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... As our circle of knowledge expands,

so does the circumference of darkness surrounding it.

So the more we know, the more we feel that we don’t know.

A. Einstein



ii



Abstract

This thesis describes a study of the analysing powers and differential cross section

of the
−→
d p → (pp)n reaction for small momentum transfers to a (pp) system with

low excitation energy. It is predictied that these observables will allow the direct
reconstruction of neutron–proton charge–exchange amplitudes at small scattering
angles. This is important for the understanding the NN interaction and therefore
for the whole of nuclear physics.

The experiment was performed at the ANKE spectrometer, which is an inter-
nal experiment at the COSY storage ring. The polarised deuteron beam of energy
1170 MeV has been used with the hydrogen cluster target. The polarimetry of the
beam was performed using the elastic deuteron–carbon scattering at 75.6 MeV and
deuteron–proton scattering at 270 MeV. After acceleration to 1170 MeV inside the
COSY storage ring, the polarisation of the deuterons were remeasured by studying
the analysing powers of a variety of nuclear reactions. The vector (it11) and tensor
(t20, t22) analysing powers of the charge–exchange breakup reaction has been ex-
tracted. The luminosity determination was performed using two different reactions
and this allowed the extraction of the cross–section (dσ/dq). Finally a good quan-
titative understanding of all the measured observables is provided by the impulse
approximation using known np amplitudes. The proof of principle achieved here
for the method suggest that measurements at higher energies will provide useful
information in regions where the existing np database is far less reliable.
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Chapter 1

Introduction and motivation

Enormouse progress has been made in subatomic physics during the last century to

find the answer to one of man’s most ambitious question: “What is the world made

of?”. A series of important experimental discoveries changed our perceptions about

the structure of the matter several times. The current status of our understanding

can be displayed in the sequence: molecules → atoms → nucleis → nucleons →
quarks. The interaction between the fundamental particles (quarks) is described by

Quantum Chromo-Dynamics (QCD). The nuclear interaction appears to be a result

of interaction between the quarks (i.e. some kind of residual interaction). So the

understanding of the nucleon–nucleon (NN) interaction is fundamental to the whole

of nuclear physics and hence to the composition of matter as we know it. Apart

from its intrinsic importance, it is also a necessary ingredient in the description of

meson production and other intermediate energy processes. Thus it is necessary to

study it in all its facets in order, together with theory, provide a deep and basic

understanding, finally based on the fundamental constituents of matter i.e. quarks

and gluons.

The scattering amplitudes for the complete description of the NN interaction

can be reconstructed from phase–shift analyses (PSA). The PSA generally need

many precise experimental observables as input. The corresponding measurements

of these observables require experiments with polarised beam and polarised target,

as well as the determination of the polarisation of final–state particles [1]. Many

experimental facilities contribute to the database on which such analyses are based

and it is incumbent on a laboratory that can make a significant contribution to the

communal effort to do so.
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Chapter 1

1.1 Scientific motivation

The database on proton–proton scattering is enormous thanks to many measure-

ments which have been carried out. The well-known EDDA experiment at COSY

has produced the data set of differential cross sections (Fig. 1.1) and the various

single and multi–spin observables [3] which have allowed the construction of reliable

isospin I = 1 phase shifts up to at least 2GeV [2].

Figure 1.1: Abundance plot of the pp differential cross section dσ/dΩ measurements in
the energy vs angular domain corresponding to the current status of the SAID date-base.
Important to note that in the energy range of 500 < Tp < 2500 MeV and scattering angle
of 30◦ < θcm < 90◦, the plot is dominated by the COSY–EDDA measurements [3]

.

The situation is far less developed for the isoscalar I = 0 case, the corresponding

phase shift analysis is only available up to 1.3GeV and even then there are significant

ambiguities at the higher energies [2]. Some of np spin–observables (Ay, Ayy) are

shown on the Fig 1.2 as an abundance plot, corresponding to the current SAID

database [6]. It is seen that above 1 GeV kinetic energy of the proton beam. More

good data on neutron-proton scattering are clearly needed, possibly with the aim of

directly reconstructing the isosinglet amplitudes at fixed energies. To avoid some of

the problems associated with the quality of neutron beams and/or the detection of

neutrons, the deuteron is often used successfully as a substitute target or beam.

It was emphasised over 50 years ago that the quasi-free (p, n) or (n, p) reaction

on the deuteron can act, in suitable kinematic regions as a spin filter that selects

2



Section 1.1

Figure 1.2: Abundance plot some of the np spin–observables: left panel is the analysing
power Ay and the right panel is one of the spin–correlation parameter Ayy in the energy
versus angular domain corresponding to the current status of the SAID date-base.

the spin–dependent contribution to the np elastic cross section [8]. The comparison

of this reaction to the free backward elastic scattering on a nucleon target provides

the possibility of a direct reconstruction of np backward amplitudes [10]. This work

studied in detail the ratio of the forward charge–exchange cross section of a neutron

on a deuteron target to that on a hydrogen target.

Rnp(0) =
dσ(nd→ pnn)/dt

dσ(np→ pn)/dt
, (1.1)

where t is the four–momentum transfer between the initial neutron and final proton.

Due to the Pauli principle, any spin-1 component in the low energy {nn} or {pp}
system is blocked and the system is in the 1S0 state. If the data are summed over

all excitation energies of the nn system, then the Dean closure sum rule allows

one to deduce from Rnp the fraction of spin–dependence in the pn charge–exchange

amplitudes [9].

However, several years ago, it was suggested by Bugg and Wilkin [11] that much

more information on the np charge–exchange amplitudes can be extracted by using a

polarised deuteron beam or target and studying the charge–symmetric
−→
d p→ (pp)n

reaction. To achieve the full benefit, the excitation energy Epp in the final pp system

must be kept low. Experiments from a few hundred MeV up to 2 GeV [12, 13, 14]
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Chapter 1

have generally borne out the theoretical predictions and have therefore given hope

that such experiments might provide valuable data on the amplitudes in the small

momentum transfer region.

The ANKE collaboration is embarking on a systematic programme to signifi-

cantly improve our knowledge of np elastic scattering by measuring cross-sections,

analysing powers, and spin-correlation coefficients in both forward and backward

directions of the ~d~p→ n{pp} reaction up to the maximum energy of the COSY ac-

celerator of 1.15 GeV per nucleon [15]. Higher energies per nucleon will be achieved

through the use of proton beam and a deuterium target. The aim of this thesis

is to provide the check of the methodology in a region where the neutron–proton

amplitudes are reasonably well known. This proof-of-principle of the approach will

be demonstrated in the following sections of this thesis.

1.2 np-Amplitudes and charge-exchange on the deuteron

In single scattering (impulse) approximation [11] the deuteron charge exchange re-

action
−→
d p→ (pp)n can be considered as np→ pn reaction with a spectator proton.

Initially the np are in bound state in deuteron and the final pp pair are subject of

the final state interaction, as illustrated diagrammatically in Fig. 1.3. If ~k relative

momentum in the pp system is small and hence Epp = ~k2/m is small then the fi-

nal pp pair is in 1S0 state. This reaction acts as spin-isospin filter from (3S1,
3D1)

deuteron to the 1S0 (pp). Furthermore if the relative momentum ~q = ~kf −~ki is small

the other final states are very weakly excited. Under such condition the resulting

matrix element is proportional to that for np→ pn times form factor which depends

on deuteron and pp wave functions and also ~q, the momentum transfer. There is

a strong interplay between the np → pn amplitudes and the polarisation of the

deuteron which leads to a strong tensor analysing power signal. It should be no-

ticed that the analysing powers have opposite signs for spin-singlet and spin-triplet

pp final states [11]. As a consequence it leads to the dilution of the effect if the

higher waves are excited. We present the formalism for pure S−wave state but for

the detailed comparison of the data with theory a much more thorough numerical

evaluation is required [16].

The charge–exchange amplitude of the elementary np → pn scattering may be
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Section 1.2
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Figure 1.3: Impulse approximation diagram for nucleon charge exchange on the deuteron

written in terms of five scalar amplitudes in the cm system as

fnp = α(q) + iγ(q)(~σ1 + ~σ2) · ~n+ β(q)(~σ1 · ~n)(~σ2 · ~n)

+δ(q)(~σ1 · ~m)(~σ2 · ~m) + ε(q)(~σ1 ·~l)(~σ2 ·~l), (1.2)

where ~σ1 is the Pauli matrix between the initial neutron and final proton, and the

reverse for ~σ2. As stressed in Ref. [10], α is the spin–independent amplitude between

the initial neutron and final proton, γ is a spin–orbit contribution, and β, δ, and ε

are the spin–spin terms. The one–pion–exchange pole is contained purely in the δ

amplitude and this gives rise to its very rapid variation with momentum transfer,

which influences very strongly the deuteron charge–exchange observables.

The orthogonal unit vectors are defined in terms of the initial neutron (~ki) and

final proton ( ~kf) momenta;

~n =
~k × ~k′

|~k × ~k′|
, ~m =

~k′ − ~k

|~k′ − ~k|
, ~l =

~k′ + ~k

|~k′ + ~k|
· (1.3)

The amplitudes are normalised such that the elementary np→ pn differential cross

section has the form

(

dσ

dt

)

np→pn

= |α(q)|2 + |β(q)|2 + 2|γ(q)|2 + |δ(q)|2 + |ε(q)|2 . (1.4)

In impulse approximation the deuteron charge–exchange amplitude to the 1S0

state depends only upon the spin–dependent parts of fnp [11]. The form factor
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describing the transition from a deuteron to a 1S0–state of the final pp pair contains

two terms

S+(k,
1

2
q) = FS(k,

1

2
q) +

√
2FD(k,

1

2
q) ,

S−(k,
1

2
q) = FS(k,

1

2
q) − FD(k,

1

2
q)/

√
2 . (1.5)

Here ~q is the three–momentum transfer between the proton and neutron which, for

small Epp, is related to the four–momentum transfer by t = −~q2.

The S+ and S− denote the longitudinal (λ = 0) and transverse (λ = ±1) form

factors, where λ is the spin–projection of the deuteron. The matrix elements FS and

FD can be expressed in terms of the S– and D–state components of the deuteron

wave function u(r) and w(r) and the pp (1S0)–scattering wave function ψ
(−)
k (r) as

FS(k,
1

2
q) = 〈ψ(−)

k |j0(
1

2
qr)|u〉 , (1.6)

FD(k,
1

2
q) = 〈ψ(−)

k |j2(
1

2
qr)|w〉. (1.7)

Here ~k is the pp relative momentum, corresponding to an excitation energy Epp =
~k2/m, where m is the proton mass. We denote the ratio of the transition form

factors by

R = S+(k,
1

2
q)

/

S−(k,
1

2
q) (1.8)

and the combination of modulus–squares of amplitudes by

I = |β(q)|2 + |γ(q)|2 + |ε(q)|2 + |δ(q)|2|R|2. (1.9)

Impulse approximation applied to dp → {pp}1S0
n then leads to the following pre-

dictions for the differential cross section and deuteron spherical analysing pow-

ers [11, 16]:

d4σ

dt d3k
= I

[

S−(k,
1

2
q)

]2
/

3,

I it11 = 0 ,

I t20 =
[

|β(q)|2 + |δ(q)|2|R|2 − 2|ε(q)|2 + |γ(q)|2
]

/
√

2 ,

I t22 =
√

3
[

|β(q)|2 − |δ(q)|2|R|2 + |γ(q)|2
]

/2 . (1.10)
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In this 1S0 limit, a measurement of the differential cross section, t20, and t22 would

allow one to extract values of |β(q)|2 + |γ(q)|2, |δ(q)|2, and |ε(q)|2 for small values

of the momentum transfer ~q between the initial proton and final neutron. However,

even if a sharp cut of 1 MeV is placed upon Epp, there still remain small contributions

from proton–proton P–waves that dilute the analysing power signal. Such effects

must be included in any analysis aimed at providing quantitative information on

the neutron–proton amplitudes [16].

One way of reducing the dilution of the tensor analysing powers by the P–

waves is by imposing a cut on the angle θqk between the momentum transfer ~q and

the relative momentum ~k between the two protons. When these two vectors are

perpendicular, impulse approximation does not allow the excitation of odd partial

waves in the pp system [11] and this is in agreement with available experimental

data [14].

In terms of the charge–exchange amplitudes, the Dean sum rule [9] for the ratio

of the forward nd → pnn to np→ pn cross sections of Eq. (1.1) becomes

To avoid the explicit introduction of the dynamics of the low energy NN sys-

tem, Dean [9] derived a sum rule for the ratio Rnp (Eq. 1.1), as a function of the

momentum transfer q. In collinear dynamics, where there is no dependence on the

deuteron structure it simplifies to

Rnp(0) =
2

3

[

2|β(0)|2 + |ε(0)|2
|α(0)|2 + 2|β(0)|2 + |ε(0)|2

]

(1.11)

The sum rule of Eq. (1.11) is very effective at medium and high energies because

it converges so quickly. The same result should, of course, hold for dp → (pp)n,

which is the reaction studied at ANKE.

The work carried out in this thesis shows that the method suggested above works

and will allow to obtain the useful information for higher energies where the existing

np database is poorly known.
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Chapter 2

Experimental equipment:

COSY and ANKE

The experiment have been performed at the magnetic spectrometer ANKE at the

COoler SYnchrotron COSY. In order to study the Charge–Exchange deuteron breakup

reaction, the forward detection system of the ANKE spectrometer and the Silicon

Tracking Telescope (STT) were used. The forward system allows the detection of

charged particles emitted at small forward angles and high momenta. The STT

system was used to measure very slow particles emerging from the thin target and,

in particular, allowed the identification and tracking of the recoil protons. In this

chapter a technical overview of the accelerator and the detector systems is given.

2.1 Accelerator and storage ring COSY

The accelerator and storage ring COSY (Cooler SYnchrotron) [17] at the Forschungs-

zentrum Jülich can provide high quality, high precision polarised and unpolarised,

proton (p) and deuteron (d) beams. H− and D− ions are pre–accelerated in the cy-

clotron JULIC and injected into the storage ring via a charge–exchanging stripper

carbon foil. The layout of COSY is shown in Fig. 2.1. The total circumference of the

storage ring is 184 m. This machine covers the momentum range from 295 MeV/c

up to 3.65 GeV/c, corresponding to an energy range between 45 MeV and 2.83 GeV

for protons, and from 23 MeV to 2.23 GeV for deuterons. COSY provides ion beams

with a momentum resolution of ∆p/p = 10−3 − 10−5 and delivers up to 6×1010 pro-

9



Chapter 2

Figure 2.1: The COoler SYnchrotron COSY at the Forschungszentrum Jülich.

tons/deuterons in the ring (space charge limit is ≈2×1011 p). Electron cooling is

applied up to 645 MeV/c. Also a stochastically cooled beam [18, 19] can be pro-

vided in order to achieve the highest phase space density and to compensate beam

deterioration due to beam-target interactions. This can be applied in the momen-

tum range from 1.5 to 3.3 GeV/c. COSY beams are being delivered to internal

(ANKE, WASA, COSY–11, EDDA) and external experiments (TOF, BIG KARL),

but the latter are not of importance for the current discussion.

10



Section 2.1

2.1.1 Polarised ion source

The polarised colliding–beams source at COSY [20, 21, 22] comprises three major

groups of components, the pulsed atomic beam source, the cesium beam source,

and the charge–exchange and extraction region. The set–up is shown schematically

in Fig. 2.2. The atomic beam source produces an intense pulsed polarised atomic

Figure 2.2: Set–up of the polarised ion source at COSY.

hydrogen or deuterium beam. The gas molecules are dissociated in an inductively

coupled rf discharge and a high degree of dissociation is maintained by having a

special admixture of small amounts of nitrogen and oxygen that reduce surface and

volume recombination. The current output of the source depends sensitively on the

relative fluxes of the gases and on their timing with respect to the dissociator radio

frequency. The atoms are cooled to about 30 K by passing through an aluminum

nozzle of 20 mm length and 3 mm diameter and the resulting beam is focused

by an optimised set of permanent hexapoles into the charge–exchange region. By

cooling the supersonic atomic beam, the acceptance of the hexapole system and the

dwell time in the charge–exchange region are increased, though scattering in the

vicinity of the nozzle reduces partially these beneficial effects. A peak intensity of

7.5 × 1016 atoms/s has been measured within a diameter of 10 mm at the exit of

the hexapole chamber. The atomic ~H◦ beam with high nuclear polarisation collides

with the fast neutral Cs beam inside the charge–exchange region and an electron is

transferred through the ~H◦ + Cs◦ → ~H− + Cs+ reaction. The ~H− ions are extracted

from this region by electric fields before being deflected magnetically through 90◦.

11
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Subsequently they pass a Wien filter that provides the proper spin alignment for

injection into the cyclotron JULIC, which is the preaccelerator for COSY.

The fast neutral cesium beam is produced in a two–step process. Cesium vapour

is thermally ionised on a hot porous tungsten surface at a beam potential around

45 kV and the beam is then focused by a quadrupole triplet to the charge–exchange

region. The space–charge compensation of the intense beam is improved by feeding

10−3 mbarℓs−1 argon to the beam tube following the extraction. Cesium sputtering

and contamination generally impedes long–term reliability so that pulsed operation

of the cesium ioniser has been included in the source [23]. The cesium pulses reach

peak intensities of over 10 mA with a width of about 10 ms. For routine operation,

cesium pulses with a 5 mA flat shape of 20 ms width and a repetition rate of

0.5 Hz are used [22], matched to the COSY injection scheme. A neutraliser is placed

between the quadrupoles and the cesium deflector. This consists of a cesium oven, a

cell filled with cesium vapour, and a magnetically driven flapper valve between the

oven and the cell. The remaining Cs+ beam is deflected in front of the solenoid to

the cesium cup. Routinely, a neutraliser efficiency of over 90% is achieved.

The highly selective charge–exchange ionization produces only little unpolarised

background that would reduce the nuclear beam polarisation. In the charge–exchange

region, various beam properties can be adjusted. Transverse emittance can be traded

for polarisation by varying the solenoid’s magnetic field. The field strength during

normal operation is 1.8 kG. The magnitude of the electrical drift field inside the

solenoid can be tuned to optimise the energy spread of the beam. The electric field

gradient amounts to 0.5–1.0 V/m. A monotonic gradient, in combination with a

double buncher system in the injection beam line to the cyclotron, leads to an im-

proved bunching factor of about four, compared to a factor of two for unpolarised

beams.

Without modification of the system, the colliding–beams ion source can pro-

vide negatively–charged polarised hydrogen and deuterium beams of comparable

intensities. To prepare polarised deuterons with the desired combinations of vector

and tensor polarisation, the atomic beam part of the source is equipped with new

radiofrequency transitions (RFTs). These transition units are operated at the mag-

netic fields and radiofrequencies that allow exchange of occupation numbers of the

different hyperfine states in deuterium [24]. A set of three installed devices, RFT1

to RFT3, allows a large number of combinations to be delivered to experiments, as

described in the following section.

12
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2.1.2 Acceleration of polarised beams at COSY

The polarised H− or D− ion beam delivered by the source, is pre-accelerated in

the cyclotron JULIC and injected by charge exchange into the COSY ring. The

acceleration of vertically polarised protons and deuterons at COSY is discussed in

detail, for example, in [25].

For an ideal planar closed–loop accelerator with a vertical guide field, the particle

spin vector precesses around the vertical axis. In this way the vertical beam polari-

sation is preserved. The spin motion in an external electromagnetic field is governed

by the Thomas–BMT equation, leading to a spin tune νsp = γG, which describes

the number of spin precessions of the central beam per revolution in the ring. G is

the anomalous magnetic moment of the particle (G = 1.7928 for protons, -0.1423

for deuterons), and γ = E/m is the Lorentz factor. During the acceleration of a

vertically polarised beam, depolarising resonances are crossed if the precession fre-

quency of the spin γG is equal to the frequency of the encountered spin–perturbing

magnetic fields. In a strong–focusing synchrotron like COSY, two different types of

strong depolarising resonances are excited, namely imperfection resonances caused

by magnetic field errors and misalignments of the magnets, and intrinsic resonances

excited by horizontal fields due to the vertical focusing. For deuterons the spin

tune is about 25 times lower than for protons at the same energy. Depolarising

resonances for deuterons are therefore 25 times further apart compared to those for

protons. Depolarising resonances for deuterons are also about 13 times weaker than

for protons at low energies and 25 times weaker for high energies.

In the momentum range of COSY, five imperfection resonances have to be crossed

for protons. The existing correction dipoles of COSY are utilised to overcome all

imperfection resonances by exciting adiabatic spin flips without polarisation losses.

The number of intrinsic resonances depends on the superperiodicity of the lattice.

The magnetic structure of COSY allows one to choose a superperiodicity of P = 2

or 6. A tune-jump system consisting of two fast quadrupoles has been developed

especially to handle intrinsic resonances at COSY. The depolarisation resonances

for the deuterons are out of the COSY momentum range. Hence there shouldn’t

be any depolarisation of deuterons during acceleration up to highest COSY energy,

which is confirmed also by experimental measurements.

The imperfection resonances for protons in the momentum range of COSY are

listed in Table 2.1. They are crossed during acceleration, if the number of spin

13
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precessions per revolution of the particles in the ring is an integer (γG = k, k is

integer). The resonance strength depends on the vertical closed orbit deviation.

γG Tp p yrms
co ǫr Pf/Pi

GeV GeV/c mm 10−3

2 0.1084 0.4638 2.3 0.95 -1.00
3 0.6318 1.2587 1.8 0.61 -0.88
4 1.1551 1.8712 1.6 0.96 -1.00
5 1.6785 2.4426 1.6 0.90 -1.00
6 2.2018 2.9964 1.4 0.46 -0.58

Table 2.1: Resonance strength ǫr and the ratio of preserved polarisation Pf/Pi at im-
perfection resonances for a typical vertical orbit deviation yrms

co , without considering syn-
chrotron oscillation.

A spin flip occurs at all resonances if synchrotron oscillations are not considered.

However, the influence of synchrotron oscillation during resonance crossing cannot

be neglected. After the first imperfection resonance, the calculated polarisation with

a momentum spread of ∆p/p = 1 × 10−3 and a synchrotron frequency of fsyn = Hz

is about Pf/Pi ≈ −0.85. The resonance strength of the first imperfection resonance

has to be enhanced to ǫr = 1.6 × 10−3 to excite spin flips with polarisation losses

of less than 1%. At the other imperfection resonances the effect of synchrotron

oscillation is smaller, due to the lower momentum spread at higher energies. Vertical

correction dipoles or a partial Siberian snake could be used to preserve polarisation

at imperfection resonances by exciting adiabatic spin flips. Simulations indicate

that an excitation of the vertical orbit with existing correction dipoles by 1 mrad is

sufficient to adiabatically flip the spin at all imperfection resonances. In addition,

the solenoids of the electron-cooler system inside COSY are available for use as a

partial snake. They are able to rotate the spin around the longitudinal axis by about

8◦ at the maximum momentum of COSY. A rotation angle of less than 1◦ of the spin

around the longitudinal axis already leads to a spin flip without polarisation losses at

all five imperfection resonances. The number of intrinsic resonances depends on the

superperiodicity P of the lattice, which is given by the number of identical periods

in the accelerator. The COSY ring consists of two 180◦ arc sections connected by

straight sections. The straight sections can be tuned as telescopes with 1:1 imaging,

giving a 2π betatron phase advance. In this case the straight sections are optically

transparent and the arcs contribute to the strength of intrinsic resonances. One then
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obtains for the resonance condition γG = k × P ± (Qy − 2), where k is an integer

and Qy is the vertical betatron tune. The magnetic structure in the arcs allows

adjustment of the superperiodicity to P = 2 or 6. The corresponding intrinsic

resonances in the momentum range of COSY are listed in Table 2.2.

P γG Ekin p ǫr
MeV MeV/c 10−3

2 6 −Qy 312.4 826.9 0.26
2 0 +Qy 950.7 1639.3 0.21

2,6 8 −Qy 1358.8 2096.5 1.57
2 2 +Qy 1997.1 2781.2 0.53
2 10 −Qy 2405.2 3208.9 0.25

Table 2.2: Resonance strength ǫr of intrinsic resonances for a normalized emittance of
1π mm mrad and vertical betatron tune of Qy = 3.61 for different superperiodicities P .

2.1.3 Polarised deuteron beam

The first injection and acceleration of vertically polarised deuterons for this exper-

iment was performed in February 2003. No first-order depolarising resonance is

crossed in the momentum range of COSY at an standard transversal betatron tune.

The actual experiment used the polarised deuteron beam provided by the COSY

ion source. After selection of electronic states mj = +1
2
, the deuteron nuclei are

still not polarised since the beam contains equal population of the three deuterium

magnetic substates. Usually radio-frequency transitions (RFT) are applied to in-

duce exchange between magnetic sub–levels |mj , md〉 in order to produce nuclear

polarisation. In the November 2003 run, the following set of transitions was used

for the preparation of the polarised COSY deuteron beam:

RFT1 high-field single transition 361 MHz:

| − 1/2,−1〉 ⇐⇒ | − 1/2, 0〉

RFT2 middle-field single transition 328 MHz:

|1/2, 0〉 ⇐⇒ |1/2, 1〉
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RFT3 weak-field triple transition 5.8 MHz:

|3/2, 1〉 ⇐⇒ | − 3/2,−1〉
|1/2, 0〉 ⇐⇒ | − 1/2,−1〉
| − 1/2, 0〉 ⇐⇒ |1/2, 1〉

The final scheme consists of eight different polarisation states, including one

unpolarised mixture and seven combinations of vector and tensor polarisations, as

shown in Table 2.3.

Mode Patt. P Ideal
z P Ideal

zz IIdeal
0 6pole1 RFT1 6pole2 RFT2 RFT3 ml

0 000 0 0 1 123 123 123 123 123 +1,0,–1

1 001 – 2

3
0 1 123 123 123 123 432 –1,–1,0

2 010 + 1

3
+1 1 123 123 123 163 163 +1,+1,–1

3 011 – 1

3
–1 1 123 123 123 163 452 –1,0,0

4 100 + 1

2
– 1

2

2

3
123 125 12 12 12 +1,0

5 101 –1 +1 2

3
123 125 12 12 43 –1,–1

6 110 +1 +1 2

3
123 125 12 16 16 +1,+1

7 111 – 1

2
– 1

2

2

3
123 125 12 16 45 –1,0

Table 2.3: The table lists the eight configurations of the polarised deuteron ion source,
showing the ideal values of the vector and tensor polarisations and the relative beam
intensities obtained by operating the three radiofrequency transitions (RFTs).

For each injection into COSY, the polarised ion source was switched to a different

polarisation state. The duration of a COSY cycle was sufficiently long (200 sec) to

ensure stable conditions for the injection of the next state. After the seventh state,

the source was reset to the zeroth mode and the pattern repeated for the next

injection. The ANKE data acquisition system received status bits from the source,

latched during injection, that ensured the correct identification of the polarisation

states during the experiment. Because of their small magnetic moment, deuterons

encounter no depolarising resonances in the energy range of COSY and are therefore

unlikely to be depolarised. This was recently tested for a vector polarised beam,

at least qualitatively, during the SPIN@COSY experiment [15]. It should be noted,

that the present ANKE experiment is the first one that provides at the same time

a measurement of both vector and tensor polarisations of the deuteron beam stored

in COSY.
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2.2 ANKE spectrometer and detection system

The experiment was performed at the ANKE spectrometer [26] (“Apparatus for

studies of Nucleon and Kaon Ejectiles”) installed at the internal beam of COSY. In

Fig. 2.3 the ANKE spectrometer is shown. The main components of the spectrom-

1m

NEGATIVE EJECTILES

POSITIVE EJECTILES

D1 D3

FDS Hodoscope

TOF-stop

TOF-start

TOF-stop
Curved

Cherenkovs

SW
Hodoscope

TOF-start

NDS MWPC

PDS MWPC

FDS MWPC
Target

D2

PDS Telescopes

Figure 2.3: Schematic drawing of ANKE Spectrometer

eter are: a magnetic system, an internal target and four detection systems: positive

and negative side detectors, forward and backward detectors. The ANKE magnetic

system consists of a dipole magnet D1 which deflects the circulating COSY beam

by an angle α, a large spectrometer dipole magnet D2 (beam deflection −2α), and

a third dipole magnet D3, identical to D1, to deflect the beam by α back to the

nominal orbit. The deflection angle of the beam can be adjusted to optimise the

magnetic field up to 1.56 T independent of the COSY beam momentum.

There are three types of targets available at ANKE: (i) a strip target (carbon,

polyethylene or any other solid material); (ii) a cluster beam target [27], producing

a beam of hydrogen or deuterium clusters that cross the COSY beam; and (iii) a

polarised storage-cell gas target [28], fed by an atomic beam source (ABS) for polar-

isation measurements. The momentum acceptance of the positive and negative side

detectors is in the range of about 0.3 to 0.8 GeV/c. The forward detector, allowing

one to detect positively charged particles in momentum range 0.3–3.7 GeV/c, is
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used in a number of experiments at ANKE, e.g. the a0 production study [29], the ω,

η production on effective neutron target [30, 31], the deuteron breakup study [32],

charge exchange breakup [33], etc.

2.2.1 Forward Detector system

In Fig. 2.4 those parts of the spectrometer are shown that are relevant for the present

experiment. The forward detector (FD) is located between the spectrometer dipole

Figure 2.4: Schematic drawing of the part of ANKE used in the ~dp → (pp)+n experiment

D2 and the dipole D3, though the available space is rather limited there. The gap

between the dipoles is 1.6 m in length and the distance between the accelerator beam

tube and the ANKE side detector is about 0.7 m. Such a location results in severe

requirements on the tracking system. Due to closeness to the beam pipe, it must

be able to operate at rather high counting rates (> 105s−1). In addition, because of

the short distance between the MWPCs, one has to achieve high spatial resolution

(better than 1 mm). Such spatial resolution leads to a momentum resolution of

about 1%, which allows one to distinguish proton pairs with small excitation energy

Epp < 3 MeV. Particles emitted at small angles and high momenta pass the detector

region close to the beam pipe, which means that the width of the chamber frame

must be minimised on the side of the beam pipe.

The FD system comprises three MWPCs in total. Each of them is composed

of one X and one Y module. Every module contains a wire and a strip plane. In

what follows, the planes located in an X(Y ) module will be referred to as the X(Y ).
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Wires are oriented vertically in the X wire planes, and horizontally in the Y planes.

The strips are inclined by 18◦ with respect to the vertical axis in the X planes, and

at −18◦ in the Y planes. The MWPCs are mounted on a common support frame

with the forward hodoscope.

The chambers produce signals 6 ns long (FWHM) for the wire planes and 30 ns

long for the strip ones. The time jitter of the signals is small, being around 8 ns for

the wire pulses. This allows effective operation with short strobe signals. At the set-

up, the time resolution of the tracking system is limited by the read-out electronics

[34], which need strobes more than 50 ns wide (while the chambers themselves

could work with much shorter strobe pulses). The average number of wires fired by

a crossing particle (cluster width) is close to unity, which leads to a high precision

of coordinate measurements.

The hodoscope consists of two layers, containing 8 and 9 vertically oriented scin-

tillators (4 to 8 cm width, 1.5 to 2 cm thickness). The timing and amplitude signals

are read out via photomultipliers placed on both ends of each scintillator. They pro-

vide a trigger signal, an energy loss measurement, and allows for the determination

of the differences in arrival times for particle pairs hitting different counters. Off-

line processing of the amplitude data permitted the measurement of the energy-loss

with 10% accuracy, and of the time-of-flight difference of events with two registered

particles with a precision of 0.5 ns (rms). The third layer was implemented mainly

to identify 3He.

The angular acceptance of the FD is about 12◦ in the horizontal plane and about

3.5◦ in the vertical plane.

2.2.2 Silicon Tracking Telescope

For the identification and tracking of slow recoil protons, a Silicon Tracking Tele-

scope (STT) has been developed [35] that can be operated inside the ultra high vac-

uum of the accelerator. The basic detection concept of the STT combines proton

identification with tracking over a wide range in energy. The tracking is accom-

plished by three layers of double–sided micro–structured silicon strip detectors that

can be placed close to the target inside the vacuum chamber (see Fig. 2.4). The

set–up of the STT and a photo is shown in Fig. 2.5.

Measuring the energy loss in the individual layers allows identification of stopped
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Figure 2.5: Left: Top view of the Silicon Tracking Telescope (STT), consisting of three
layers of different thickness. The approximate extension of the cluster target beam in the
x–z plane is indicated, along with the approximate polar angles covered. Right: Photo
of one of the STT module including cooling and readout electronics

particles by the ∆E/E method. A proton is registered when it passes through the

first layer and is stopped in the second layer, so that the minimum energy of a

proton that can be tracked is determined by the thickness of the innermost layer.

The maximum energy of tracked protons is given by the range within the telescope

and therefore by the total thickness of all detection layers. Therefore, the primary

design goal in the development of the STT was to combine the thinnest possible

innermost with the thickest available outermost layer of the silicon detector.

A first generation STT [36] was already equipped with three detection layers: a

non–structured 60 µm thick layer, a single–sided structured 300µm, and a 5100 µm

thick detector. Although serving mainly as a prototype system with limited size

and poor tracking capabilities, it allowed us to study the reactions quasi-free pn→
dπ◦ [36] and, pn→ dω [37]. In addition it was also used as a polarimeter [38].

The new STT employs the well–established thicknesses of the first generation

system, but overcomes the limited tracking capabilities by using double–sided micro–

structured detectors. The angular coverage in the forward hemisphere was small,

because the position of the STT with respect to the target was optimised to detect

slow recoil protons in the backward hemisphere. Nevertheless, protons emitted at

angles from about 75◦ to 80◦ were unambiguously identified in the STT in coinci-

dence with elastically scattered deuterons in the FD.

The new STT facilitates ∆E/E proton identification from 2.5 up to 40 MeV with

an energy resolution of 150–250 keV (FWHM). Particle tracking is possible over a

wide range of energies with an angular resolution varying from 1◦ to 6◦ (FWHM).

20



Section 2.3

The resolution is limited by angular straggling within the detectors and therefore

depends on particle type, energy, and track inclination. The geometrical limit is de-

fined by the strip pitch (ranging from 400 to 666µm) and the distances between the

detectors. The STT has self–triggering capabilities. It identifies a particle passage

within 100 ns and provides the possibility for fast timing coincidences with other

detector components of the ANKE spectrometer, whereby accidental coincidences

can be suppressed significantly. The high rate capabilities of the STT will be espe-

cially important for the upcoming polarisation experiments [15], because then two

or more STTs have to be placed in the forward hemisphere. The recent development

of very thick (> 10 mm) double–sided micro–structured Si(Li) detectors will allow

us to extend further the accessible energy range of the STT [39].

2.3 Data-taking conditions

During this first measurement we aimed to take data with a vertically polarised

deuteron beam and an unpolarised target. The polarised deuterons stored in the

COSY ring (≈ 3×109 deuterons) impinge on a hydrogen cluster–jet target (thickness

≈ 2 − 3 × 1014 atoms/cm2), resulting in a luminosity of up to 1030 cm−2s−1. Data

were collected for a total of about 60 hours of measurement.

The main trigger (Tr2) for the experiment was a single-particle trigger, generated

by a particle hitting a counter in the first FD hodoscope plane and one of the two

counters behind in the second plane. This trigger, selecting mainly single protons,

was used with a prescaling factor 10. In parallel, the trigger from the silicon detector

alone has been used (Tr3) in order to have the possibility of identifying quasi–elastic

pp scattering for the deuteron vector polarisation measurements. A special trigger

(Tr1), based on energy loss in the forward hodoscope [40], was used to identify
3He particles to select events from the polarimetry reaction ~dp → 3He π0. A scaler

trigger (Tr4) was used to read out the scalers periodically ten times per second.

For each trigger signal (except Tr4), all subsystems of ANKE were read out. This

includes the full forward system and the silicon telescope.

In order to establish the relative integrated luminosity of each of the polarisa-

tion states involved, we normalised the data using the beam current information.

The signal from the beam current transformer (BCT) was fed into a voltage–to–
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Figure 2.6: The beam intensity through the experiment (left panel) and corresponding
deadtime behaviour (right panel).

frequency converter within the EDDA electronics and transformed into an optical

signal to avoid deterioration. This information was transported to ANKE where,

after conversion back to a NIM–signal, it was fed into the ANKE scaler system. In

this way the BCT signal was available in the normal ANKE data stream for each of

the polarisation states. The BCT signal is known to about 1%.

At the beginning of the experiment for the first few runs the beam intensity was

roughly 3 × 109 particles/sec. Then it reduced down to 1.5 × 109 particles/sec

and was stable until the end of the beam time (Fig. 2.6). The change of beam

intensity affected also the efficiency of the DAQ system. With higher beam intensity

the count rates were so high that the DAQ could accept only 80% of the triggers.

Then it increased to about 88% and remained roughly constant for the rest of the

experiment.
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Beam polarimetry

In order to measure the analysing powers of the CE–reaction we need to know the po-

larisation of the deuteron beam at our energy. Due to their much smaller anomalous

magnetic moment, deuterons, unlike protons, do not have to cross any first–order

depolarising resonances while being accelerated in COSY, where the typical working

point tunes are 3.52 through 3.64 [25, 41]. It is therefore expected that there should

be little or no loss of polarisation during acceleration and this has indeed been the

experience over many years at the SATURNE synchrotron, which worked over a

similar energy range [42]. Nevertheless, it is important to check that this is true at

COSY.

The values of the deuteron beam polarisations provided by EDDA and LEP

(see next section) can be checked by measuring a variety of nuclear reactions at

Td = 1170 MeV (pd = 2400 MeV/c) using the ANKE spectrometer. This is the

primary aim of this chapter.

3.1 Basic concept

The most general form for the cross section induced by spin–1 particles in the coor-

dinate system of Fig. 3.1, may be written:

(

dσ

dΩ

)

pol

=

(

dσ

dΩ

)

0

(

1 + 3/2

3
∑

i=1

piAi + 1/3

3
∑

i,j=1

pijAij

)

(3.1)
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The small p represent the polarisation of the incident beam and A represent the

analysing power of the reaction. In general, an incident beam may have all vector

polarisation components: px, py and pz. Because of parity conservation, the reaction

is sensitive only to the components which are normal to the scattering plane. Simi-

larly, although an incident beam may contain all six tensor polarisation components:

pzy, pyz, pxz, pxx, pyy and pzz, the reaction is sensitive, again because of parity, only

to those indicated below:

(

dσ

dΩ

)

pol

=

(

dσ

dΩ

)

0

(1 +
3

2
pyAy +

2

3
pxzAxz +

1

6
pxx−yyAxx−yy +

1

2
pzzAzz) (3.2)

Ŝ

β

φ

kin

y

z

x

Figure 3.1: Madison convention for the definition of the laboratory-coordinate system,
The scattering is in the x, z plane. The z axis is along the incident beam momentum.

The quantities defined are normalised so that the vector quantities (px, py, pz and

Ay) may vary between +1 and −1. The tensor quantities (pxy, pyz, pxz and Axz) may

vary between +3
2

and −3
2
, and tensor quantities (pxx, pyy, pzz, Axx, Ayy and Azz) may

vary between +1 and −2.

For a polarised beam produced by an ion source, in the coordinate system of

Fig. 3.1, the polarisation components are:
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py = Pz sin β cosφ (3.3)

pxz = −3/2 Pzz sin β cosβ sinφ (3.4)

pxx−yy = −3/2 Pzz sin2 β cos 2φ (3.5)

pzz = 1/2 Pzz(3 cos2 β − 1) (3.6)

We used a vertical alignment of the polarisation axis respect to the beam direc-

tion. Thus β = 0 and the differential cross section for the polarised deuteron beam

can be expressed in the following form [43]:

dσ↑

dΩ
(ϑ, ϕ) =

dσ◦
dΩ

(ϑ){1 +
3

2
PzAy(ϑ) cosϕ

+
1

4
Pzz[Ayy(ϑ)(1 + cos 2ϕ) + Axx(ϑ)(1 − cos 2ϕ)]} (3.7)

Based on this equation, the only task is to extract the counts for the processes

where the analysing powers are known. Besides the type of nuclear reaction, the

analysing powers depend on the beam energy and the angle ϑ between the momen-

tum kin of incident and kout outgoing particles. To determine the beam polarisation

we compare counts from the polarised and unpolarised states.

3.2 Polarisations provided by LEP and EDDA

To assist in the optimisation of the polarisation of the beams inside COSY, a Low

Energy Polarimeter (LEP, located in the injection beam line) consisting of a UHV

chamber with eight flanges covered with thin stainless steel foils has been used [44].

The moveable target frame is equipped with viewers, allowing the adjustment of the

beam position. A carbon target can be used for polarimetry measurements based

on dC elastic scattering. It is possible to place detectors at azimuthal angles φ = 0◦,

90◦, 180◦ and 270◦ in the ranges of polar angles 25◦ to 70◦ and 110◦ to 155◦. NaI

scintillators, directly coupled to photomultipliers, are used for particle identification.

The LEP is used at the COSY injection energy of Td = 75.6 MeV (pd =
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539 MeV/c). Studies of the cross section, analysing power Ay, and the resulting

figure of merit for 65 MeV [45] and 70 MeV [46] (Fig.3.2) deuterons suggest that

the polarimeter should work best if the detectors are placed to accept polar angles

near 40◦. Unfortunately, under such conditions the tensor analysing powers are very

small for this reaction so that the LEP is only sensitive to the vector polarisation

of the beam [47]. Extrapolation of the published data [45, 46] to 75.6 MeV gives a

value of Ay(40◦) = 0.61 ± 0.04.

 [Degree]lab
dθ

30 35 40 45

y
A

−0.2

0.0

0.2

0.4

0.6

Figure 3.2: Analysing power vs deuteron laboratory angle for dC elastic scattering. The
solid line represents the fit of data on 65 MeV and the dashed line for 70 MeV deuteron
beam energy.

With the stable spin axis of the beam oriented along the y–direction, the num-

ber of particles scattered through a polar angle θ and an azimuthal angle φ, after

corrections for beam luminosity, can be written as [43]

N(θ, φ) = N0(θ)
[

1 + 3
2
PzAy(θ) cosφ+ 1

4
Pzz {Ayy(θ)(1 + cos 2φ) + Axx(θ)(1 − cos 2φ)}

]

.

(3.8)

The beam vector and tensor polarisations, Pz and Pzz, are labelled conventionally in

the reference frame of the source, whereas the ~dC → dC vector and tensor analysing

powers, Ay and Ayy, refer to the reaction frame, where y is perpendicular to the

plane of the COSY ring. Confining to the case of right (R) and left (L) counters

placed at φ = 0◦ and 180◦, respectively, this reduces to:

NL(θ) = N0(θ)
[

1 + 3
2
PzAy(θ) + 1

2
PzzAyy(θ)

]

NR(θ) = N0(θ)
[

1 − 3
2
PzAy(θ) + 1

2
PzzAyy(θ)

]

(3.9)
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Mode P Ideal
z

P Ideal
zz

PLEP
z

PLEP
z

/P Ideal
z

PEDDA
z

PEDDA
zz

0 0 0 0.000 ± 0.010 — 0 0

1 – 2

3
0 −0.572± 0.011 0.858± 0.017 −0.499± 0.021 0.057 ± 0.051

2 + 1

3
+1 0.285 ± 0.011 0.855± 0.033 0.290 ± 0.023 0.594 ± 0.050

3 – 1

3
–1 −0.302± 0.011 0.906± 0.033 −0.248± 0.021 −0.634± 0.051

4 + 1

2
– 1

2
0.395 ± 0.014 0.790± 0.028 0.381 ± 0.027 −0.282± 0.064

5 –1 +1 −0.758± 0.015 0.758± 0.015 −0.682± 0.027 0.537 ± 0.064

6 +1 +1 0.731 ± 0.014 0.731± 0.015 0.764 ± 0.027 0.545 ± 0.061

7 – 1

2
– 1

2
−0.417± 0.015 0.834± 0.030 −0.349± 0.027 −0.404± 0.065

Table 3.1: The table lists the eight configurations of the polarised deuteron ion source,
showing the ideal values of the vector and tensor polarisations. The determinations of
PLEP

z were carried out at a momentum of 539MeV/c using the Low Energy Polarimeter
(LEP), The ratio of these to the ideal values are also given. The EDDA values of PEDDA

z

and PEDDA
zz were obtained at 1042 MeV/c, assuming that state–0 was unpolarised. The

systematic uncertainties of the polarisations PEDDA
z and PEDDA

zz , employed in the subse-
quent analysis, amount to ±0.04.

Using the measured values of Ayy [45], together with an expected tensor polarisation

of the deuteron beam of Pzz ≈ 0.6, it is seen that the contamination of the measure-

ment of the vector polarisation is on the percent level so that, to the desired level

of accuracy, we can take

Pz =
2

3

1

Ay

(

NL −NR

NL +NR

)

· (3.10)

The results of the Pz measurements with the LEP for the different states are

shown in Table 3.1. Also given are the ratios of Pz to the ideal polarisation that

could be provided by the source for that state. The variation from 73% to 91%

depends, among other things, on the number of RFTs involved.

After having measured the beam polarisation at the injection line, the accelerated

beam polarisation was measured by EDDA. The EDDA detector has been used to

provide a wealth of high quality polarised proton–proton elastic scattering data

over a wide range of energies (0.5–2.5 GeV) by using a thin internal target and

measuring during the energy ramp of the COSY accelerator [3]. With the same

apparatus, elastic scattering of polarised deuterons from hydrogen was studied at

Td = 270 MeV (pd = 1042 MeV/c) [48], where precise values are known for both
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tensor and vector analysing powers [49]. In this way values of both vector and tensor

polarisations of the circulating deuteron beam could be obtained at this energy.
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Figure 3.3: Comparison of the measurements of the vector polarisation of the deuteron
beam from EDDA and LEP for the seven states of the source, listed in Table 3.1. The
best fit straight line to the data is also shown. The uncertainty in the EDDA calibration
results in a fit that does not cross the zero point exactly.

A fit to the data with the polarisations for all eight states being left as free

parameters yields Pz = −0.002±0.038 for state–0. Any non–zero result might reflect

a residual polarisation of state–0 or could be due to an instrumental asymmetry,

e.g. caused by detector efficiencies. The data cannot distinguish between these two

possibilities. Therefore, the EDDA values for the polarisations of the seven states

shown in Table I, were extracted under the assumption that state–0 is unpolarised.

Although supported by direct measurements with the LEP, the uncertainty of about

±0.04 has to be considered as a systematic uncertainty on all the polarisations

extracted using EDDA.

Since the EDDA and LEP data sets were taken with the same conditions in the

source, in order to determine the systematic uncertainty of the polarisations, we

compare quantitatively the two sets of results for Pz. This is done for the seven

states in Fig. 3.3 using the data of Table 3.1. A linear fit of the two sets of results

with χ2/ndf = 5.1/5 gives PEDDA
z = (1.05± 0.02)P LEP

z + (0.038± 0.008). The value

of the offset constant is consistent with the uncertainty in the EDDA calibration,

as shown by the ±0.04 error bar in the polarisation of state–0. On the other hand,

the 5% deviation of the slope from unity is similar to the precision in the absolute

value of Ay used for the LEP. Thus, in addition to the statistical uncertainties shown
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in Table 3.1, the polarisations PEDDA
z and PEDDA

zz have systematic errors of ±0.04.

The typical fractions of the ideal vector and tensor polarisations used later in the

analysis of the ANKE results were Pz = 74% and Pzz = 59% respectively.

3.3 Measurements with ANKE

After being accelerated in the COSY ring [17], the values of the deuteron beam

polarisations provided by EDDA and LEP can be checked by measuring various nu-

clear reactions at Td = 1170 MeV (pd = 2400 MeV/c) using the ANKE spectrometer.

The reactions that are pertinent to this polarisation study are:

The pion production reaction ~dp→ 3He π0,

Quasi–free ~np→ dπ0 with a fast spectator proton,

Elastic scattering ~dp→ dp at small angles.

The first two reactions can be measured using foremost the information from

the ANKE Forward Detector (FD) system [50, 51]. Though deuteron–proton elastic

scattering can also be identified by using the FD information, coincidence measure-

ments with the slow recoil proton being detected in a Silicon Tracking Telescope

(STT) yield more precise information.

3.3.1 Identification of nuclear reactions

The ANKE experimental acceptance for charged particles as a function of the lab-

oratory production angle and magnetic rigidity is shown on the left panel of the

Fig. 3.4. From the loci of the kinematics of the four reactions that we investigated

in this polarisation study it was seen that all of them had reasonable acceptances

over some angular domain.

The main trigger used in the experiment consisted of a coincidence of different

layers in the hodoscope of the FD. The 3He were identified by means of a special

energy loss trigger in the FD. In parallel, self–triggering of the STT was employed

to identify unambiguously dp elastic scattering.
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Figure 3.4: Left: ANKE experimental acceptance for four nuclear reactions of interest
at a deuteron momentum of pd = 2400MeV/c. Right: Correlation of the measured
time difference ∆tmeas and the calculated ∆ttof(~p1, ~p2)), assuming that the particle tracks
correspond to protons.

Candidate events for different reaction channels can be identified in a plot of

the time-of-flight difference between target and hodoscope (∆tmeas) versus the cal-

culated time of flight difference (∆ttof(~p1, ~p2)), assuming the two particles hitting

different hodoscope counters are protons, as shown on right panel of Fig. 3.4. Real

proton pairs from the charge–exchange breakup dp → (pp)n are located along the

diagonal of the scatter plot, where for illustration, it also shows how events from

other reactions are transformed by this procedure.

3.3.2 ~dp→ 3Heπ0 reaction

It is seen from Fig. 3.4 that there is a large acceptance for the dp→ 3He π0 reaction

when the 3He are emitted very close to the initial beam direction. In this region

there are very detailed measurements of the sole non–vanishing deuteron (tensor)

analysing power Ayy as a function of energy [52]. This reaction doesn’t have a

very high cross section and therefore it is hard to distinguish 3He from the high

rate protons and deuterons. For this purpose we implemented a third layer of

scintillation hodoscopes and special trigger with a high energy threshold. 3He is

much heavier and slower compared to protons and deuterons, and thus we obtain

a very good separation in the energy spectrum. The high–momentum branch of
3He particles could be selected in the off–line analysis by applying two–dimensional

cuts in ∆E versus momentum and ∆t versus momentum for individual layers of the
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Figure 3.5: Left: Energy loss between two layers of hodoscope Right: ∆t between 1st
and 3rd layers versus momentum

forward hodoscope. The π0 was identified through the missing–mass derived from

the 3He measurement, as described in Ref. [53]. The mean value of the missing mass

distribution (Fig. 3.6) was close to the pion mass, with a stable background of less

than 3%. Though the resulting peak has a large width, this is not critical since,

apart from the radiative capture, there should be no physical background in this

region, and no significant amount is seen in the figure.
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Figure 3.6: Missing–mass–squared for the dp → 3HeX reaction showing a Gaussian fit
to a clearly identified π0 peak.

The ANKE spectrometer is able to detect 3He from the dp → 3Heπ0 reaction

in the angular range 0◦ to 25◦ in cm system. It has a large tensor analysing power

and so is sensitive to the tensor polarisation of the beam. Unfortunately there is

no vector analysing power measurement for this reaction at our energy. We have

enough statistics to divide our acceptance into two angular ranges 0◦ < θcm
3He < 12◦
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and 12◦ < θ 3He < 25◦ and compare the normalised counts with the calibrated

polarisation (Fig. 3.7). The red points and lines show the initial data points and the

fits for these two angular ranges. It is seen that for the higher angular range χ2 gets

worse. This can be an indication of a vector polarisation contribution, because we

know that vector analysing power has a sin θ dependence. We introduced arbitrary

vector analysing powers for both angular ranges to get the smallest χ2 (Fig.3.7, green

points and lines). We obtained the Ay(8
◦
cm) = −0.036 and Ay(18◦cm) = −0.070 which

agrees with our prediction about the possible vector polarisation contamination

(Ay ≈ α sin θ).
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Figure 3.7: Normalised dp → 3Heπ0 counts before (red) and after (green) correcting on
vector polarisation factor, for two different angular range. Left panel: θ3He = (0.0◦÷12◦).
Right panel: θ3He = (12◦ ÷ 25◦)

The vector analysing powers at 0◦ are equal to zero. For the vector analysing

power measurement we used the events near 0◦ where the average cos 2ϕ ≈ 1 and

Eq.( 3.7) will have the following form:

dσ↑

dΩ
(ϑ, ϕ) =

dσ◦
dΩ

(ϑ)

[

1 +
1

2
PzzAyy(ϑ)

]

(3.11)

After correcting the counts in a ±2.5σ missing–mass range, using the polari-

sation measurements from EDDA we find an analysing power of Ayy(θ = 0◦) =

0.461 ± 0.030, where the statistical and systematical uncertainties in the EDDA

beam polarisations given in Table 3.1 have not been included. Interpolation of the

SATURNE data to our energy leads to a value of Ayy(θ = 0◦) = 0.458± 0.014 [52].
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3.3.3 Quasi–free np→ dπ0 reaction

In the bulk of reactions involving collisions with a deuteron at intermediate energies,

the process is driven by the interaction with either the proton or neutron in the

nucleus. The other particle is a spectator, a fact that has led to the extensive use

of deuterium as a replacement for a free neutron target. In the case of a deuteron

beam, a spectator proton (psp) would have roughly half the momentum of the beam.

As seen from Fig. 3.4, ANKE has large acceptance for both the fast deuteron and the

spectator proton, from the dp→ pspdπ
0 reaction. In the two-dimensional momentum

spectrum of Fig. 3.8 are shown the bands arising from the high (pd ≈ 1.3 GeV/c)

and low-momentum (pd ≈ 0.8 GeV/c) branches, corresponding to backward and

forward production of the π0 with respect to the beam direction.

Momentum [GeV/c]
0.5 1.0 1.5

M
om

en
tu

m
 [G

eV
/c

]

0.5

1.0

1.5 sp
p0π d→dp  (pp)n→dp 

sp
p0π d→dp 

 [ns]meast∆
−15 −10 −5 0 5 10 15

) 
[n

s]
2p, 1p

 (
to

f
t∆

−15

−10

−5

0

5

10

15  (low branch)
sp

p0π d→dp 

 (high branch)
sp

p0π d→dp 

Figure 3.8: Left panel: Momentum correlation, and Right panel: Correlation of the
measured time difference ∆tmeas and the calculated ∆ttof(~p1, ~p2)), assuming that the first
particle track corresponds to a proton and second to a deuteron.

The first step in extracting quasi–free ~np→ dπ0 events from our data is to choose

two–track events on the basis of the MWPC information. The momentum vectors

were determined with the help of the magnetic field map of the spectrometer, assum-

ing a point–like source placed in the centre of the beam–target interaction region.

The smallness of the FD solid angle acceptance leads to a kinematic correlation for

events with two or three particles in the final state. The ~dp → pspdX candidates

can be clearly identified from the correlation of the measured time difference ∆tmeas

and the calculated time of flight difference ∆ttof (~p1, ~p2) (see Fig. 3.8 right panel).

As we see from the two–dimensional momentum distribution (Fig. 3.8 left panel)

deuterons always have the same or smaller momentum than protons; therefore the
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deuterons will arrive later thanto protons. In the ∆ttof(~p1, ~p2) calculation the slower

particle was assumed to be a deuteron. The reaction shows up as a diagonal line in

a two–dimensional plot for both the high deuteron momentum part (forward pro-

duction in the cm system), and the low momentum region (backward production).

After isolating these events we constructed the missing mass distributions, which

correspond to the unobserved π0 as clearly seen in Fig. 3.9.
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Figure 3.9: Left: Missing–mass–squared for the dp → pspdX reaction for the slow
deuteron. Right: fast deuteron branches of the kinematics. In both cases Gaussian fits
to the data are indicated.

Now it is well known that if one integrates over all Fermi momentum inside the

deuteron the polarisation of a nucleon in the deuteron is reduced from that of the

deuteron itself by a factor P n
z =

(

1 − 3
2
Pd

)

P d
z , where Pd represents the deuteron

D-state probability. However, the D-state effects vanish like p2
sp at small spectator

momenta and a negligible dilution is expected if we cut the data at psp < 60 MeV/c,

and this condition is imposed in our subsequent analysis. The ranges of laboratory

angles covered in the high and low branches are illustrated in Fig. 3.10 [2] and these

show that they are in fact rather complementary regions.

Due to isospin invariance, the neutron analysing power in the ~np→ dπ0 reaction

should be identical to the proton one in ~pp→ dπ+, for which extensive compilations

are available [2]. This is as expected for a quasi–free np → dπ0 reaction and is

sensitive only for vector polarisation. For this particular case the Eq. 3.7 will have

following form:
dσ↑

dΩ
(ϑ, ϕ) =

dσ◦
dΩ

(ϑ)

(

1 +
3

2
PzAy(ϑ) cosϕ

)

(3.12)

Using the known vector polarisation from EDDA and comparing polarised and un-
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Figure 3.10: Analyzing power of the ~np → dπ0 reaction measured at ANKE compared
to the curve of values of Ay in ~pp → dπ+, as extracted from the SAID data base [2] (for
numerical values, see Table 3.3.)

polarised states we were able to extract the analysing power for this process. As

shown in Fig. 3.10, the agreement of our result with the SAID data base is very good

for both large and small pion angles and this confirms the EDDA measurements of

the vector polarisation of the deuteron beam. (Numerical results can be found in

Table 3.3.) Within small error bars, there is no sign of any effect arising from the

tensor polarisation of the deuteron beam.

3.3.4 Deuteron-Proton elastic scattering

It is obvious from Fig. 3.4 that deuteron–proton elastic scattering has a significant

acceptance in ANKE. Due to its very high cross section, the fast deuterons from this

process are clearly seen in the angle–momentum plot of Fig. 3.4 for laboratory polar

angles from 5◦ to 10◦. Since the locus of this reaction is well separated from those

of the others, it is to be expected that the background should be very small. The

proof of this can be found in Fig. 3.11 where, after selecting events from a broad

region around the (p, θxz) locus, the missing mass with respect to the deuteron

shows a proton peak with negligible background. As discussed below, the very

different populations along the locus is merely a reflection of the rapid variation of

the differential cross section with angle.

In contrast to the two reactions measured in ANKE that we have discussed

thus far, ~dp elastic scattering depends strongly upon both the vector and tensor
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Figure 3.11: Left: Momentum distribution for single track events. Right: The miss-
ing mass of the deuteron for events that are close to the expected dp elastic locus in
Fig. 3.4. There is little or no background under the proton peak, which has a width of
σ = 27 MeV/c2.

polarisations of the deuteron beam. Fortunately the analysing powers Ay, Ayy, and

Axx of this reaction have been measured at Argonne [54] for Td = 1194 MeV and

SATURNE [42] for Td = 1198 MeV. The EDDA polarimeter [3] is based upon the

same reaction, but the ANKE acceptance in the azimuthal angle φ is insufficient to

allow us to extract the analysing powers for each state. Hence, only global values

can be given on the basis of the EDDA measurement.

Our φ coverage is sufficient to extract values for Ay, as shown in Fig. 3.12 (left

panel). Comparing with the Argonne and SATURNE results, the agreement is very

good, with all points coinciding within the published statistical errors. The situation

is not quite as clean in the case of the tensor analysing power since, by retaining

events in the acceptance range 167◦ < φ < 193◦, there is some small contamination

of the Axx signal contained within our Ayy measurements. We therefore introduced a

correction of about 4% to account for this effect using information derived from the

ratio Axx/Ayy determined at Argonne [54], where it should be noted that this ratio

does not depend on the beam polarisation used in their analysis. The agreement

presented in Fig. 3.12 (right panel) is very satisfactory; Numerical values of Ay and

Ayy are given in Table 3.3.

Though the events identified from the FD information shown in Fig. 3.11 are

very clean, some of the systematics of the experiment can be checked from the data

where the slow recoil proton from the ~dp→ dp elastic scattering was detected in the

silicon telescope in coincidence with the deuteron in the FD. Although this restricts
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Figure 3.12: Vector (left panel) and tensor analysing powers (right) for elastic deuteron–
proton scattering at small forward angles. Our data at 1170MeV (solid squares) were
obtained using information solely from the forward detector system whereas two points
(solid triangles) resulted from coincidence measurements with the silicon telescope (for
numerical values, see Table 3.3). These data are compared to the results from Argonne at
1194MeV [54] (open circles) and SATURNE at 1198MeV [42] (open triangles). It should
be noted that the tensor beam polarisation at SATURNE was the subject of a series of
very careful calibrations.

both the acceptance and the statistics, the determination of the angles and the total

lack of any background present in principle many advantages. However, as shown

in the figure, the results hardly change when this coincidence is introduced.

3.4 Precision of the ANKE results

The numerical results from the measurements described in this section are given in

Table 3.3. We here discuss separately the precisions with which each of the reactions

determines one of the beam polarisations with the aim of extracting the best values

and errors for Pz and Pzz at 1170 MeV. This will also allow us to put limits on the

amount of depolarisation by the beam through acceleration to this energy.

Though the ~dp → 3He π0 reaction in the forward direction has a significant

tensor analysing power signal, the statistical error achieved so far at ANKE does

not allow us to make a strong statement on the basis of these results. Comparing

with the precise results from SATURNE [52], we find that
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Ayy(ANKE) = (1.01 ± 0.07)Ayy(SATURNE) . (3.13)

The ~np → dπ0 reaction is only sensitive to the vector polarisation of the beam.

We find that the analysing power at different angles is proportional to the SAID

prediction for ~pp→ dπ+ [2] with

Ay(ANKE) = (1.03 ± 0.02)Ay(SAID) , (3.14)

where χ2/ndf = 10.5/16. Although the SAID database does not allow one to extract

errors, the numerous experiments in this range suggest an overall precision of about

3% [55]. Allowing also for a possible small violation of charge independence that

links the ~np → dπ0 and ~pp → dπ+ analysing powers, a very conservative estimate

on the error in Pz from this reaction is about 5%.

Elastic deuteron–proton scattering is sensitive to the vector and tensor polarisa-

tions of the beam. Comparing our measurements of Ay for ~dp → dp with those of

Argonne [54] shown in Fig. 3.12 (left), the average over the points near the maximum

yields

Ay(ANKE) = (1.00 ± 0.03)Ay(Argonne) . (3.15)

Unlike the case for the vector analysing power of ~dp → dp, there are clear

discrepancies between the measurements of Argonne [54] and SATURNE [42] for

the tensor analysing power Ayy shown in Fig. 3.12 (right), with the latter being

6% ± 3% lower. This was remarked upon in the SATURNE paper and great care

was then taken to establish very accurate values of the beam polarisations. Using

the SATURNE and renormalized Argonne values, we find for this reaction that

Ayy(ANKE) = (0.99 ± 0.06)Ayy(SATURNE) . (3.16)

However, for neither of the two analysing powers have we tried to include corrections

for the small differences in beam energy between the different experiments.

Putting all these results together, we see that

Ay(ANKE) = (1.01 ± 0.03)Ay(Expected) ,

Ayy(ANKE) = (0.99 ± 0.03)Ayy(Expected) . (3.17)
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The error bars on the “Expected” results are obtained from theory and a variety

of experiments around 1170 MeV. However, they do not explicitly include the un-

certainties of 2.1% and 2.6% in the SATURNE values of Pz and Pzz. If one takes

these into account then the uncertainties in the vector and tensor polarisations of

the deuteron beam in ANKE are both on the 4% level.

The central values shown in Eq. (3.17) reflect the possible loss of polarisation

during the acceleration of the deuterons from the EDDA energy to that of ANKE.

Though these indicate very little depolarisation, one cannot draw very tight limits on

this effect because of the uncertainties introduced by the calibration of the EDDA

polarimeter. Taking just the systematic errors of 4% here, we suggest that any

polarisation loss is below 6% for both the vector and tensor parameters.
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Td (GeV) T20(0
◦) T20(180

◦)

0.40 −1.336 ± 0.016 −1.336 ± 0.016

0.41 −1.435 ± 0.010 −1.035 ± 0.015

0.45 −1.377 ± 0.008 −0.216 ± 0.031

0.50 −1.416 ± 0.015 −0.738 ± 0.049

0.60 −1.257 ± 0.015 −1.333 ± 0.035

0.65 −1.166 ± 0.014 −1.440 ± 0.026

0.70 −1.085 ± 0.010 −1.335 ± 0.051

0.80 −0.889 ± 0.010 −0.451 ± 0.034

0.90 −0.779 ± 0.023 0.251 ± 0.051

1.00 −0.650 ± 0.007 0.292 ± 0.023

1.10 −0.636 ± 0.019 0.236 ± 0.048

1.20 −0.670 ± 0.016 0.071 ± 0.044

1.30 −0.676 ± 0.027 −0.156 ± 0.066

1.40 −0.729 ± 0.023 −0.240 ± 0.081

1.50 −0.784 ± 0.029 −0.342 ± 0.064

1.60 −0.771 ± 0.028 −0.384 ± 0.086

1.70 −0.756 ± 0.016 −0.300 ± 0.066

1.75 −0.390 ± 0.077

1.80 −0.803 ± 0.026 −0.457 ± 0.151

1.85 −0.485 ± 0.114

1.90 −0.905 ± 0.033 −0.916 ± 0.080

1.95 −0.770 ± 0.093

2.00 −0.953 ± 0.029 −0.445 ± 0.075

2.10 −0.938 ± 0.036 −0.484 ± 0.118

2.20 −1.103 ± 0.051 −0.638 ± 0.114

Table 3.2: Analysing powers T20 and T22 of the ~dp →3Heπ0 reaction as a function of
beam energy, for forward and backward scattered 3He measured at SATURNE [52].
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~dp → dp θd
cm Ay Ayy

FD 16.8◦ 0.362 ± 0.008 0.212 ± 0.025

19.6◦ 0.394 ± 0.012 0.289 ± 0.039

22.6◦ 0.410 ± 0.011 0.337 ± 0.034

25.5◦ 0.408 ± 0.011 0.419 ± 0.035

28.5◦ 0.407 ± 0.020 0.517 ± 0.064

31.9◦ 0.382 ± 0.014 0.654 ± 0.045

FD+STT 16.2◦ 0.354 ± 0.014 0.209 ± 0.044

19.1◦ 0.395 ± 0.017 0.248 ± 0.054

~np → dπ0 θd
cm Ay Ay(SAID)

8.7◦ 0.164 ± 0.023 0.142

11.3◦ 0.191 ± 0.015 0.181

13.5◦ 0.218 ± 0.018 0.214

15.7◦ 0.247 ± 0.019 0.244

19.4◦ 0.303 ± 0.017 0.292

21.6◦ 0.340 ± 0.015 0.318

23.4◦ 0.346 ± 0.016 0.337

26.1◦ 0.391 ± 0.016 0.364

143.8◦ 0.295 ± 0.037 0.311

147.8◦ 0.296 ± 0.026 0.289

151.6◦ 0.265 ± 0.024 0.265

155.6◦ 0.203 ± 0.024 0.236

159.6◦ 0.180 ± 0.023 0.203

163.4◦ 0.174 ± 0.027 0.170

167.4◦ 0.109 ± 0.028 0.132

171.3◦ 0.137 ± 0.031 0.092

175.3◦ 0.031 ± 0.041 0.050

~dp →3Heπ0 θ
3He
cm Ayy

ANKE 0◦ 0.461 ± 0.030

SATURNE 0◦ 0.458 ± 0.014

Table 3.3: Analysing powers Ay and Ayy of the ~dp → dp reaction as a function of θd
cm

(top, using only the FD, or a coincidence of FD and STT), analysing power Ay of the
~np → dπ0 reaction as function of θd

cm (middle), and the values of the analysing power Ayy

of the ~dp →3Heπ0 reaction at θ
3He
cm = 0◦ from ANKE and SATURNE [52] (bottom). Also

shown are the SAID predictions for Ay(~pp → dπ+) obtained using the SP96 solution [2].
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Luminosity determination

In order to extract the cross section for the dp→ (pp)n reaction, the absolute value

of the luminosity must be determined. Luminosity L relates the cross section σ of

a given physical process to its corresponding event rate, R:

R = L× σ (4.1)

Therefore, by definition, L is a process-independent quantity which is completely

determined by the properties of the beam and target. There are different types of

luminosity measurement. The method which we used in our data analysis relies on

accurately measuring the rate of a well-known and sizeable cross section, whereupon

L is determined from the expression (4.1)

The measurement of the luminosity has been done using the quasi–free dp →
dπ0psp reaction. The detection of a spectator proton in coincidence with the deuteron,

produced via np→ dπ0, closely matches the acceptance for the two charge-exchange

protons. Some check on luminosity could be provided through the study of elastic

deuteron-proton scattering, though there are larger uncertainties in the relevant

World database.

4.1 Luminosity determination by quasi-free np→ dπ0

As described in section 3.3.3, ANKE has a large acceptance for both the fast deuteron

and the spectator proton, psp, from the dp→ pspdπ
0 reaction. Both of these particles

have momenta that are very similar to those of the two protons in the dp → (pp)n
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reaction. Any error in the estimation of the two-particle acceptance will therefore

tend to cancel between the two reactions. Interpreting the data in terms of quasi–

free pion production, np→ dπ0, the counting rates for the dp→ pspdπ
0 reaction will

allow a useful evaluation of the luminosity to be made. In order to ensure that the

kinematics are similar to the two protons from the charge exchange at low Epp, in

addition to the extraction procedure described in 3.3.3 a cut is made on the difference

between the momenta of the assumed proton and deuteron of ∆p < 175 MeV/c. An

analogous cut was placed upon the simulation of the acceptance.
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Figure 4.1: Missing–mass–squared distribution for the dp → pspdX reaction for the fast
deuteron branch of the kinematics. A fit to the data with a Gaussian and a constant
background is indicated. Some of the event excess for M2

miss ≈ 0 might be associated with
the quasi–free np → dγ reaction.

The dp → pspdπ
0 identification is completed by studying the missing mass of

the reaction with respect to the final dp pair, as shown in Fig. 4.1. The ∆p cut

means that only events corresponding to the forward deuteron branch are presented

here. As is seen from Fig. 3.4, these ones have similar acceptance to those of the

dp → (pp)n reaction. The data show a very prominent π0 peak though there is

evidence for background on the low M2
miss side, some of which might arise from the

quasi–free np→ dγ reaction.

It is not possible to detect all events from the np → dπ0 process due to ANKE

geometrical restrictions. Thus we must correct the counts on the ANKE acceptance.

The acceptance was calculated using a GEANT-based simulation program that in-

cludes a realistic description of the set-up. To confirm the spectator hypothesis, a

Monte Carlo simulation has been performed within PLUTO [56], using the Fermi

momentum distribution evaluated from the Paris deuteron wave function [57]. As is
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Figure 4.2: Momentum distribution of the fast proton from the dp → pspdπ0 reac-
tion transformed into the rest frame of the initial deuteron (histogram). The simulation
(crosses) uses the Fermi momentum distribution obtained from the Paris deuteron wave
function [57]. Only data with psp < 60 MeV/c were used in the luminosity evaluation.

clear from Fig 4.2, the data are completely consistent with quasi-free production on

the neutron leading to a spectator proton. However, in order to reduce further pos-

sible contributions from multiple scattering etc., only events with psp < 60 MeV/c

were retained for the luminosity evaluation. The numbers of events were then cor-

rected for acceptance and data acquisition efficiency etc. and are presented in 0.25◦

bins of deuteron laboratory angle in Fig. 4.3.

Isospin invariance requires that the differential cross section for np→ dπ0 should

be half that of the pp→ dπ+ reaction, for which there are many measurements and

an extensive data compilation by the SAID group [58]. Predictions of the SAID

program reproduce well the shape of the data in Fig. 4.3 and, after scaling this to

agree with our experimental points, the luminosity can be deduced. It is of course

possible that there could be small isospin violations between π0 and π+ production

which may introduce uncertainties in the luminosity on the very few per cent level.

4.2 Luminosity determination by dp elastic scattering

An alternative way of determining the luminosity required to evaluate the charge–

exchange cross section would be through the measurement of deuteron–proton elastic

scattering using data from the unpolarised spin mode. At the ANKE experiment,
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Figure 4.3: Corrected numbers of counts of quasi–free np → dπ0 events in 0.25◦ bins
(crosses). The histogram represents the prediction of the pp → dπ+ differential cross
section taken from the SAID program [58]. After taking an isospin factor of two into
account, scaling the simulation to agree with the experimental points allows the luminosity
to be evaluated.

only a small fraction of elastically scattered deuterons can be detected, mainly due

to the geometrical restrictions. Fig. 4.4 shows the angular acceptance of the ANKE

spectrometer for this reaction. It is clearly seen that the distribution is symmet-

rical with the respect to the azimuthal angle. Having cleanly identified good dp

Figure 4.4: Left: Efficiency corrected two-dimensional histogram of event distribution
over the polar and azimuthal angular range. Right: Efficiency map for the forward
MWPCs used for luminosity determination.

elastic scattering events (Sec. 3.3.4), their numbers were corrected for the MWPC

efficiency. For this purpose, two–dimensional efficiency maps were created for each

plane (Fig.4.4) and the tracks weighted using these maps. The events were grouped

into laboratory polar angular bins of width 0.5◦ in order to plot the angular distri-
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bution. The numbers in each bin were adjusted by the prescaling factor using the

correction of the DAQ efficiency. For each polar angular bin (i), the detector solid

angle (Ωdet
i ) calculation has been done using the formula:

Ωdet
i = ∆φi[cos θi − cos(θi + 0.5◦)] (4.2)

Here the ∆φi (the edges for azimuthal angles) for each angular bin was defined

experimentally using the typical spectra for azimuthal angular distributions (Fig.

4.5.

The corrected numbers of events are plotted as a function of the deuteron labo-

ratory angle in Fig. 4.6. However, in order to avoid regions where there is a strong

azimuthal variation in the acceptance, only the range 5.5◦ < θxz < 9.5◦ was retained

for the luminosity estimation.

 [Degree]φ

-50 0 50
0

1000

2000

3000

4000

 [Degree]φ

-50 0 50
0

1000

2000

 [Degree]φ

-50 0 50
0

500

1000

1500

Figure 4.5: Typical histograms of the azimuthal angular distributions to define the
detector edges (vertical lines) in the azimuthal direction, for several θ bins (5.5◦ - 6.0◦,
6.5◦ - 7.0◦ and 8.5◦ - 9.0◦)

Very close to our energy (Td/2 = 585 MeV) elastic proton–deuteron scattering

has been measured at 582 MeV using carbon and deuterated polyethylene targets

together with counter telescopes [59]. The differential cross sections were then ob-

tained from a CD2–C subtraction. The resulting values, transformed to the proton

rest frame, are also shown in Fig. 4.6. Although the absolute normalisation was

established well using the carbon activation technique, it should be noted that a

test measurement at one angle, where a magnetic spectrometer was used to sup-

press background from breakup protons, led to a cross section that was 10% lower,
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though with a significant statistical error. There is therefore the possibility that

these data include some contamination from non-elastic events. Despite this uncer-

tainty, the comparison of the two data sets allows a value of the luminosity to be

deduced for our experiment.
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Figure 4.6: Laboratory differential cross section for small angle dp elastic scattering in
0.5◦ bins (circles) are compared to the pd → pd values reported in Ref. [59] and transformed
to the proton rest frame (crosses). By scaling our data to agree with these values, an
estimate of the luminosity could be made. Only data in the range 5.5◦ < θlab

d < 9.5◦ were
used for this purpose.

The only other available data close to our momentum (pd = 2.4 GeV/c) comes

from a measurement of deuteron–proton elastic scattering in a hydrogen bubble

chamber experiment at ten momenta between 2.0 and 3.7 GeV/c [60]. Although

numerical values are not available, the results show a smooth variation with beam

momentum when plotted as a function of the momentum transfer t. Interpolating

these results to 582 MeV, the data seem to be consistent with those of Ref. [59],

though the variation of the cross section with t is extremely strong.

4.3 Luminosity result

Having determined the luminosity independently on the basis of the dp → dp and

quasi–free np → dπ0 measurements, the results are compared in Fig. 4.7 for all the

individual “good” runs. The luminosity ratio is consistent with being constant,

L(dp→ dp)/L(np→ dπ0) = 0.80 ± 0.01 (4.3)
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where the error is purely statistical. The smallness of the fluctuations in Fig. 4.7

implies that the two methods are sensitive to the same quantity, though with a

different overall normalisation. Of the 20% discrepancy, about 5% can be accounted

for by the shadowing correction [61], which reduces slightly the quasi–free cross

sections on the deuteron compared to their free values. To a first approximation the

deuteron charge exchange would be subject to a rather similar shadowing correction.

Some of the residual difference might be due to inelastic events in the published

data [59].

Apart from the sparsity of the World data set on dp → dp compared to that

on pp → dπ+, it should be noted that the elastic deuteron–proton differential cross

section varies very rapidly with angle. A shift of a mere 0.1◦ in the deuteron labora-

tory angle induces a 5% change in the cross section. This is to be compared to the

absolute precision in the angle determination in ANKE, which is ≈ 0.2◦. For these

reasons much more confidence can be ascribed to the quasi-free np → dπ0 method

to determine the luminosity. The final number for the integrated luminosity for all

good runs was:

L = (12.5 ± 0.5) nb−1.
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Figure 4.7: Left: Luminosity versus run number. Circles represents the luminosity
determined using the np → dπ0 reaction. Squares are the luminosity from dp → dp
reaction. Right: Ratio of the luminosity determined from small angle deuteron–proton
elastic scattering and quasi–free np → dπ0 pion production versus the individual run
number.
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Charge–exchange reaction

The measurement of the cross-section and the analysing power was performed at

beam energy Td = 1.170 GeV as a function of transferred momentum q. To check

the behaviour of these observables, several cuts on the excitation energy Epp were

applied. In this chapter the extraction of differential cross–sections and analysing

powers are described. The proof of principle achieved here for the method used

suggests that measurements at higher energies will provide useful information in

regions where the existing np database is far less reliable.

5.1 Differential cross section

In the previous chapter we have discussed the luminosity determination with two

different reactions. This was the preparatory work for the cross-section determi-

nation. In addition to all efficiency corrections (DAQ, detector system) we have to

correct for the experimental acceptance to obtain the real number of CE counts. But

before that, one needs a clear identification of the reaction itself, which we haven’t

discussed up to now. These two major steps, together with the luminosity obtained

from the np→ dπ0 reaction, will allow the differential cross section determination.

5.1.1 Reaction identification

In the deuteron charge–exchange reaction, two fast protons are emitted in a narrow

forward cone with momenta around half that of the deuteron beam. The detection of
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proton pairs was already successfully exploited during earlier measurements [38, 62].

Such coincident pairs can be clearly identified using information from the FD system

in much the same ways as for the pspdπ
0 reaction of Sec. 3.3.3. Having measured

the momenta of two charged particles, their times of flight from the target to the

hodoscope were calculated assuming that these particles were indeed protons. The

difference between these two times of flight was compared with the measured time

difference for those events where the particles hit different counters in the hodoscope

(Fig. 5.1). This selection, which discarded about 20% of the events, eliminated

almost all the physics background, for example, from dp pairs associated with π0

production. The resulting missing–mass distribution for identified ppX events shows

a clean neutron peak in Fig. 5.1 at MX = (940.4 ± 0.2) MeV/c2 with a width of

σ = 13 MeV/c2, sitting on a slowly varying 2% background.
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Figure 5.1: Left: Correlation of the measured time difference ∆tmeas and the calculated
∆ttof(~p1, ~p2)), assuming that the particle tracks correspond to protons. Right: Missing
mass distribution for proton pairs selected by the TOF criterion described in the text. A
fit to the data in terms of a Gaussian plus a smoothly varying background shows the latter
to be at about the 2% level. The central value agrees with the neutron mass to within
0.1%. Events falling within ±2.5σ of the peak position were retained in the analysis.

5.1.2 Acceptance calculation

The kinematics of a 2 → 3 particle reaction is defined by 5 independent variables.

To simulate the process we chose the following ones:

• Epp – the excitation energy of the two protons.
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• cos θcm
pp – the cosine of the polar angle of the proton pair (di–proton) in the

overall cm system.

• φcm
pp – azimuthal angle of the proton pair (di–proton) in the overall cm system.

• cos θcm
k – the polar angle of the one proton in cm system of two protons.

• φcm
k – azimuthal angle of the one proton in cm system of two protons.

Since the counting rate varies rapidly with both Epp and cos θcm
pp , the acceptance

was estimated by inserting the predictions of the impulse approximation model into

the Monte Carlo simulation in a two–dimensional grid. We generated 108 events and

each of these was transformed in the laboratory system and then traced through

ANKE using the GEANT simulation program that includes the realistic description

of the D2 dipole and FD system. To have the equivalent with the experimental

conditions, the accidental background was also produced. Using the MWPC infor-

mation the tracks and corresponding momenta were reconstructed using the same

track and momentum reconstruction programs. The acceptance correction as a func-

tion of these five variables A
(

Epp, cos θc.m.
pp , φc.m.

pp , cos θc.m.
k , φc.m.

k

)

, was calculated by

dividing the number of detected events by the number of generated events

A
(

Epp, cos θc.m.
pp , φc.m.

pp , cos θc.m.
k , φc.m.

k

)

=
Ndet

Ntot

(5.1)

Only at small momentum transfer and small pp excitation energy is the ANKE

geometric acceptance even approximately isotropic. Unlike the case of dp→ pspdπ
0

used for the luminosity determination, one cannot limit the data selection to this

small region of phase space. Figure 5.2 shows the distribution of unpolarised charge–

exchange events for Epp < 3 MeV in terms of the azimuthal angle of the diproton

φpp in the overall cm system. This variable is of critical importance in the separation

of the deuteron analysing powers for the dp→ (pp)n reaction and so it necessary to

have a reasonable understanding of its behaviour within a reliable simulation. As

can be seen from Fig. 5.2, this has been successfully achieved.

5.1.3 Cross–section determination

Having corrected the number of events for acceptance and DAQ (deadtime) and

other efficiencies, the cross sections found on the basis of the quasi-free np → dπ0
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Figure 5.2: Distribution of dp → {pp}n events in the azimuthal angle φ obtained with
an unpolarised beam for Epp < 3 MeV (red) compared to a simulation of expected events
(black).

luminosity were put in (Epp, q) bins. The results obtained by summing these data

over the interval in momentum transfer 0 < q < 100 MeV/c are presented as a

function of Epp in Fig. 5.3.

The impulse approximation predictions, also shown in Fig. 5.3, describe these

data reasonably well even in absolute magnitude, although the model seems to be

be pushed to slightly higher values of Epp than the data. It is important to note

that, even for excitation energies as low as 3 MeV, there are significant contributions

from higher partial waves. These arise preferentially for this reaction because even

a small momentum kick to the neutron when it undergoes a charge exchange can

induce higher partial waves because of the large deuteron radius.

The variation of the cross section with momentum transfer can be found in

Fig. 5.3 for 0 < Epp < 3 MeV. The impulse approximation of section 1.2 also

describes well the dependence on this variable out to q = 140 MeV/c. Once again it

should be noted that no adjustment has been made to the model or the experimental

data; the luminosity was evaluated independently using the quasi-free np → dπ0

reaction.
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Figure 5.3: Left: Differential cross section for unpolarised dp → {pp}n integrated over
momentum transfer q < 100 MeV/c as a function of the excitation energy Epp. Only
statistical errors are shown. The impulse approximation predictions are shown separately
for the 1S0 (dashed) and higher waves (dot-dashed) as well as their sum (solid curve).
Right: Unpolarised differential cross section for the dp → (pp)n reaction for Epp < 3 MeV
compared with the impulse approximation predictions. Only statistical errors are shown.
There is in addition a global systematic uncertainty of about 6%.

5.2 Deuteron beam polarisation

We already showed that the charge–exchange breakup reaction should show signifi-

cant polarisation effects. If analysing powers are measured it can be very nice tool

for the beam polarimetry because of its high cross–section. The measurement of a

variety of nuclear reactions in ANKE showed that there was negligible loss of beam

polarisation when the deuterons were subsequently brought up to the experimental

energy of Td = 1170 MeV (Ch. 3.)

Although the EDDA systematic uncertainties are quite low, as can be seen from

Table 5.1, only limited statistics were collected and these we alleviate by using the

internal consistency of our deuteron charge–exchange data themselves. According

to impulse approximation predictions [11, 16], the deuteron vector analysing power

for the
−→
d p → (pp)n reaction should vanish for small excitation energies. Since

the values of Pz can have no effect for θpp ≈ 0, this hypothesis can be tested by

comparing the charge–exchange count rates, normalised on the BCT, for small and

larger diproton angles. Any deviations from linearity could be ascribed to a it11

dependence since Table 5.1 shows that the eight states have widely different values

of Pz. All the data presented in Fig. 5.4 (left panel) fit well to a straight line, which

reinforces the belief that the charge exchange is, as expected, only sensitive to the
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Mode P Ideal
zz PEDDA

zz P Stand.
zz

0 0 0 −0.006 ± 0.016
1 0 0.057 ± 0.051 0.040 ± 0.016
2 +1 0.594 ± 0.050 0.658 ± 0.032
3 –1 −0.634 ± 0.051 −0.575 ± 0.032
4 –1

2 −0.282 ± 0.064 −0.359 ± 0.024
5 +1 0.537 ± 0.064 0.594 ± 0.030
6 +1 0.545 ± 0.061 0.440 ± 0.024
7 –1

2 −0.404 ± 0.065 −0.355 ± 0.024

Table 5.1: The configurations of the polarised deuteron ion source, showing the ideal
values of the tensor polarisations and their measurement using the EDDA polarimeter at
a beam energy of Td = 270 MeV [63]. The standardised values of Pzz obtained on the
basis of all the deuteron charge–exchange data are given in the final column. However, it
should be noted that mode-0 was indeed completely unpolarised and the statistical error
quoted here is merely to show that the charge–exchange data were completely consistent
with that.

value of Pzz.

In Fig. 5.4 (right panel) the totality of the charge–exchange data is compared

to the values of Pzz measured with the EDDA polarimeter. The scatter is larger

due to the EDDA statistical errors but a linear fit is a good representation of the

data. We then replace the EDDA values of Pzz for each of the individual states

by those corresponding to the linear regression shown in Fig. 5.4 (right panel) and

these modified values are given in Table 5.1. This procedure retains the average

dependence on the EDDA polarisations while reducing the statistical fluctuations

inherent therein.

5.3 Analysing power measurement

Having identified the np → dπ0 events, these were binned in intervals of di-proton

excitation energy Epp and three–momentum transfer q =
√
−t, and corrected for

luminosity with the help of the beam current information in order to evaluate the

analysing powers. In the right–handed coordinate system of the reaction frame, the

beam defines the z–direction while the stable spin axis of the beam points along

the y–direction, which is perpendicular to the COSY orbit. The differential cross
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Figure 5.4: Normalised counts ×10−3 for the dp → (pp)n reaction for the eight different
source modes of Table 5.1, (left panel) for events where the diproton laboratory angle
is less than 2◦ compared to events where the angle is greater than 2◦, and (right panel)
compared to the EDDA measurements of the beam tensor polarisation [63]. Also shown
are straight line fits to the data.

section for a polarised
−→
d p→ (pp)n reaction then becomes

dσ

dt
(q, φ)

/(

dσ

dt
(q)

)

0

= 1 +
√

3Pzit11(θ) cosφ

− 1

2
√

2
Pzzt20(θ) −

√
3

2
Pzzt22(θ) cos(2φ) , (5.2)

where the 0 subscript refers to the unpolarised cross section. Here θ and φ are,

respectively, the polar and azimuthal angles of the diproton, with the latter being

measured from the COSY machine plane. it11 (t20, t22) are vector (tensor) analysing

powers of the
−→
d p→ (pp)n reaction [43].

For each of the seven intervals in q (about 20 MeV/c width), the yield was sorted

in ten bins in cos 2φ. Although it is clear from Fig. 5.2 that the acceptance in terms

of the azimuthal angle φ is well reproduced by the simulation, we have used states–0

and –1, where there is zero tensor polarisation, to provide the best estimate of the

denominator in Eq. (5.2). By doing this we are using the fact that the geometric

acceptances should be universal, i.e., independent of the polarisation state of the

source. An example of the linear fit is shown in Fig. 5.5 for polarisation state–5.

The analysing powers of the
−→
d p → (pp)n reaction were subsequently evaluated

by fitting with Eq.(5.2) and using the beam polarisations of states–2 to –7 quoted

in Table 5.1. An estimate of the statistical errors inherent in this procedure could
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Figure 5.5: Azimuthal angular dependence of the ratio of the normalised dp → (pp)n
count rates for the source mode–5 to the average of modes–0 and –1, which have no tensor
polarisation. Here the data are shown for the bin 40 < q < 60 MeV/c and Epp < 1 MeV.
The linear fit in cos 2φ allows the analysing power to be extracted by fitting the data to
the right hand side of Eq. (5.2).

be obtained by studying the scatter of the results for these six polarisation states

of the source. In impulse approximation the vector analysing power is predicted to

vanish for small Epp [11]. A similar procedure in terms of cosφ allowed bounds to

be obtained on the vector analysing power but, as expected from both theory and

the linearity of Fig. 5.4 (left panel), all the data are consistent with it11 vanishing

within error bars. The averages over the whole q range are < it11 >= −0.001±0.004

for Epp < 1 MeV and −0.004 ± 0.004 for 1 < Epp < 3 MeV.

Due to the limited ANKE angular coverage, the acceptance gets steadily poorer

as q and Epp increase, so that values of analysing powers could only be determined

for q < 130 MeV/c. Our experimental values of the two tensor analysing powers are

shown in Fig. 5.6 for the two ranges in Epp as a function of the momentum transfer.

The signals both fall when Epp rises due to the influence of higher partial waves. It is

known that, when ~q and the pp relative momentum ~k are perpendicular, odd partial

waves cannot be excited and the pp system must be in a spin–singlet state [11].

As a consequence, less triplet dilution of the analysing powers is expected for small

cos θqk. To show this, we have divided the data shown in Fig. 5.6 into the two regions

where | cos θqk| ≶ 0.5 and imposed the same cuts on the theoretical description. All

the features of both t20 and t22 are then reproduced, including the variation with

q, Epp, and cos θqk. It seems therefore that the model is as valid here as at lower

energies [14] and that, as predicted in Ref. [11], multiple scatterings do not distort
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Figure 5.6: Spherical tensor analysing powers t20 and t22 for the CE reaction at Td =
1170 MeV for (a) 0.1 < Epp < 1.0 MeV and (b)1.0 < Epp < 3.0 MeV. The circles
correspond to data where | cos θqk| < 0.5 while the stars denote the results for | cos θqk| >
0.5. The solid and dashed curves are the impulse approximation predictions for the same
angular selections, respectively.

the analysing powers significantly.

The rapid rise of t22 with q is mainly a result of the fall in the δ(q) amplitude

which, in a simple absorbed one–pion–exchange model, should vanish for q ≈ mπc.

The behaviour can therefore be understood semi–quantitatively on the basis of

Eq. (6.1). The much smoother variation of t20 is also expected, with a gentle de-

cline from the forward value, once again being mainly driven by the fall in the δ(q)

amplitude. All these features are well reproduced by the impulse approximation

model [16] using reliable np amplitudes [2].

Although all the experimental data agree with the impulse approximation model

one could, of course, invert the question. How well could one determine the am-

plitudes if there were no information available from the np phase shifts? Although

the data reported here were obtained over only a two–day run, these are already

sufficient to determine quite well the ratio of the |ε(0)|/|β(0)| in the forward di-

rection. Since little dilution of the t20 signal is expected at q = 0, all the data

for Epp < 3 MeV were fitted to a quadratic in q2 for q ≤ 100 MeV/c. The value

obtained at the origin gives t20 = 0.37 ± 0.02, where the error is purely statistical.

The uncertainty introduced by the beam polarisation would, however, contribute

less than ±0.01 to this. Since there is little or no dilution of the analysing power by

the P -waves at q = 0, this result translates into an amplitude ratio of

|ε(0)|/|β(0)| = 0.61 ± 0.03 . (5.3)
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The precision here is, of course, better than that which is achieved for the ab-

solute value of the forward amplitudes discussed in chapter 1, where the overall

normalisation and other effects introduces another 5% uncertainty.

5.4 Summary and conclusions

In this study we have shown that the measurement of the differential cross section

and two deuteron tensor analysing powers of the
−→
d p→ (pp)n reaction at 585 MeV

per nucleon allows one to deduce values of the magnitudes the amplitudes |β(q)|2 +

|γ(q)|2, |δ(q)|2, and |ε(q)|2. The results achieved agree very well with modern phase

shift analyses [2]. There is no obvious reason why this success should not be repeated

at higher energies where the neutron–proton database has far more ambiguities.

In addition to extending the ANKE measurements to the maximum COSY en-

ergy of 1.15 GeV per nucleon, experiments will be undertaken with polarised beam

and target. The values of the two vector spin–correlation parameters depend upon

the interferences of ε with the β and δ amplitudes [64]. Furthermore, the use of

inverse kinematics with a polarised proton incident on a polarised deuterium gas

cell will allow the study to be continued up to 2.9 GeV per nucleon [15].

On the other hand the low excitation energy charge exchange on the deuteron

gives no direct information on the spin–independent amplitude α, whose magnitude

can only be estimated by comparing the deuteron data with the free np → pn

differential cross section. As seen from Eq. (1.11), at least in the forward direction

the value of |α(0)|2 can be determined with respect to the other amplitudes by

measuring the ratio of the charge exchange on the deuteron and proton [9].

At q = 0 there is potential redundancy between the measurement of the
−→
d p →

(pp)n and np→ pn cross sections, though the normalisation is much easier to achieve

with a beam of charged particles. Using this information in association with data

on total cross section differences, it seems likely that a clear picture of the neutron–

proton charge–exchange amplitudes in the forward direction is likely to emerge [10].
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Outlook

Our study of the ~dp → (pp)n deuteron charge–exchange reaction presented in this

thesis has shown that we can successfully investigate reactions with a polarised

deuteron beam. In particular, we have proved that we can calibrate the vector and

tensor polarisations of such a beam. Furthermore the results presented in this work

show that we can contribute to the np-database with a very valuable data.

The Spin Programme at ANKE [15] includes the study of the
−→
d p → (pp)n

reaction up to maximum avaliable energy (2.23 GeV) at COSY. Since there is no

possibility to do the deuteron polarimetry at higher energies, we propose to use the

polarisation export technique [65]. The other major goal of the Spin Programme [15]

is the double polarised study of the ~d~p→ (pp)n reaction to extract the spin correla-

tion coefficients. For this purpose it is crucial to handle simultaneously the polarised

beam and polarised target (cell–type), and establish the polarisation standards for

double–polarised nuclear reactions at COSY energies. The experimental details of

the polarisation export technique and the status towards the double–polarised mea-

surements at ANKE are described in this chapter.

6.1 Polarisation export

Usually the absolute value of the beam polarisation is determined from the scattering

asymmetry in a suitable nuclear reaction with known analysing powers. Polarisation

calibration standards described in the thesis (Sec. 3) are few and exist only at

discrete energies. It is therefore of great practical interest of the spin programme to
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be able extend their application to arbitrary energies where standards are not yet

available. Now, if care is taken to avoid depolarising resonances in the machine, the

beam polarisation should in general be conserved during the process of ramping the

beam energy up or down [65]. There are no any deuteron depolarisation resonances

in COSY energy region and this should make things easier. In order to verify the

polarisation export technique with a circulating deuteron beam at COSY, the scheme

illustrated diagrammatically in Fig. 6.1 was implemented.
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Figure 6.1: The schematic picture of the three different flat-top regions used in a single
cycle. The identity of the deuteron polarisation in regions I and III means that 1.2 GeV
polarisation could be exported to 1.8 GeV.

Using the dp−elastic reaction, which is sensitive to both vector and tensor po-

larisations of the beam, we have measured the polarisation for the regions I and III.

The results are presented in the table 6.1 in terms of the non-normalised parameters

β where the analysing power of the reaction has not been observed. Given that,

within the small error bars, βI
y/yy = βIII

y/yy no depolarisation has been observed.

Flat top βy βyy

I −0.213 ± 0.005 0.057 ± 0.003

III −0.216 ± 0.006 0.059 ± 0.003

Table 6.1: The table shows the results of the asymmetry measurements for the I and
III regions (Fig.6.1). βy and βyy represents the asymmetry for the vector and tensor
component of the polarisation and respectively

The polarisation export technique appears to be a useful tool for the polarisation
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experiments at any available energy at COSY. The data on 1.6 GeV, 1.8 GeV and

2.23 GeV energy were already taken and the data analysis is in progress.

6.2 Spin–correlation predictions

At low excitation energies Epp of the final pp system, the spin observables in ~d~p →
(pp)n reaction are directly related to the spin–dependent parts of the neutron–proton

charge–exchange amplitudes β, γ, δ and ε.

Impulse approximation applied to dp → (pp)1S0
n leads to the following predic-

tions for the differential cross section, deuteron analysing powers, and spin–spin

correlation parameters in hte pure 1S0 limit:

d4σ

dtd3k
= 1

3
I

{

S−(k,
1

2
q)

}2

,

I Ad
y = 0 , I Ap

y = −2ℑ(β∗γ) ,

I Axx = |β|2 + |γ|2 + |ε|2 − 2|δ|2R2 ,

I Ayy = |δ|2R2 + |ε|2 − 2|β|2 − 2|γ|2 ,
I Cy,y = −2ℜ(ε∗δ)R, I Cx,x = −2ℜ(ε∗β).

Within this approximation, a measurement of the differential cross section, and

deuteron analysing powers Axx, and Ayy allowed us the extraction of |β|2 + |γ|2, |δ|2,
and |ε|2 over a range of values of q (three–momentum transfer) near the forward

direction. The results of this study has been presented in previous chapters.

As a next step the measurement of the deuteron–proton spin correlation will

allow us to determine the relative phases of these amplitudes and not just their

overall magnitudes. Numerical predictions have been made for the transverse spin–

correlation coefficients and the results are shown in Fig 6.2.

The predicted Cx,x and Cy,y are both expected to be very large and show consid-

erable structure over the ANKE measurement range. We are quite fortunate to have

found such a large (predicted) signal with such an interesting behaviour. Measure-

ments of this observables are the primary aim of the experiment planned at COSY

for the beginning of 2009.
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Figure 6.2: Predicted values of the spin–correlation coefficients in the CE reaction at
585 MeV/nucleon for cuts in excitation energy of Epp < 1 MeV (solid line) and Epp <
3 MeV (dashed line).

6.3 Results from first double–polarised measurements

Since summer 2005, the ANKE spectrometer is equipped with a Polarised Inter-

nal Target (PIT). During one week of a commissioning experiment in January

2007 allocated for the measurement of the Charge–Exchange break-up of polarised

deuterons on a polarised hydrogen target
−→
d −→p → (pp)n, the following results have

been achieved:

• For the first time, studies with the COSY polarised deuteron beam were per-

formed using a storage cell (25 µm aluminum foil, with the inner surface

covered by Teflon, of 20 × 15 mm2 cross section and 390 mm length). For

this purpose the machine group furnished a polarised deuteron beam, electron

cooled, stacked at injection and accelerated to Td=1.2GeV;

• To improve the COSY beam intensity, a longer stacking injection was imple-

mented. In double–polarised measurements we worked with a cycle of 45(50)

minutes duration: 15(20) minutes for stacking (90(120) stacks separated by

10 s for cooling) and 30 minutes for the flat top. Under these conditions 7×109

polarised deuterons were accelerated to the flat–top energy of 1.2 GeV;

• It has been shown that the procedure of scraping the accelerated beam before

the data–taking minimised the background events coming from the interactions

of the beam halo particles with the cell wall. Even without using stochastic

cooling (this is not possible at COSY at the beam energy of Td = 1.2 GeV),
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the achieved beam quality generally allowed the deuterons to pass through the

cell without touching the walls;

• The expected density for the polarised hydrogen (~H gas) storage cell target

of dt = 1.34 × 1013 cm−2 was achieved. This value, together with the beam

intensity of 7 × 109 stored polarised deuterons, led to a luminosity of L ≃
1.0 × 1029 s−1cm−2;

• The clean identification of events for the ~d~p–induced reactions when using a

long cell target has been demonstrated. This was done on the basis of exper-

imental information obtained from the ~H gas target and on the known shape

of the background from the cell walls, which is imitated through the use of N2

gas in the cell. The exact shape of the background under the missing–mass

peak from the cell–wall events has been determined under real experimental

conditions and was under control during on-line measurements;

• Using the missing–mass technique for the measured single–and double–track

events in ANKE, it has been shown that very clean identification of the follow-

ing reactions is possible: ~d~p→ dpspπ
0 (both branches of quasi–free ~n~p→ dπ0),

~d~p → (pp)n, ~d~p → 3He π0, and ~d~p → dp. The last channel was identified un-

ambiguously with very little background by using the silicon detectors, placed

closed to the storage cell in vacuum target chamber, in coincidence with the

forward detector system;

• In parallel to the data–taking, the ABS source has been tuned with Lamb–shift

Polarimeter (LSP) measurements (see Fig. 6.3). The goal was to determine the

target polarisation (Qy) from the quasi–free n~p→ dπ0 reaction (see Fig. 6.3).

The achieved value of average target polarisation of 〈Qy〉 = 0.75±0.06, is much

higher then it was in the the first measurements in 2006. Thus, the target

polarisation has been maximised and the equality of positive and negative

polarisations has been verified on the level of a couple of percent by using

on–line measurements from the LSP, repeated every 24 hours;

• We have extracted the value of the deuteron beam vector polarisation Pz

from the quasi–free ~np → dπ0 reaction using the angular dependence of the

analysing power of the ~pp→ dπ+ reaction, which was also used to determine

the target polarisation. The result, 〈PANKE
z 〉 = 0.60 ± 0.10, is compatible
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Figure 6.3: Left: On–line measurements of the Lyman–α peak asymmetry from
the LSP when the weak field transition unit (WFT) was switched on (’spin-up’) and
off (’spin-down’). Right: Angular dependence of the missing–mass squared distri-
bution for the reaction d~p → dpspX measured with the storage cell and 1.2 GeV
deuteron beam. Red and black histograms stand, respectively, for data with target
polarisation ’spin-up’ and ’spin-down’, after background subtraction using N2 data.

with the value of 〈PLEP
z 〉 = 0.660 ± 0.003, obtained from the Low Energy

Polarimetry (LEP) measurements.

Given the above successes in the first handling of the double–polarised data, we

can conclude that ANKE–COSY is ready to embark on the experimental programme

which includes the double–polarisation measurements.
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Appendix A

Principles of polarisation

In quantum mechanics all spin angular momentum operators Si satisfy the equation:

SiSj − SjSi = ǫijkSk (A.1)

These spin operators are hermitian and their trace is 0. We have three compo-

nents in a Cartesian coordinate system Sx, Sy, and Sz which defines the vector ~S.

Their eigenvalues and eigenfunctions satisfy:

~S2 |sm〉 = s (s+ 1) ~ |sm〉 (A.2)

Sz |sm〉 = m~ |sm〉 m = −s,−s + 1, ...,+s (A.3)

|sm〉 is the eigenfunction of ~S2 and one of its projection, conventionally chosen to

be the z projection. It depends on two quantum numbers: spin quantum number s

and magnetic quantum number m. The number of values of m is (2s+ 1).

When s = 1/2, we then have two values m = −1/2 or m = +1/2. We can write

the spin operator in terms of matrices with the Pauli definition:

~S = 1
2
~~σ (A.4)

where

σx =

(

0 1

1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0

0 −1

)

(A.5)

The set of these three Pauli matrices and unit matrix form a complete set of her-

mitian matrices for s = 1/2. Every hermitian operator in these space is linear
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combination of these operators.

A.1 Spin 1/2

The above describes a single particle with 〈Sz〉 = ±1
2
~ and corresponding 〈σz〉 = ±1.

It is, however, impossible to describe things in such a way when there is ensemble of

particles (for example a beam). To represent such ensemble in quantum mechanics,

it is convenient to define the density matrix:

ρ =
n
∑

i=1

pi |smi〉 〈smi| (A.6)

With:

n ≡ number of the pure states (here n = 2);

pi ≡ probability of i state in the ensemble.

It helps to describe polarisation with three components pi (i = x, y, z) which are

the expectation values of the Pauli operators 〈σi〉. We can write it in the short way:

pi = 〈σi〉 = Trace (ρσi) (A.7)

These are the components of a vector ~p = (px, py, pz). The polarization ~p is

the vector polarization of the ensemble of particles with spin 1/2. Here we should

be carefully because in quantum mechanics only one component can be measured.

Taking this to be the z-component:

p∗z = 〈σz〉 = Trace (ρσz) = p+ 〈+|σz|+〉 + p− 〈−|σz|−〉 = p+ − p− (A.8)

When p∗z = 0, it means that p+ = p− and the probabilities of |1/2,+1/2〉 and

|1/2,−1/2〉 states are equal. The state with m = +1/2 is populated with the same

number of particles N+ as the m = −1/2 states N−.

If p+ > p−, it means that there are more particles in state |1/2,+1/2〉, and

N+ > N−. So we have polarization along the z axis:

p∗z = p+ − p− =
N+

Ntot
− N−

Ntot
=
N+ −N−

N+ +N−

, (A.9)



from which we evidently get:

−1 ≤ p∗z ≤ +1. (A.10)

If all particles in the beam are in the state m = 1/2, then we get polarization of the

beam p∗z = 1, or if all particles are in the state m = −1/2, we have p∗z = −1.

A.2 Spin 1

There are three possible eigenvalues of Sz with its eigenfunctions from Eq. (A.3).

So, we have three pure state for the spin 1 particles:

|s = 1;m = 1〉 |s = 1;m = 0〉 |s = 1;m = −1〉 (A.11)

The spin operator ~S is therefore a 3 × 3-matrix and one can write them like the

Pauli operators:

Sx =
1√
2







0 1 0

1 0 1

0 1 0






Sy =

i√
2







0 −1 0

1 0 −1

0 1 0






Sz =







1 0 0

0 0 0

0 0 −1






(A.12)

These three operators together, with 3× 3 unit matrix, comprise four hermitian

operators, which are linear independent. It is however evident that nine are needed

to ‘span’ the 3 × 3 space. Each spin operator has to have zero trace and each will

be orthogonal to the unit matrix U which means that its expectation value will be

zero for an unoriented ensemble. One can construct from the available matrices:

Sij =
3

2
(SiSj + SjSi) − 2Uδij (with i, j = x, y, z) (A.13)

With this one obtains six matrices but, since Trace(S) = 0, we get only five linear

independent matrices:

pij = 〈Sij〉 = Trace(ρSij) (A.14)

We can define pij in a same way to pi:

pzz = 〈Szz〉 = Trace(ρSzz) (A.15)



It is possible to compose a 3×3 matrix from the different components of pij, which is

a second rank tensor, and defines a tensor polarization of the beam. The definition

of the vector polarization is the same Eq. (A.12), but we can write p∗zz with the

occupation number of three spin states:

p∗zz = 〈Szz〉 = Trace(ρSzz) = p+ + p− − 2p0 (A.16)

If all three states are occupied equally in the beam, p+ = p− = p0 = 1/3, then we

have an unpolarized beam with p∗zz = 0 and p∗z = 0. In general

p∗zz = p+ + p− − 2p0 =
N+ +N− − 2N0

Ntot

(A.17)

From this it follows that:

−2 ≤ p∗zz ≤ 1 (A.18)

For illustration see Fig. A.1. Knowing the tensor polarization gives us information

zz
p >0*

zz
p <0*

z−Axis

x−Axis

y−Axis

z−Axis

x−Axis

y−Axis

Figure A.1: Positive and negative tensor polarizations

about the relation between N+ + N− and N0. The vector polarization (relation

between N+ and N−), together with intensity Ntot = N+ +N− +N0, gives us all the

information about the occupation of the states.



Appendix B

Observables in

double–polarisation

measurements

Ohlsen has discussed in detail the observables that can be accessed when a polarised

spin-1 particle collides with polarised spin-1
2

target [43]. In a right–handed coordi-

nate system, with z pointing along the beam direction, y being perpendicular to the

reaction plane, and x lying therein, the differential cross section σ for a dp–induced

reaction can be written:

σ/σ0 = 1 + QyA
p
y + 3

2
PyA

d
y

+ 2
3
PxzA

d
xz + 1

3
(PxxAxx + PyyAyy + PzzAzz)

+ 3
2
(PxQxCx,x + PxQzCx,z + PyQyCy,y + PzQxCz,x + PzQzCz,z)

+ 1
3
(PxxQyCxx,y + PyyQyCyy,y + PzzQyCzz,y)

+ 2
3
(PxyQxCxy,x + PxyQzCxy,z + PyzQxCyz,x + PyzQzCyz,z), (B.1)

where the polarised deuteron beam is described by the components Pi and Pik,

and the polarised hydrogen target by the components Qi with i, k = x, y, z; σ0 is

the unpolarised cross section. The single polarisation observables are the proton

analysing power Ap
y and the deuteron vector and tensor analysing powers Ad

y and

Aik (i, k = x, y, z). In addition there are the vector and tensor spin–correlation

coefficients Ci,k and Cik,j.

In our set–up, both the target proton and incident deuteron are polarised perpen-

dicularly to the plane of the COSY ring, with polarisation Q and (Pz, Pzz) respec-

73



tively. In general the reaction plane lies at an azimuthal angle φ with respect to the

COSY plane, where φ is measured clockwise from the positive x-axis, looking along

the beam direction. In this system the differential cross section becomes [43, 66]

σ/σ0 = 1 +QAp
y cosφ+ 3

2
PzA

d
y cosφ+ 1

4
Pzz [(Ayy + Axx) + (Ayy −Axx) cos 2φ]

+ 3
4
PzQ [(Cy,y + Cx,x) + (Cy,y − Cx,x) cos 2φ]

+ 1
4
PzzQ

[

(
1

2
Cxx,y +

1

2
Cyy,y + Cxy,x) cosφ+ (

1

2
Cxx,y −

1

2
Cyy,y + Cxy,x) cos 3φ

]

.

(B.2)

In the case of two spin-1
2

particles collision, for beam and target polarisations P

and Q normal to the COSY plane, the azimuthal angular dependence is [43]:

σ/σ0 = 1+
(

AP
y P + AQ

y Q
)

cosφ+ 1
2
PQ [(Ay,y + Ax,x) + (Ay,y −Ax,x) cos 2φ] . (B.3)

Here Ax,x and Ay,y are spin–correlation parameters and AP
y and AQ

y are analysing

powers for polarised beam and target, respectively. Note that for cases such as pp

elastic scattering or pn→ dπ0, where there is a unique isospin, one has AP
y = AQ

y .
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