (ππ)0, and η production, are visible.
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A.4. Background description for all energies

A.4. Background description for all energies
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Figure A.2.: The CM distribution of the 3He momentum, i.e., final state mo-
mentum, from the d p → 3He η reaction is shown for all twelve
energies studied above threshold. The measured data after event
selection is shown as black line, the background estimated from
subthreshold data as grey line, and the resulting background-
subtracted d p→ 3He η signal is shaded grey.
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A.5. Results of calibration fine tuning

For the sake of completeness, the changes of the calibration parameters between
the standard calibration and the fine tuning (see Section 6.3) are summarised in
the following.
The vertical position of the 2nd MWPC was changed from 0.7348mm to 0.3397mm
on the y-axis in order to correct for py. For adjusting px the deflection angle of
the COSY beam caused by the D1 magnet was optimised and for pz the magnetic
field strength of the D2 magnet. The changes made for all twelve energies are
summarized in Table A.1.

Data Magnetic field strength of D2 Deflection angle of beam
Points Standard Cali. Fine Tuning Standard Cali. Fine Tuning

1 1.4162 1.4152 5.803 5.799
2 1.4167 1.4157 5.807 5.804
3 1.4172 1.4159 5.803 5.808
4 1.4182 1.4169 5.807 5.811
5 1.4192 1.4181 5.804 5.805
6 1.4202 1.4196 5.808 5.805
7 1.4223 1.4215 5.805 5.810
8 1.4243 1.4236 5.811 5.808
9 1.4268 1.4260 5.805 5.809
10 1.4289 1.4283 5.813 5.802
11 1.4314 1.4308 5.806 5.796
12 1.4350 1.4343 5.816 5.793

Table A.1.: Comparison between calibration parameters for the standard cal-
ibration and after having fine tuned the ANKE spectrometer.
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Figure A.3.: Final state momentum distributions for background subtracted
d p → 3He η data (filled red area) and Monte Carlo simulations
including resolution effects (black crosses) for all twelve energies.
The figure emphasises the excellent agreement between data and
simulations. The vertical line indicates the kinematically correct
final state momentum.
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