

Hyperon Physics at COSY Forschungszentrum Jülich

March 14th 2008, Michael Hartmann

Scope of the talk

I. Ground state Hyperon production (TOF) - $\Lambda(1116)$ (N* resonances)

II. Excited states Hyperon production (ANKE) - $\Lambda(1405)/\Sigma^0(1385)$

- kaon anti-kaon pair production

- Y⁰(1480)

all in proton-proton collisions

Starting point: $pp \rightarrow NK^+Y$

COSY: COoler SYnchrotron "high quality beam"

TOF: "large acceptance, Dalitz plot analysis"

ANKE: "certain reaction channels, charged kaon selectivity"

WASA: "detect both neutral and charged particles"

WASA is now in operation!

brief look at COSY, TOF and ANKE \Rightarrow

COSY facility, experimental setups

TOF – large acceptance spectrometer at <u>external</u>

ANKE – forward angle magnetic spectrometer at internal target position of COSY

Little is known on N* decaying into strange channels

N*	Status	L _{2I·2J}	BR(N*→KΛ)
N(1650)	****	S ₁₁	3 - 11%
N(1710)	***	P ₁₁	5 - 25 %
N(1720)	****	P ₁₃	1- 15 %
N(1900)	**	P ₁₃	2.4 ± 0.3 %

No information on $N^* \to \mathsf{K}\Lambda$ for L >1

No information on $N^* \rightarrow K\Sigma$ at all

first step \rightarrow pK⁺ Λ data for momenta: 2.85-3.3 GeV/c

$pp \rightarrow pK^+\Lambda$, total cross section

Expt.: $pp \rightarrow pK^+\Lambda$, Dalitz plot analysis

Other approach: Full partial wave analysis, $p/pp \rightarrow pK^+\Lambda$ A.V. Anisovitch, PLB 632 (2006) 27,

hep-ph/0703216, pers. com. pp 2.85 GeV/c 400 400 300 400 200 200 200 1.Solution (red) 100 Initial. pp interaction 0 <u>.</u> 2 n 1.7 1.5 2.1 2.2 2.3 Ť.6 1.8 1.4 1.6 ³P₂, ³P₀, ¹S₀ M(KA)M(pA)M(Kp) pp 2. Solution (blue) 0.5 0.5 0.5 Initial. pp interaction ³P₂, ³P₁, ¹S₀ 0.25 0.25 0.25 0 -0.25 -0.25 -0.25 Dependence of beam asymmetry -0.5 └─ 1.6 -0.5 -0.5 2.2 1.7 1.6 2.1 1.5 M(pA)M(KA)M(Kp)

Very different behavior of the two solutions! Discrimination possible!

Expt.: $pp \rightarrow pK^+\Lambda$, high statistics Dalitz plot analysis

Expt.: Λ (1405) (& Σ^{0} (1385))

Nucleon resonances: Nature of $\Lambda(1405)$

PDG: status ****, but ... Theory: q^3 , or (qqqqq), KN-molecule, 2 states, ... ?

Starting point: $pp \rightarrow NK^+Y$

Experimental problem: overlap \sum (1385) and Λ (1405)

Solution: $pp \rightarrow pK^+(p\pi^-)X^0$

Clean separation of $\Sigma(1385)$ and $\Lambda(1405)$ achieved

Results: $pp \rightarrow pK^+(p\pi^-)X^0$

 Influence of the KN-threshold ?
Comparison with results from π⁻p → K⁰(ΣN)⁰ (solid line)

"Thomas" NPB 56 (1973) 15

and

 $K^-p \rightarrow \pi^+\pi^-\Sigma^+\pi^-$ (dotted line)

"Hemmingway" NPB 253 (1984) 742

 Λ(1405): clean separation by ANKE
Theory: L.S. Geng & E. Oset
EPJ A 34 (2008) 405, hep-ph/0707.3343v3 (2008)

(ANKE)

Expt.: $pp \rightarrow ppK^+K^-(\phi)$

PRC 77 (2008) 015204)

Expt.: $pp \rightarrow pK^+Y^0$ (1405, width 50MeV) $\rightarrow K^-p$

The simplest description of the I = 0 coupled-channel system is provide by a separable-potential model, e.g. used in Shevshenko *et al.* [PRC 76 (2007) 055204].

Suggests that $\Lambda(1405)$ is the main doorway state also for ppK⁺K⁻. (If so, kaon pair production is not dominated by a_0/f_0 .)

Should analyse $\pi^0 \Sigma^0$ and K⁻p production at the same time !

DPG, March 14th 2008

Expt.: $pp \rightarrow ppK^+K^-$

Assumption: K⁻p FSI effect $f(q) = (1-iaq)^{-1}$, q: relative momentum a: scattering length ,,3-body-FSI" $\leftrightarrow f(q_1) \times f(q_2)$, $|a| \approx (1-2)$ fm

Expt.: $pp \rightarrow ppK^+K^-$, total cross section

PRC 77 (2008) 015204

Expt.: $pp \rightarrow ppK^+K^-(\phi)$

PRC 77 (2008) 015204

Expt.: $pp \rightarrow pK^+Y^{0*}$ (1480), $Y^{0*} \rightarrow \pi^-X^+$ or π^+X^- (ANKE)

The $\Sigma(1480)$ hyperon is far from being an established resonance.

In PDG, it is described as a "bump", with unknown quantum numbers, one-star rating.

Result: Evidence for Y^{0*}(1480)

 $MM(pK^{+}), MeV/c^{2}$

PRL 96 (2006) 012002

 $M = 1480 \text{ MeV/c}^2$, Γ = 60 MeV/c²

Add in MC a Y^{0*}

DPG, March 14th 2008

without Y⁰(1480)

experiment —

simulation

 $MM(pK^{+}), MeV/c^{2}$

Summary/Outlook

- TOF the detector for hyperon studies at COSY
 - Detailed investigation of N* resonances
 - Determination of $p\Lambda$ scattering length ($a_{triplet}$)
 - Preliminary results with polarized beam (∧ polarization, spin transfer coefficient: $\vec{p}p \rightarrow p \wedge K^+$)
 - Measurements with LD₂-Target, e.g. $pn \rightarrow pK^0\Lambda$ (HK 34.9)
- ANKE hyperon production close to threshold
 - → Results on Y(1405/1480) \leftrightarrow significantly more ANKE can't do
 - Preliminary results on pp → nK⁺Σ⁺ (Y. Valdau, HK 35.7)
 - Determination of $n\Lambda$ scattering length $(a_{triplet})$: $pn \rightarrow n\Lambda K^+$

WASA at COSY

WASA is a internal 4π detector in COSY EM calorimeter, SC solenoid, forward det's, pellet target WASA is now in operation! Symmetries and symmetrybreaking (HK / many talks)

W. Weglorz (HK 35.6) $pp \rightarrow pK^+\Lambda(1405) \rightarrow pK^+(p\pi^-)\gamma\pi^0 \leftarrow 3\gamma$ $pp \rightarrow pK^+\Sigma(1385) \rightarrow pK^+(p\pi^-)\pi^0 \leftarrow 2\gamma$

 thank you for your attention –

Lectures and working groups

- QCD and its Phenomenological Implications
- Symmetries and Symmetry-Breaking
- Hadron Spectroscopy
- New Detector and Target Concepts
- Synchrotrons and Storage Rings
- Polarized and Cooled Beams