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Abstract—We consider near-threshold a0(980)-meson production in πN andNN collisions. An effective
Lagrangian approach with one-pion exchange is applied to analyze different contributions to the cross
section for different isospin channels. The Reggeon exchange mechanism is also evaluated for comparison.
The results from πN reactions are used to calculate the contribution of the a0 meson to the cross sections
and invariantKK̄ mass distributions of the reactions pp → pnK+K̄0 and pp → ppK+K−. It is found that
the experimental observation of a+

0 mesons in the reaction pp → pnK+K̄0 is much more promising than
the observation of a0

0 mesons in the reaction pp → ppK+K−. Effects of isospin violation in the reactions
pN → da0, pd → 3He(3H)a0, and dd → 4Hea0, which are induced by a0(980)–f0(980) mixing, are also
analyzed. c© 2003 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

The structure of the lightest scalar mesons a0(980)
and f0(980) is still under discussion (see, e.g., [1–
7] and references therein). Different authors inter-
preted them as unitarized qq̄ states, as four-quark
cryptoexotic states, as KK̄ molecules, or even as
vacuum scalars (Gribov’s minions). Although it has
been possible to describe them as ordinary qq̄ states
(see [8–10]), other options cannot be ruled out up to
now. Another problem is the possible strong mixing
between the uncharged a0(980) and the f0(980)
due to a common coupling to KK̄ intermediate
states [11–17]. This effect can influence the structure
of the uncharged component of the a0(980)- and
implies that it is important to perform a comparative
study of a0

0 and a
+
0 (or a−0 ). There is no doubt that new

data on a0
0 and a+

0 (a
−
0 ) production in πN and NN

reactions are quite important to shed new light on the
a0 structure and the dynamics of its production.
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In our recent paper [18], we have considered
a0 production in the reaction πN → a0N near the
threshold and at GeV energies. An effective La-
grangian approach and the Regge pole model were
applied to investigate different contributions to the
cross section of the reaction πN → a0N . In [19],
we have employed the latter results for an analysis
of a0 production in NN collisions. Furthermore,
in [17], we have considered the a0–f0 mixing in
reactions involving the lightest nuclei d, 3H, 3He, and
4He. Here, we give an overview of those results and
present a comparative analysis of a0(980)-resonance
production and nonresonant background channels
in the reactions πN → a0N → KK̄N and NN →
a0NN → KK̄NN . Our study is particularly rele-
vant to the current experimental program at COSY
(Jülich) [20–22].

Our paper is organized as follows. In Section 2,
we discuss the KK̄ and πη decay channels of the
a0(980). An analysis of a0(980)-resonance produc-
tion and nonresonant background in the reactions
πN → KK̄N andNN → a0NN → KK̄NN is pre-
sented in Section 3. Section 4 is devoted to the cal-
culation of the cross sections for the reactionsNN →
NNa0 and NN → a0NN → KK̄NN in compari-
son to nonresonant KK̄ production. In Section 5,
we consider a0(980)–f0(980) mixing and isospin vi-
olation in the reactions pN → da0, pd → 3He(3H) a0,
and dd → 4Hea0.
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2. THE KK̄ AND πη DECAY CHANNELS
OF THE a0(980)

The a0(980) invariant mass distribution in theKK̄
and πηmodes can be parametrized by the well-known
Flatté formula [23] which follows from analyticity and
unitarity for the two-channel T matrix.

For example, in the case of the reaction NN →
a0NN → KK̄NN , the mass distribution of the final
KK̄ system can be written as a product of the total
cross section for a0 production (with the “running”
massM ) in theNN → NNa0 reaction and the Flatté
mass distribution function

dσKK̄

dM2
(s,M) = σa0(s,M) (1)

× CF
MRΓa0KK̄(M)

(M2 −M2
R)2 +M2

RΓ
2
tot(M)

with the total width Γtot(M) = Γa0KK̄(M) +
Γa0πη(M). The partial widths

Γa0KK̄(M) = g2
a0KK̄

qKK̄

8πM2
, (2)

Γa0πη(M) = g2
a0πη

qπη
8πM2

are proportional to the decay momenta in the c.m.s.
(in case of scalar mesons)

qKK̄

=
[(M2 − (mK +mK̄)

2)(M2 − (mK −mK̄)
2)]1/2

2M
,

qπη

=
[(M2 − (mπ +mη)2)(M2 − (mπ −mη)2)]1/2

2M

for a meson of mass M decaying to KK̄ and πη,
respectively. The branching ratiosBr(a0 → KK̄) and
Br(a0 → πη) are given by the integrals of the Flatté
distribution over the invariant mass squared dM2 =
2MdM :

Br(a0 → KK̄) (3)

=

∞∫
mK+mK̄

dM
2MCFMRΓa0KK̄(M)

(M2 −M2
R)2 +M2

RΓ
2
tot(M)

,

Br(a0 → πη) =

∞∫
mK+mK̄

dM
2MCF MRΓa0πη(M)

(M2 −M2
R)2 +M2

RΓ
2
tot(M)

(4)

+

mK+mK̄∫
mπ+mη

dM
2MCFMRΓa0πη(M)

(M2 −M2
R −MRΓa0KK̄(M))2 +M2

RΓ2
a0πη(M)

.

The parameters CF, gKK̄ , and gπη have to be fixed
under the constraint of the unitarity condition

Br(a0 → KK̄) + Br(a0 → πη) = 1. (5)

Choosing the parameter Γ0 = Γa0πη(MR) in the in-
terval 50–100 MeV (as given by the PDG [24]), one
can fix the coupling gπη according to (2). In [25], a
ratio of branching ratios has been reported,

Ra0(980) =
Br(a0 → KK̄)
Br(a0 → πη)

= 0.23± 0.05, (6)

for ma0 = 0.999 GeV, which gives Br(a0 → KK̄) =
0.187. In another recent study [26], the WA102 col-
laboration reported the branching ratio

Γ(a0→KK̄)/Γ(a0→πη) = 0.166 ± 0.01 ± 0.02, (7)

which was determined from the measured branching
ratio for the f1(1285) meson. In our present analysis,
we use the results from [25], however, keeping inmind
that this branching ratio Br(a0 → KK̄) more likely
gives an “upper limit” for the a0 → KK̄ decay.

Thus, the other two parameters in the Flatté
distribution CF and ga0KK̄ can be found by solv-
ing the system of integral equations, for example,
Eq. (3) for Br(a0 → KK̄) = 0.187 and the unitarity
condition (5). For our calculations, we choose either
Γa0πη(MR) = 70 or 50MeV, which gives two sets of
independent parameters ga0KK̄ , ga0πη, and CF for a
fixed branching ratio Br(a0 → KK̄) = 0.187:

set 1 (Γa0πη = 70MeV) : (8)

ga0KK̄= 2.3GeV, ga0πη= 2.2GeV, CF= 0.365;

set 2 (Γa0πη = 50MeV) : (9)

ga0KK̄= 1.9GeV, ga0πη= 1.9GeV, CF= 0.354.

Note that, for theK+K− orK0K̄0 final state, one has
to take into account an isospin factor for the coupling
constant, i.e., ga0K+K− = ga0K0K̄0 = ga0KK̄/

√
2,

whereas ga0K+K̄0 = ga0K−K̄0 = ga0KK̄ .
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Fig. 1. (a–d) Diagrams for a0 production in the reaction
πN → a0N → K̄K near the threshold and (e) diagram
for nonresonant K̄K “background” production.

3. THE REACTIONS πN → a0N
AND πN → KK̄N

3.1. An Effective Lagrangian Approach

The simplest mechanisms for a0 production in the
reaction πN → a0N near the threshold are described
by the pole diagrams shown in Figs. 1a–1d. It is
known experimentally that a0 couples strongly to the
channels πη and πf1(1285) because πη is the domi-
nant decay channel of a0, while πa0 is one of the most
important decay channels of f1(1285) [24]. The am-
plitudes, which correspond to the t-channel exchange
of η(550) and f1(1285)mesons (see Figs. 1b and 1a),
can be written as

M t
η(π

−p→ a−0 p) = gηπa0gηNN ū(p′2)γ5u(p2) (10)

× 1
t−m2

η

Fηπ a0(t)FηNN (t),

M t
f1(π

−p → a−0 p) = gf1πa0gf1NN (11)

× (p1 + p′1)µ

(
gµν −

qµqν
m2
f1

)
ū(p′2)γνγ5u(p2)

× 1
t−m2

f1

Ff1π a0(t)Ff1NN (t).

Here, p1 and p′1 are the 4-momenta of π− and a−0 ,
whereas p2 and p′2 are the 4-momenta of the initial
and final protons, respectively; furthermore, q = p′2 −
p2 and t = (p′2 − p2)2. The functions Fj present form
factors at the different vertices j (j = f1NN, ηNN ),
which are taken of the monopole form

Fj(t) =
Λ2
j −m2

j

Λ2
j − t

, (12)

where Λj is a cutoff parameter. In the case of η ex-
change, we use gηNN = 6.1 and ΛηNN = 1.5 GeV
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Fig. 2. The differential cross sections dσ/dt for the re-
actions π−p → a−

0 p and π−p → a0
0n at 2.4 GeV/c. The

long-dash-dotted line corresponds to the η exchange, and
the solid and long-dashed lines (upper part) show the
f1 contributions within sets A and B, respectively. The
rare-dotted and dash-double-dotted lines indicate the s
and u channels, while the solid line (lower part) describes
the coherent sum of s- and u-channel contributions in-
cluding interference. The dotted and short-dash-dotted
lines present the results within the ρ2 and ρ2, b1 Regge
exchange model, respectively (see text).

from [27] and ga0πη is defined by (8). The contribution
of the f1 exchange is calculated for two parameter
sets:
set A: gf1NN = 11.2, Λf1NN = 1.5GeV [28],
set B: gf1NN = 14.6, Λf1NN = 2.0GeV [29],
and gf1a0π=2.5 for both cases. The latter value for
gf1a0π corresponds to Γ(f1 → a0π) = 24 MeV and
Br(f1 → a0π) = 34%.

In Fig. 2 (upper part), we show the differential
cross sections dσ/dt for the reaction π−p → a−0 p
at 2.4 GeV/c corresponding to η (long-dash-dotted
line) and f1 exchanges with set A (solid line) and
set B (long-dashed line). A soft cutoff parameter (set
A) close to the mass of f1 implies that all the con-
tributions related to f1 exchange become negligibly
small. On the other hand, for the parameter values
given by set B, the f1-exchange contribution is much
larger than that from η exchange. Note that this large
uncertainty in the cutoff presently cannot be con-
trolled by data, and we will discuss the relevance of
the f1-exchange contribution for all reactions sepa-
rately throughout this study. For set B, the total cross
section for the reaction π−p → a−0 p is about 0.5mb at
2.4 GeV/c [cf. Fig. 3 (upper part)], while the forward
differential cross section is about 1 mb/GeV2.
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The η and f1 exchanges, however, do not con-
tribute to the amplitude of the charge-exchange re-
action π−p → a0

0n. In this case, we have to consider
the contributions of the s- and u-channel diagrams
(Figs. 1c and 1d):

M s
N (π

−p→ a0
0n) = ga0NN

fπNN
mπ

1
s−m2

N

FN (s) (13)

× p1µū(p′2)[(p1 + p2)αγα +mN ]γµγ5u(p2),

Mu
N (π

−p→ a0
0n) = ga0NN

fπNN
mπ

1
u−m2

N

FN (u)

(14)

× p1µū(p′2)γµγ5[(p2 − p′1)αγα +mN ]u(p2),

where s = (p1 + p2)2, u = (p2 − p′1)
2, and mN is the

nucleon mass.

The πNN coupling constant is taken as
f2
πNN/4π = 0.08 [27], and the form factor for each
virtual nucleon is taken in the so-called monopole
form

FN (u) =
Λ4
N

Λ4
N + (u−m2

N )2
. (15)

Following [18], we adopt here a cutoff parameter
ΛN = 1.24 GeV (see also discussion below).

The rare-dotted and dash-double-dotted lines in
the lower part of Fig. 2 show the differential cross
section for the charge-exchange reaction π−p → a0

0n
at 2.4 GeV/c corresponding to s- and u-channel di-
agrams, respectively. Due to isospin constraints, only
the s channel contributes to the π−p → a−0 p reaction
(rare-dotted line in the upper part of Fig. 2). In these
calculations, the cutoff parameter ΛN = 1.24 GeV
and g2

a0NN
/4π � 1 have been employed in line with

the Bonn potential [27]. The solid line in the lower
part of Fig. 2 describes the coherent sum of the s-
and u-channel contributions, including the interfer-
ence of the amplitudes. Except for the very forward
region, the s-channel contribution (rare-dotted line)
is rather small compared to the u channel for the
charge-exchange reaction π−p → a0

0n, which may
give a backward differential cross section of about
1 mb/GeV2. The corresponding total cross section
can be about 0.3 mb at this energy (cf. Fig. 3, middle
part).

There is a single experimental point for the forward
differential cross section of the reaction π−p → a0

0n at
2.4 GeV/c ([30], lower part of Fig. 2),

dσ

dt
(π−p → a0

0n)
∣∣∣∣
t≈0

= 0.49 mb/GeV2
.
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Fig. 3. The total cross sections for the reactions π−p →
a−
0 p and π−p → a0

0n as a function of the incident mo-
mentum. The assignment of the curves is the same as in
Fig. 2. The experimental data point at 18 GeV/c (lower
part) is taken from [35].

Since in the forward region (t ≈ 0) the s- and u-
channel diagrams only give a smaller cross sec-
tion, the charge-exchange reaction π−p → a0

0n is
most probably dominated at small t by the isovec-
tor b1(1+−)- and ρ2(2−−)-meson exchanges (see,
e.g., [11]). Though the couplings of these mesons
to πa0 and NN are not known, we can estimate
dσ(π−p → a0

0n)/dt in the forward region using the
Regge pole model as developed by Achasov and
Shestakov [12]. Note that the Regge pole model is
expected to provide a reasonable estimate for the
cross section at medium energies of about a few GeV
and higher (see, e.g., [31, 32] and references therein).

3.2. The Regge Pole Model

The s-channel helicity amplitudes for the reaction
π−p → a0

0n can be written as

Mλ′2λ2
(π−p → a0

0n) = ūλ′2(p
′
2) (16)

×
[
−A(s, t) + (p1 + p′1)αγα

B(s, t)
2

]
γ5uλ2(p2),

where the invariant amplitudes A(s, t) and B(s, t) do
not contain kinematical singularities and (at fixed t
and large s) are related to the helicity amplitudes as

M++ ≈ −sB, M+− ≈
√
tmin − tA. (17)
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The differential cross section then can be expressed
through the helicity amplitudes in the standard way
as

dσ

dt
(π−p → a0

0n) (18)

=
1

64πs
1

(pc.m.
1 )2

(|M++|2 + |M+−|2).

Usually, it is assumed that the reaction π−p → a0
0n

at high energies is dominated by the b1 Regge pole
exchange. However, as shown by Achasov and Shes-
takov [12], this assumption is not compatible with the
angular dependence of dσ(π−p → a0

0n)/dt observed
at Serpukhov at 40 GeV/c [33, 34] and Brookhaven
at 18 GeV/c [35]. The reason is that the b1 Regge
trajectory contributes only to the amplitude A(s, t),
giving a dip in differential cross section at forward
angles, while the data show a clear forward peak
in dσ(π−p → a0

0n)/dt at both energies. To interpret
this phenomenon, Achasov and Shestakov [12] in-
troduced a ρ2 Regge pole exchange conspiring with
its daughter trajectory. Since the ρ2 Regge trajectory
contributes to both invariant amplitudes, A(s, t) and
B(s, t), its contribution does not vanish at the forward
scattering angle θ = 0, thus giving a forward peak
due to the term |M++|2 in dσ/dt. At the same time,
the contribution of the ρ2 daughter trajectory to the
amplitude A(s, t) is necessary to cancel the kinemat-
ical pole at t = 0 introduced by the ρ2 main trajectory
(conspiracy effect). In this model, the s-channel he-
licity amplitudes can be expressed through the b1 and
the conspiring ρ2 Regge trajectories exchange as

M++ ≈ Mρ2
++(s, t) (19)

= γρ2(t) exp
[
−i

π

2
αρ2(t)

]( s

s0

)αρ2 (t)

,

M+− ≈ M b1
+−(s, t) =

√
(tmin − t)/s0 γb1(t) (20)

× i exp
[
−i

π

2
αb1(t)

]( s

s0

)αb1
(t)

,

where γρ2(t) = γρ2(0) exp(bρ2t), γb1(t) = γb1(0) ×
exp(bb1t), tmin ≈ −m2

N (m
2
a0

−m2
π)/s

2, and s0 ≈
1 GeV2, while the meson Regge trajectories have the
linear form αj(t) = αj(0) + α′

j(0)t.

Achasov and Shestakov describe the Brookhaven
data on the t distribution at 18 GeV/c for −tmin ≤
−t ≤ 0.6GeV2 [35] by the expression

dN

dt
= C1

[
eΛ1t + (tmin − t)

C2

C1
eΛ2t

]
, (21)

where the first and second terms describe the ρ2 and
b1 exchanges, respectively. They found two fits: (i)

Λ1 = 4.7 GeV−2, C2/C1 = 0; (ii) Λ1 = 7.6 GeV−2,
C2/C1 ≈ 2.6 GeV−2, Λ2 = 5.8 GeV−2. This im-
plies that at 18 GeV/c the b1 contribution yields
only 1/3 of the integrated cross section. Moreover,
using the available data on the reaction π−p →
a0

2(1320)n at 18 GeV/c and comparing them with
the data on the π−p → a0

0n reaction, they esti-
mated the total and forward differential cross sections
σ(π−p → a0

0n → π0ηn) ≈ 200 nb and [dσ(π−p →
a0

0n → π0ηn)/dt]t=0 ≈ 940 nb/GeV2. Taking
Br(a0

0 → π0η) ≈ 0.8, we find σ(π−p → a0
0n) ≈

0.25 µb and [dσ(π−p → a0
0n)/dt]t=0 ≈ 1.2 µb/GeV2.

In this way, all the parameters of the Regge model
can be fixed, and we will employ it for the energy
dependence of the π−p → a0

0n cross section to obtain
an estimate at lower energies too.

The mass of ρ2(2−−) is expected to be about
1.7 GeV (see [36] and references therein), and the
slope of the meson Regge trajectory in the case
of light (u, d) quarks is 0.9 GeV−2 [37]. Therefore,
the intercept of the ρ2 Regge trajectory is αρ2(0) =
2− 0.9m2

ρ2 ≈ −0.6. Similarly—in the case of the
b1 trajectory—we have αb1(0) ≈ −0.37. At forward
angles, we can neglect the contribution of the b1
exchange (see discussion above) and write the energy
dependence of the differential cross section in the form

dσRegge

dt
(π−p → a0

0n)
∣∣∣∣
t=0

≈ dσρ2
dt

∣∣∣∣
t=0

(22)

∼ 1
(pc.m.

1 )2

(
s

s0

)−2.2

.

This provides the following estimate for the forward
differential cross section at 2.4 GeV/c,

dσRegge

dt
(π−p → a0

0n)
∣∣∣∣
t=0

≈ 0.6mb/GeV2
, (23)

which is in agreement with the experimental data
point [30] (lower part of Fig. 2). Since the b1 and ρ2

Regge trajectories have isospin 1, their contribution
to the cross section for the reaction π−p → a−0 p is a
factor of 2 smaller,

dσRegge

dt
(π−p→ a−0 p) =

1
2
dσRegge

dt
(π−p→ a0

0n).

(24)

In Fig. 2, the dotted lines show the resulting dif-
ferential cross sections for dσRegge(π−p → a−0 p)/dt
(upper part) and dσRegge(π−p → a0

0n)/dt (lower part)
at 2.4 GeV/c corresponding to ρ2 Regge exchange,
whereas the short-dash-dotted lines indicate the
contribution for ρ2 and b1 Regge trajectories. For
t → 0, both Regge parametrizations agree; however,
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at large |t| the solution including the b1 exchange
gives a smaller cross section. The cross section
dσRegge(π−p → a−0 p)/dt in the forward region ex-
ceeds the contributions of η, f1 (set A), and s-channel
exchanges, but is a few times smaller than the f1-
exchange contribution for set B. On the other hand,
the cross section dσRegge(π−p → a0

0n)/dt is much
larger than the s- and u-channel contributions in the
forward region, but much smaller than the u-channel
contribution in the backward region.

The integrated cross sections for π−p → a−0 p (up-
per part) and π−p → a0

0n (middle and lower part) for
the Regge model are shown in Fig. 3 as a function
of the pion laboratory momentum by dotted curves
for ρ2 exchange and by short-dash-dotted curves for
ρ2, b1 trajectories. In the few-GeV region, the cross
sections are comparable with the u-channel contri-
bution. At higher energies, the Regge cross section
decreases as s−3.2 in contrast to the non-Reggeized
f1-exchange contribution, which increases with en-
ergy and seems to be too large at 2.5 GeV/c for
parameters from the set B. We thus expect parameter
set B to be unrealistic.

Themain conclusions of this subsection are as fol-
lows. In the region of a few GeV, the dominant mech-
anisms of a0 production in the reaction πN → a0N
is the u-channel nucleon exchange (cf. middle part
of Fig. 3). A similar cross section (� 0.4–1.0 mb) is
predicted by the Regge model with conspiring ρ2 (or
ρ2 and b1) exchanges, normalized to the Brookhaven
data at 18 GeV/c (lower part of Fig. 3). The contri-
butions of s-channel nucleon and t-channel η-meson
exchanges are small (cf. upper and middle parts of
Fig. 3).

3.3. Possible Signals of a0 Production
in the Reaction πN → KK̄N

In Fig. 4, we show the existing experimental data
on the reactions π−p → nK+K−, π−p → nK0K̄0,
π+p → pK+K̄0, and π−p → pK0K− taken from [38].
The solid curves describe s- and u-channel contribu-
tions, calculated using the dipole nucleon form factor
(F 2

N (u)) with ΛN = 1.35 GeV. The short-dashed
and long-dashed curves describe η and f1 t-channel
exchanges, respectively. Two different choices of the
Regge pole model are shown by the dash-dotted
curves, which describe ρ2 exchange (upper) and ρ2, b1
exchange (lower). The crossed solid curves display
the background contribution (see Fig. 1e), which
was calculated using parameters of the K∗ exchange
from the Jülich model [3]. It is important that, for
the reactions π+p → pK+K̄0 and π−p → pK0K−,
where theKK̄ pair has isospin 1, the main contribu-
tions come from P-wave KK̄-pair production from

the ππ state and from S-wave KK̄-pair production
from the ηπ state. These selection rules follow from
G-parity conservation (note that the G parity of the
KK̄ system with orbital momentum L and isospin
I is given by (−1)L+I ). At the same time, for the
reactions π−p → nK+K− and π−p → nK0K̄0, the
essential contribution to the background stems from
S-wave KK̄-pair production from the isoscalar ππ
state. Let us note that the parametrization of the
total cross sections for the reactions πN → KK̄N
has been discussed previously in [39]. Here, we also
analyze contributions from different channels to the
total cross sections.

The most important point is that for all the re-
actions the background is essentially below the data
at the c.m. energy release Q ≤ 300 MeV. In the case
of the reactions π+p → pK+K̄0 and π−p → pK0K−

this, in our opinion, can only be due to a contribution
of a0. Of course, in the reactions π−p → nK+K−

and π−p → nK0K̄0, both scalar mesons, f0 and a0,
can contribute. In a series of bubble chamber ex-
periments performed in the 1960–1970s, a structure
was reported in the mass distribution of the K0

SK
0
S

system produced in the reaction π−p → nK0
SK

0
S (see,

e.g., [40] and references therein). Usually, this struc-
ture was attributed to f0(980). In our previous work,
we used the data on π−p → nf0 → nK0

SK
0
S to find a

restriction on the branching Br(f0 → KK̄) [41]. We
see here from Fig. 4 (upper right) that an impor-
tant contribution to the cross section of the reaction
π−p → nK0K̄0 at Q ≤ 300 MeV also comes from
a0. We cannot exclude that there can also be some
contribution from a0(980) at Q ≥ 300 MeV. If this is
really the case, our restriction on Br(f0 → KK̄) [41]
has to be corrected. This problem, however, requires
further analysis.

Let us note that the amplitude corresponding to
the Feynman diagram in Fig. 1e would predict a
sharply rising cross section forQ ≥ 400MeV. To sup-
press this unrealistic behavior, we used a Reggeized
K∗ propagator multiplying the Feynman propagator
of the vector meson in all the amplitudes by the
Regge power (s/s0)(αK∗ (0)−1) with αK∗(0) � 0.25
and

√
s0 = 2mK +mN . The background curves are

in reasonable agreement with the data on the reac-
tions π+p → pK+K̄0 and π−p → pK0K− at Q ≥
400 MeV (see the crossed solid curves in the two
lower panels of Fig. 4).

The Regge polemodel for a0 production, especially
the set with b1 and ρ2 exchange, is in good agreement
with the data for all the reactions at Q ≤ 300 MeV,
giving a cross section of the reaction πN → a0N →
KK̄N of about 20–30 µb at Q � 100–300 MeV. At
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Fig. 4. The total cross sections for the reactionsπ−p → nK+K−, π−p → nK0K̄0, π+p → pK+K̄0, and π−p → pK0K− as
a function ofQ =

√
s−√

s0. Experimental data are taken from [38]. The solid curves describe s- and u-channel contributions,
calculatedwith the dipole nucleon form factorF 2

N (u)withΛN = 1.35GeV. The short-dashed and long-dashed curves describe
η and f1 t-channel exchanges, respectively. Two different choices of the Regge pole model are shown by the dash-dotted curves
which describe ρ2 exchange (upper) and conspiring ρ2, b1 exchange (lower). The crossed solid curves show the background
contribution from diagram in Fig. 1e.

larger Q, it drops very fast. The u-channel contribu-
tion is also in good agreement with the data on the
reaction π+p → pK+K̄0, but the coherent sum of the
u- and s-channel contributions is below the data for
the reactions π−p → nK+K− and π−p → nK0K̄0.
The t-channel η- and f1-exchange contributions are
small and can be neglected.

Note that both invariant mass distributions of the
K−K̄0 and K0

SK
0
S systems presented in [40] show

a resonance-like structure near the KK̄ threshold
at Q ≤ 300 MeV. However, because of a compara-
tively small number of events for each fixed initial
momentum, those distributions are averaged over a
large interval of about 1 GeV/c in plab. Unfortunately,
those distributions cannot be directly compared with
theoretical ones at any fixedQ, especially in the near-
threshold region. In order to give another strong ar-
gument that the a0 contribution is really necessary to
explain the existing experimental data, let us consider
the energy dependence of the total cross section of

the reaction π−p → pK−K̄0. Averaging the existing
data from [38] versus plab over the intervals 2.0± 0.15
and 3.0± 0.15 GeV/c, we find σav = 34.9 ± 3.3 and
73.8 ± 7.6 µb, respectively. The ratio of those cross
sections is equal toR21 � 2.1± 0.05. The energy be-
havior of the background contribution in our model is
σbg ∼ Q2.3. If we assume that, in the interval of Q =
250–630 MeV (which corresponds to the interval of
plab = 2–3 GeV/c), the background contribution is
present only, we get Rbg

21 � 5.5. This means that at
3GeV/cwe should expect a cross section of� 200 µb
instead of ∼ 70 µb. Evidently, experimental data are
inconsistent with this assumption.

Let us formulate the main conclusions of this
subsection. The existing data on the reactions π+p →
pK+K̄0 and π−p → pK0K− give rather strong
evidence that, at low energy above threshold (Q ≤
300MeV), they are dominated by a0 production. The
same is also true for the reactions π−p → nK+K−
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Coefficients in Eq. (25) for different mechanisms of the pp → ppa0
0, pp → pna+

0 , pn → ppa−0 , and pn → pna0
0 reactions

Reaction j Mechanism α ξπ
j(α)[ab; cd] ξπ

j(α)[ab; dc] ξπ
j(α)[ba; dc] ξπ

j(α)[ba; cd]

pp → ppa0
0 t(η), t(f1) +1/

√
2 −1/

√
2 +1/

√
2 −1/

√
2

s(N) +1/
√
2 −1/

√
2 +1/

√
2 −1/

√
2

u(N) +1/
√
2 −1/

√
2 +1/

√
2 −1/

√
2

Regge 0 0 0 0

pp → pna+
0 t(η), t(f1) −

√
2 0 0 +

√
2

s(N) 0 +
√
2 −

√
2 0

u(N) +2
√
2 −

√
2 +

√
2 −2

√
2

Regge −1 +1 −1 +1

pn → ppa−0 t(η), t(f1) +1 −1 0 0

s(N) −2 +2 −1 +1

u(N) 0 0 +1 −1
Regge +1/

√
2 −1/

√
2 −1/

√
2 +1/

√
2

pn → pna0
0 t(η), t(f1) −1 0 +1 0

s(N) −1 −2 +1 +2

u(N) −1 +2 +1 −2
Regge 0 +

√
2 0 −

√
2

and π−p → nK0K̄0, where some smaller contribu-
tion of f0 may also be present. The value of the
a0-production cross section is reasonably described
by the Regge pole model with ρ2, b1 exchange as
proposed by Achasov and Shestakov [12]. The u-
channel exchange mechanism also gives a reasonable
value of the cross section.

4. THE REACTION NN → NNa0

4.1. An Effective Lagrangian Approach with
One-Pion Exchange

We consider a0
0, a

+
0 , a

−
0 production in the reac-

tions j = pp → ppa0
0, pp → pna+

0 , pn → ppa−0 , and
pn → pna0

0 using the effective Lagrangian approach
with one-pion exchange (OPE). For the elemen-
tary πN → Na0 transition amplitude, we take into
account different mechanisms α corresponding to
t-channel diagrams with η(550)- and f1(1285)-
meson exchanges (α = t(η), t(f1)) as well as s- and
u-channel graphs with an intermediate nucleon (α =
s(N), u(N)) (cf. [18]). The corresponding diagrams
are shown in Fig. 5. The invariant amplitude of the
NN → NNa0 reaction then is the sum of the four
basic terms (diagrams in Fig. 5) with permutations of
nucleons in the initial and final states

Mπ
j(α)[ab; cd] = ξπj(α)[ab; cd]Mπ

α[ab; cd] (25)

+ ξπj(α)[ab; dc]Mπ
α[ab; dc] + ξπj(α)[ba; dc]

×Mπ
α[ba; dc] + ξπj(α)[ba; cd]Mπ

α[ba; cd],

where the coefficients ξπj(α) are given in the table. The

amplitudes for the t-channel exchange with η(550)
and f1(1285) mesons are given by

Mπ
t(η)[ab; cd] = ga0ηπFa0ηπ (26)

×
(
(pa − pc)2, (pd − pb)2

)
gηNNFη

(
(pa − pc)2

)
× 1
(pa − pc)2 −m2

η

ū(pc)γ5u(pa)Π(pb; pd),

Mπ
t(f1)[ab; cd] = −ga0f1πFa0f1π (27)

×
(
(pa − pc)2, (pd − pb)2

)
gf1NNFf1

(
(pa − pc)2

)
× 1
(pa − pc)2 −m2

f1

(pa − pc + 2(pb − pd))µ

×
(
gµν −

(pa − pc)µ(pa − pc)ν
m2
f1

)

× ū(pc)γ5γνu(pa)Π(pb; pd),

with

Π(pb; pd) =
fπNN
mπ

Fπ
(
(pb−pd)2

)
(pb−pd)β (28)
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Fig. 5.Diagrams for a0 production in the reactionNN →
a0NN .

× ū(pd)γ5γβu(pb)
1

(pb − pd)2 −m2
π

.

The amplitudes for the s and u channels (lower part of
Fig. 5) are given as

Mπ
s(N)[ab; cd] = Π(pb; pd) (29)

× fπNN
mπ

Fπ
(
(pd − pb)2

)
ga0NN

×
FN
(
(pa + pb − pd)2

)
(pa + pb − pd)2 −m2

N

(pd − pb)µ ū(pc)

× [(pa + pb − pd)δγδ +mN ]γ5γµu(pa),

Mπ
u(N)[ab; cd] = Π(pb; pd) (30)

× fπNN
mπ

Fπ
(
(pd − pb)2

)
ga0NN

×
FN
(
(pc + pd − pb)2

)
(pc + pd − pb)2 −m2

N

(pd − pb)µū(pc)γ5γµ

× [(pc + pd − pb)δγδ +mN ]u(pa).

Here, pa, pb and pc, pd are the 4-momenta of the initial
and final nucleons, respectively. As in the previous
section, we mostly employ coupling constants and
form factors from the Bonn–Jülich potentials (see,
e.g., [27, 28, 42]).

For the form factors at the a0f1π (as well as a0ηπ)
vertex, factorized forms are applied following the as-
sumption from [43, 44],

Fa0f1π(t1, t2) = Ff1NN (t1)FπNN (t2), (31)

where Ff1NN (t), FπNN (t) are taken in the monopole
form (see previous section). Usually, the cutoff pa-
rameter ΛπNN is taken in the interval 1–1.3 GeV.
Here, we take ΛπNN = 1.05 GeV (see also the dis-
cussion in [19]).

As shown in the analysis of [18], the contribution
of the η exchange to the amplitude πN → a0N is
small (cf. also Section 3). Note that in [45] only this
mechanism was taken into account for the reaction
pn → pp a−0 . Here, we also include the η exchange
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Fig. 6. The total cross sections for the reactions pp →
ppa0

0 and pp → pna+
0 as a function of the excess energy

Q =
√

s −√
s0 calculated with FSI.

because it might be noticeable in those isospin chan-
nels where a strong destructive interference of u- and
s-channel terms can occur (see below).

Since we have two nucleons in the final state, it
is necessary to take into account their final-state in-
teraction (FSI), which has some influence on meson
production near the threshold. For this purpose, we
adopt the FSI model from [46] based on the (realis-
tic) Paris potential. We use, however, the enhance-
ment factor FNN (qNN )—as given by this model—
only in the region of small relative momenta of the
final nucleons qNN ≤ q0, where it is larger than 1.
Having in mind that this factor is rather uncertain
at larger qNN , where, for example, contributions of
nonnucleon intermediate states to the loop integral
might be important, we assume that FNN (qNN ) = 1
for qNN ≥ q0.

In Fig. 6, we show the total cross section as a
function of the energy excess Q =

√
s−√

s0 for the
reactions pp → ppa0

0 (upper part) and pp → pna+
0

(lower part). As seen from Fig. 6, the u and s channels
give the dominant contribution; the t(f1) channel
is small for both isospin reactions. For the reac-
tion pp → pna+

0 , the Regge exchange contribution
(extended to low energies) becomes important. For
the pp → ppa0

0 channel, the Regge model predicts
no contribution from ρ2 and ρ2, b1 exchanges due to
isospin arguments (i.e., the vertex with a coupling
of three neutral components of isovectors vanishes);
thus, only s, u, t(η), and t(f1) channels are plotted in
the upper part of Fig. 6.
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Here, we have to point out the influence of the
interference between the s and u channels. Ac-
cording to the isospin coefficients from the OPE
model presented in the table, the phase (of inter-
ference α) between the s and u channels Mπ

s(N) +
exp(−iα)Mπ

u(N) is equal to zero; i.e., the sign be-
tween Mπ

s(N) and Mπ
u(N) is “plus.” The solid curves

in Fig. 6 indicate the coherent sum of s(N) and u(N)
channels including the interference of the amplitudes
(s+ u + int.). One can see that, for the pp → pna+

0
reaction, the interference is positive and increases the
cross section, whereas, for the pp → ppa0

0 channel,
the interference is strongly destructive since we have
identical particles in the initial and final states and the
contributions of s and u channels are very similar.

Here, we would like to comment on an extension
of the OPE model to a one-boson exchange (OBE)
approximation, i.e., accounting for the exchange of
σ, ρ, ω, . . . mesons as well as for multimeson ex-
changes. Generally speaking, the total cross section
of a0 production should contain the sum of all the
contributions:

σ(NN → NNa0) =
∑
j

σj,

where j = π, σ, ρ, ω, . . .. Depending on their cutoff
parameters, the heavier meson exchanges might give
a comparable contribution to the total cross section
for a0 production. An important point, however, is
that, near threshold (e.g., Q ≤ 0.3–0.6 GeV), the
energy behavior of all those contributions is the same,
i.e., it is proportional to the three-body phase space
σj ∼ Q2 (when the FSI is switched off and the narrow
resonance width limit is taken). In this respect, we
can consider the OPE as an effective one and normal-
ize it to the experimental cross section by choosing
an appropriate value of Λπ. The most appropriate
choice for Λπ is about 1–1.3 GeV. Another question
is related to the isospin of the effective exchange. As is
known from a series of papers on the reactionsNN →
NNX,X = η, η′, ω, φ, the most important contribu-
tions to the corresponding cross sections near the
threshold come from π and ρ exchanges (see, e.g., the
review [47] and references therein). In line with those
results, we assume here that the dominant contribu-
tion to the cross section of the reactionNN → NNa0
also comes from the isovector exchanges (like π and
ρ). In principle, it is also possible that some baryon
resonances may contribute. However, there is no in-
formation about resonances that couple to the a0N
system. Our assumptions thus enable us to make ex-
ploratory estimates of the a0-production cross section
without introducing free parameters that would be out
of control by existing data. Themodel can be extended

accordingly when new data on a0 production become
available.

Another important question is related to the choice
of the form factor for a virtual nucleon, which—in
line with the Bonn–Jülich potentials—we choose as
given by (15), which corresponds to monopole form
factors at the vertices. In the literature, furthermore,
dipole-like form factors (at the vertices) are also often
used (cf. [44, 47, 48]). However, there are no strict
rules for the “correct” power of the nucleon form fac-
tor. In physics terms, the actual choice of the power
should be irrelevant; we may have the same predic-
tions for any reasonable choice of the power if the
cutoff parameter ΛN is fixed accordingly. Note that
ΛN may also depend on the type of mesons involved at
the vertices. In our previous work [18], we have fixed
ΛN for the monopole related form factor (15) in the
interval 1.2–1.3 GeV fitting the forward differential
cross section of the reaction pp → da+

0 from [49].
On the other hand, the same data can be described
rather well using a dipole form factor (at the vertices)
with ΛN = 1.55–1.6 GeV. If we employ this dipole
form factor with ΛN = 1.55–1.6 GeV in the present
case, we obtain practically identical predictions for
the cross sections of the channels pp → pna+

0 , pn →
pna0

0, and pn → ppa−0 , where the u-channel mech-
anism is dominant and u–s interference is not too
important. In the case of the channel pp → ppa0

0, we
obtain cross sections up to a factor of 2 larger for the
dipole-like form factor in comparison to the monopole
one. This is related to the strong destructive interfer-
ence of the s- and u-exchange mechanisms, which
slightly depends on the type of form factor used. How-
ever, our central result, that the cross section for the
pna+

0 final channel is about an order of magnitude
higher than the ppa0

0 channel in pp collisions, is ro-
bust (within less than a factor of 2) with respect to
different choices of the form factor.

As seen from Fig. 6, we get the largest cross sec-
tion for the pp → pna+

0 isospin channel. For this reac-
tion, the u channel gives the dominant contribution;
the s-channel cross section is small such that the
interference is not so essential as for the pp → pp a0

0
reaction.

As was already discussed in our previous study
[18], an effective Lagrangian model (ELM) cannot
be extrapolated to high energies because it predicts
the elementary amplitude πN → a0N to rise fast.
Therefore, such a model can only be employed not
far from the threshold. On the other hand, the Regge
model is valid at large energies and we have to worry
about how close to the threshold we can extrapolate
corresponding amplitudes. According to duality ar-
guments, one can expect that the Regge amplitude
can be applied at low energy, too, if the reaction
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0 → ppK+K̄0 and
pp → pna0

0 → ppK+K− in comparison to the
experimental data as functions of Q =

√
s −√

s0.
For more details, see the text.

πN → a0N does not contain essential s-channel res-
onance contributions. In this case, the Regge model
might give a realistic estimate of the πN → a0N and
NN → NNa0 amplitudes even near the threshold.

Anyway, as we have shown in [18] (see also Sec-
tion 3), the Regge and u-channel model give quite
similar results for the π−p → a0

0n cross section in the
threshold region; some differences in the cross sec-
tions of the reactionsNN → NNa0—as predicted by
those two models—can be attributed to differences
in the isospin factors and effects of NN antisym-
metrization, which is important near the threshold
(the latter was ignored in the Reggemodel formulated
for larger energies).

4.2. Reaction NN → NNa0 → NNKK̄

4.2.1. Numerical results for the total cross
section. In the upper part of Fig. 7, we display the
calculated total cross section [within parameter set 1
(8)] for the reaction pp → pna+

0 → pnK+K̄0 in com-
parison to the experimental data for pp → pnK+K̄0

(dots) from [38] as a function of the excess energy
Q =

√
s−√

s0. The dash-dotted and solid curves in
Fig. 7 correspond to the coherent sum of s(N) and
u(N) channels with interference (s+ u+ int.), cal-
culated with a monopole form of the form factor (15)
withΛN = 1.24GeV and with a dipole form (FN (u)2)
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Fig. 8. The K+K− invariant mass distribution for the
pp → ppK+K− reaction at plab = 3.67GeV/c. The dot-
ted curves indicate the 4-body phase space with constant
interaction amplitude, the dash-dotted curves show the
coherent sum of s(N) and u(N) channels with inter-
ference. The solid curves with open circles correspond
to the f0 contribution from [41]. The thick solid curves
show the sum of all contributions including the decay
φ → K+K−. The experimental data are taken from [50].

with ΛN = 1.35 GeV, respectively. We mention that
the latter (dipole) result is in better agreement with
the constraints on the near-threshold production of
a0 in the reaction π+p → K+K̄0p (see Section 3). In
the middle part of Fig. 7, the solid curves with full
dots and with open squares present the results within
the ρ2 and ρ2, b1 Regge exchange model. The dotted
curve shows the 4-body phase space (with constant
interaction amplitude), while the dashed curve is the
parametrization from Sibirtsev et al. [39]. We note,
that the cross sections for parameter set 2 (9) are
similar to set 1 (8) and larger by a factor of about 1.5.

In the lower part of Fig. 7, we show the calculated
total cross section (within parameter set 1) for the re-
action pp → ppa0

0 → ppK+K− as a function of Q =√
s−√

s0 in comparison to the experimental data.
The closed circles indicate the data for pp → ppK0K̄0

from [38], the open square for pp → ppK+K− is from
the DISTO collaboration [50], and the closed trian-
gles show the data from COSY-11 [51].

For the pp → ppa0
0 → ppK+K− reaction (as for

pp → ppa0
0), there is no contribution from meson

Regge trajectories; s and u channels give similar
contributions such that their interference according
to the effective OPE model (curve s+ u+ int.) is
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strongly destructive (cf. upper part of Fig. 6). The
t(f1) contribution (dotted curve) is practically neg-
ligible, while the t(η) channel (rare-dotted curve)
becomes important closer to the threshold.

Thus, our model gives quite small cross sec-
tions for a0

0 production in the pp → ppK+K− reac-
tion, which complicates its experimental observation
for this isospin channel. The situation looks more
promising for the pp → pna+

0 → pnK+K̄0 reaction
since the a+

0 -production cross section is an order of
magnitude larger than the a0

0 one. Moreover, as has
been pointed out with respect to Fig. 6, the influence
of the interference is not as strong as that for the
pp → pp a0

0 → ppK+K− reaction.
Here, we stress again the limited applicability of

the ELM at high energies. As seen from the upper
part of Fig. 7, the ELM calculations at high energies
go through the experimental data, which is not real-
istic since other channels also contribute to K+K̄0

production in pp reactions (cf. dashed curve from [39],
Fig. 7, middle part). Moreover, the ELM calculations
are higher than the Regge model predictions, which
indicates that the ELM amplitudes at high energies
have to be Reggeized.

4.2.2. Numerical results for the invariant mass
distribution.As follows from the lower part of Fig. 7,
the a0 contribution to the K+K− production in
the pp → ppK+K− reaction near the threshold is
hardly seen.With increasing energy, the cross section
grows; however, even at Q = 0.111 GeV, the full
cross section with interference (s+ u+ int.) gives
only a few percent contribution to the 0.11± 0.009 ±
0.046 µb “nonresonant” cross section (without φ →
K+K−) from the DISTO collaboration [50].

To clarify the situation with the relative contri-
bution of a0

0 to the total K+K− production in pp
reactions, we calculate the K+K− invariant mass
distribution for the pp → ppK+K− reaction at plab =
3.67 GeV/c, which corresponds to the kinematical
conditions for the DISTO experiment [50]. The differ-
ential results are presented in Fig. 8. The upper part
shows the calculation within parameter set 1, where-
as the lower part corresponds to set 2. The dash-
dotted curves indicate the coherent sum of s(N) and
u(N) channels with interference for the a0 contribu-
tion. However, one has to consider also the contribu-
tion from the f0 scalar meson, i.e., the pp → ppf0 →
ppK+K− reaction. The f0 production in pp reactions
has been studied in detail in [41]. Here, we use the
result from [41] and show in Fig. 8 the contribution
from the f0 meson (calculated with parameter set A
from [41]) as the solid curve with open circles.

We find that, when adding the f0 contribution to
the phase space of nonresonant K+K− production
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Fig. 9. Diagrams describing different mechanisms of
nonresonant KK̄ production in the reaction NN →
NNKK̄ .

(the dotted curves in Fig. 8) and the contribution
from φ decays (resonance peak around 1.02 GeV),
the sum (thick solid) curves almost perfectly describe
the DISTO data. This means that there is no visi-
ble signal for an a0

0 contribution in the DISTO data
according to our calculations, while the f0 meson
gives some contribution to theK+K− invariant mass
distribution at low invariant massesM , that is, about
12% of the total “nonresonant” cross section from the
DISTO collaboration [50]. Thus, the reaction pp →
pnK+K̄0 is more promising for a0 measurements, as
has been pointed out above.

4.2.3. Nonresonant background. Following
[39], we consider two mechanisms of nonresonant
KK̄ production, related to pion and kaon exchanges,
which are described by the diagrams in Fig. 9. The
pion-exchange amplitude can be calculated using
the results of Section 3. As concerning the kaon-
exchange mechanism, the amplitude of the reaction
NN → NNa0 → NNKK̄ can be written as

MK-exch(pa, pb; pc, pd, k1, k2) (32)

=
F 2
K(q

2)
q2 −m2

K

ū(pc)AKN→KN(pc, k1; pa, q)u(pa)

× ū(pd)AK̄N→K̄N (pd, k2; pb, q)u(pb)

with permutations of nucleons in the initial and final
states. Here, pa, pb and pc, pd are the 4-momenta of
the initial and final nucleons, respectively; k1 and k2

are the momenta of the final kaons; q is the momen-
tum of the virtual kaon; and FK(q2) is the kaon form
factor, which we take in the monopole form with the
cutoff parameter Λ = 1.2 GeV.

The antikaon–nucleon amplitude AK̄N→K̄N has
been taken from [52] explicitly. Since near threshold
the KN → KN cross section depends mainly on the
normalization of the amplitude, but not on its spin
dependence, we adopt the simplest approximation
that the amplitude AKN→KN is a Lorentz scalar.
This allows us to connect the AKN→KN amplitude
(squared) by simple kinematical factor to the KN →
KN cross section, where the parametrization for the
elastic K+p → K+p cross section has been taken
from [53] and theK0p → K+n cross section has been
parametrized according to the existing data [38, 54].
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The results of our calculations are shown in
Fig. 10 in comparison to the experimental data.
The contribution of the pion-exchange mechanism
is shown by the dotted curves. The dashed curves
describe the K-exchange mechanism. The thin solid
curves show the total background, which in ourmodel
is the sum of pion- and kaon-exchange contribution.
This background can be compared with the a0-
production cross section shown by the thick solid
curves. In the case of the reaction pp → pnK+K̄0

(upper part), the a0-production cross section is much
larger than the background, while, in the case of the
reaction pp → ppK+K− (lower part), the a0(980)-
resonance contribution appears to be much smaller
than the nonresonant background. We mention that
the disagreement with the DISTO (Q � 100 MeV)
and COSY–11 (Q � 17MeV) data should be related
to theK−pp FSI, which is known to be strong.

4.2.4. Concluding remarks on a0a0a0 produc-
tion in pNpNpN reactions. In this section, we have
estimated the cross sections of a0 production in
the reactions pp → ppa0

0 and pp → pna+
0 near the

threshold and at medium energies. Using an effective
Lagrangian approach with OPE, we have analyzed
different contributions to the cross section corre-
sponding to t-channel diagrams with η(550)- and
f1(1285)-meson exchanges as well as s- and u-
channel graphs with an intermediate nucleon. We
additionally have considered the t-channel Reggeon
exchange mechanism with parameters normalized to
the Brookhaven data for π−p → a−0 p at 18 GeV/c

[35]. These results have been used to calculate the
contribution of a0 mesons to the cross sections of the
reactions pp → pnK+K̄0 and pp → ppK+K−. Due
to unfavorable isospin Clebsh–Gordan coefficients as
well as rather strong destructive interference of the s-
and u-channel contributions, our model gives quite
small cross sections for a0

0 production in the pp →
ppK+K− reaction. However, the a+

0 -production
cross section in the pp → pna+

0 → pnK+K̄0 reac-
tion should be larger by about an order of mag-
nitude. Therefore, the experimental observation of
a+

0 in the reaction pp → pnK+K̄0 is much more
promising than the observation of a0

0 in the reaction
pp → ppK+K−. We note in passing that the πη
decay channel is experimentally more challenging
since, due to the larger nonresonant background [55],
the identification of the η meson (via its decay into
photons) in a neutral-particle detector is required.

We have also analyzed invariant mass distribu-
tions of theKK̄ system in the reaction pp → pNa0 →
pNKK̄ at different excess energies Q not far from
the threshold. Our analysis of the DISTO data on the
reaction pp → ppK+K− at 3.67 GeV/c has shown
that the a0

0 meson is hardly seen in dσ/dM at low
invariant masses; however, the f0 meson gives some
visible contribution. In this respect, the possibility of
measuring the a+

0 meson in dσ/dM for the reaction
pp → pnK+K̄0 (or → dK+K̄0) looks much more
promising not only due to a much larger contribution
for the a+

0 , but also due to the absence of the f0 meson
in this channel. It is also very important that the non-
resonant background is expected to be much smaller
than the a0 signal in the pp → pnK+K̄0 reaction.

Experimental data on a0 production in NN colli-
sions are practically absent (except for the a0 obser-
vation in the reaction pp → dX [49]). Such measure-
ments might give new information on the a0 struc-
ture. According to Atkinson et al. [56], a relatively
strong production of a0 [the same as for the b1(1235)]
in nondiffractive reactions can be considered as ev-
idence for a qq̄ state rather than a qqq̄q̄ state. For
example, the cross section of a0 production in γp
reactions at 25–50 GeV is about 1/6 of the cross sec-
tions for ρ and ω production. Similar ratios are found
in the two-body reaction pp → dX at 3.8–6.3GeV/c,
where σ(pp → da+

0 ) = (1/4–1/6)σ(pp → dρ+).
In our case, we can compare a0 and ω production.

Our model predicts σ(pp → pna+
0 ) = 30–70 µb at

Q � 1 GeV, which can be compared with σ(pp →
ppω) � 100–200 µb at the same Q. If such a large
cross section could be detected experimentally, this
would be a serious argument in favor of the qq̄ model
for a0.

PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003



NEAR-THRESHOLD PRODUCTION OF a0(980) MESONS 165

To distinguish between the threshold cusp sce-
nario and a resonance model, one can exploit differ-
ent analytical properties of the a0-production ampli-
tudes. In case of a genuine resonance, the amplitude
of ηπ and KK̄ production through a0 has a pole
and satisfies the factorization property. This implies
that the shapes of the invariant mass distributions in
the ηπ and KK̄ channels should not depend on the
specific reaction in which a0 resonance is produced
(for Q ≥ Γtot). On the other hand, for the threshold
cusp scenario, the a0 bump is produced through the
πη FSI. The corresponding amplitude has a square
root singularity and in general cannot be factorized
(see, e.g., [46], where the factorization property was
disproven for pp FSI in the reaction pp → ppM ). This
implies that, for a threshold bump, the invariant mass
distributions in the ηπ andKK̄ channels are expected
to be different for different reactions and will depend
on kinematical conditions (i.e., momentum transfer)
even at the same value of excess energy, e.g., Q �
1GeV.

5. a0(980)–f0(980) MIXING AND ISOSPIN
VIOLATION IN THE REACTIONS pN → da0,

pd → 3He(3H)a0, AND dd → 4He a0

5.1. Hints for a0(980)–f0(980)Mixing

As was suggested long ago in [11], the dynamical
interaction of the a0(980) and f0(980) mesons with
states close to the KK̄ threshold may give rise to
a significant a0(980)–f0(980) mixing. Different as-
pects of this mixing and the underlying dymanics, as
well as the possibilities of measuring this effect, have
been discussed in [3, 12–17]. Furthermore, it has
been suggested by Close and Kirk [16] that the new
data from the WA102 collaboration at CERN [26]
on the central production of f0 and a0 in the reac-
tion pp → psXpf provide evidence for a significant
f0–a0-mixing intensity as large as |ξ|2 = (8± 3)%.
In this section, we will discuss possible experimental
tests of this mixing in the reactions

pp → da+
0 (a), pn → da0

0 (b),

pd → 3H a+
0 (c), pd → 3He a0

0 (d),

dd → 4He a0
0 (e)

near the corresponding thresholds. We recall that
the a0 meson can decay to πη or KK̄. Here, we
only consider the dominant πη-decay mode. Note
that the isospin-violating anisotropy in reaction (b)
due to the a0(980)–f0(980) mixing is very similar
to that which might arise in the reaction pn → dπ0

because of the π0–ηmixing (see [57]). Recently, mea-
surements of the charge-symmetry breaking in the

reactions π+d → ppη and π−d → nnη near the η-
production threshold were performed at BNL [57].
A similar experiment, comparing the reactions pd →
3Heπ0 and pd → 3Hπ+ near the η-production thresh-
old, is now being performed at COSY (Jülich) (see,
e.g., [58]).

5.2. Reactions pp → da+
0 and pn → da0

0

5.2.1. Phenomenology of isospin violation.
In reactions (a) and (b), the final da0 system has
isospin If = 1; for lf = 0 (S-wave production close
to threshold), it has spin-parity JPf = 1

+. The initial

NN system cannot be in the state Ii = 1, JPi = 1
+

due to the Pauli principle. Therefore, near threshold,
the da0 system should be dominantly produced in the
P wave with quantum numbers JPf = 0

−, 1−, or 2−.
The states with JPi = 0

−, 1−, or 2− can be formed by
an NN system with spin Si = 1 and li = 1 and 3. At
the beginning, for qualitative discussion, we neglect
the contribution of the higher partial wave (li = 3).5)
In this case, we can write the amplitude of reaction
(a) in the following form:

T (pn → d a+
0 ) = α+(p · S)(k · e∗) (33)

+ β+(p · k)(S · e∗) + γ+(S · k)(p · e∗),

where S = φTNσ2σφN is the spin operator of the initial
NN system; p and k are the initial and final c.m. mo-
menta; e is the deuteron polarization vector; and α+,
β+, and γ+ are three independent scalar amplitudes
that can be considered as constants near threshold (at
k → 0).

Due to the mixing, a0
0 may also be produced via f0.

In this case, the a0
0d system will be in the S wave and

the amplitude of reaction (b) can be written as

T (pn → da0
0) = α0(p · S)(k · e∗) (34)

+ β0(p · k)(S · e∗) + γ0(S · k)(p · e∗) + ξF (S · e∗),
where ξ is the mixing parameter and F is the f0

production amplitude. In the limit k → 0, F is again
a constant. The scalar amplitudes α, β, and γ for
reactions (a) and (b) are related to each other by a
relative factor of

√
2 as α+ =

√
2α0, β+ =

√
2β0, and

γ+ =
√
2γ0.

The differential cross sections for reactions (a) and
(b) have the form (up to terms linear in ξ)

dσ(pp → da+
0 )

dΩ
= 2

k

p

(
C0 + C2 cos2 θ

)
, (35)

5)See, e.g., phenomenological analysis in [59], where this par-
tial wave was also taken into account.
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Fig. 11. Diagrams describing (a–d) different mecha-
nisms of a0- and f0-meson production in the reaction
NN → da0(f0)within the framework of the TSM and (e)
the nonresonant πη production.

dσ(pn → da0
0)

dΩ
=

k

p

(
C0 + C2 cos2 θ + C1 cos θ) ,

(36)

where

C0 =
1
2
p2k2

[
|α0|2 + |γ0|2

]
, (37)

C1 = pkRe((ξF )∗(α0 + 3β0 + γ0)),

C2 =
1
2
p2k2

[
3|β0|2

+ 2Re(α0β0∗ + α0γ0∗ + β0γ0∗)
]
.

Similarly, the differential cross section of the reaction
pn → df0 can be written as

dσ(pn → df0)
dΩ

=
3k
2p

|F |2. (38)

The mixing effect—described by the term C1 cos θ in
Eq. (36)—then leads to an isospin violation in the
ratioRba of the differential cross sections for reactions
(b) and (a),

Rba =
1
2
+
1
2

C1 cos θ
C0 + C2 cos2 θ

, (39)

and to the forward–backward asymmetry for reaction
(b),

Ab(θ) =
σb(θ)− σb(π − θ)
σb(θ) + σb(π − θ)

=
C1 cos θ

C0 + C2 cos2 θ
.

(40)

The latter effect has been already discussed in [60],
where it was argued that the asymmetry Ab(θ =
0) can reach 5–10% at an energy excess of Q =
5–10MeV. However, if we adopt a mixing parameter
|ξ|2 = (8± 3)%, as follows from the WA102 data,
we can expect a much larger asymmetry. We note
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ΛN = 1.2 and 1.3 GeV, respectively. The thin curves are
calculated using the Flatté mass distribution for the a0

meson with a cut Mπ+η ≥ 0.85 GeV andΛN = 1.2 GeV
(dash-dotted curve) or 1.3 GeV (solid curve).

explicitly that the coefficient C1 in (37) depends
not only on the magnitude of the mixing parameter
ξ, but also on the relative phases with respect to
the amplitudes of f0 and a0 production, which are
unknown so far. This uncertainty has to be kept in
mind for the following discussion.

If a0 and f0 were very narrow particles, then near
threshold the differential cross section (35), domi-
nated by the P wave, would be proportional to k3

or Q3/2, where Q is the c.m. energy excess. Due
to S-wave dominance in the reaction pn → df0, one
would expect that the cross section scales like ∼k
or ∼

√
Q. In this limit, the a0–f0 mixing leads to an

enhancement of the asymmetry Ab(θ) as 1/k near
the threshold. In reality, however, both a0 and f0

have widths of about 40–100 MeV. Therefore, at
fixed initial momentum, their production cross section
should be averaged over the corresponding mass dis-
tributions. This will essentially change the threshold
behavior of the cross sections. Another complication
is that broad resonances are usually accompanied by
background lying underneath the resonance signals.
These problems will be discussed below in the follow-
ing subsections.

5.2.2. Model calculations. In order to estimate
isospin-violation effects in the differential cross-
section ratio Rba and in the forward–backward
asymmetry Ab, we use the two-step model (TSM),
which was successfully applied earlier to the descrip-
tion of η-, η′-, ω-, and φ-meson production in the
reaction pN → dX in [61, 62]. Recently, this model
has been also used for an analysis of the reaction
pp → da+

0 [18].
The diagrams in Fig. 11 describe the different

mechanisms of a0- and f0-meson production in the
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reaction NN → da0(f0) within the framework of the
TSM. In the case of a0 production, the amplitude
of the subprocess πN → a0N contains three differ-
ent contributions: (i) the f1(1285)-meson exchange
(Fig. 11a), (ii) the η-meson exchange (Fig. 11b), and
(iii) s- and u-channel nucleon exchanges (Figs. 11c
and 11d). As it was shown in [18], the main contri-
bution to the cross section for the reaction pp → d a+

0
stems from the u-channel nucleon exchange (i.e.,
from the diagram of Fig. 11d) and all other contri-
butions can be neglected. In order to preserve the
correct structure of the amplitude under permutations
of the initial nucleons (which is antisymmetric for the
isovector state and symmetric for the isoscalar state),
the amplitudes of a0 and f0 production can be written
as the following combinations of the t- and u-channel
contributions:

Tpn→da0
0
(s, t, u) = Apn→da0

0
(s, t)−Apn→da0

0
(s, u),

(41)

Tpn→df0(s, t, u) = Apn→df0(s, t) +Apn→df0(s, u),

where s = (p1 + p2)2; t = (p3 − p1)2; u = (p3 − p2)2;
and p1, p2, p3, and p4 are the 4-momenta of the initial
protons, meson M , and the deuteron, respectively.
The structure of the amplitudes (41) guarantees that
the S-wave part vanishes in the case of direct a0

production since it is forbidden by angular momen-
tum conservation and the Pauli principle. Also, higher
partial waves are included in (41) (in contrast to the
simplified discussion in Subsection 5.1).

In the case of f0 production, the amplitude of the
subprocess πN → f0N contains two different con-
tributions: (i) the π-meson exchange (Fig. 11b) and
(ii) s- and u-channel nucleon exchanges (Figs. 11c
and 11d). Our analysis has shown that, similar to the
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case of a0 production, the main contribution to the
cross section of the reaction pn → df0 is due to the
u-channel nucleon exchange (i.e., from the diagram
of Fig. 11d); the contribution of the combined ππ
exchange (Fig. 11b) as well as the s-channel nucleon
exchange can be neglected. In this case, we get for
the ratio of the squared amplitudes

|Apn→df0(s, t)|2
|Apn→da0(s, t)|2

=
|Apn→df0(s, u)|2
|Apn→da0(s, u)|2

=
|gf0NN |2
|ga0NN |2 .

(42)

If we take ga0NN = 3.7 (see, e.g., [27]) and gf0NN =
8.5 [28], then we find for the ratio of the ampli-
tudes R(f0/a0) = gf0NN/ga0NN = 2.3. Note, how-
ever, that Mull and Holinde [28] give a different value
for the ratio of the coupling constants R(f0/a0) =
1.46, which is lower by about 37%. In the following,
we use R(f0/a0) = 1.46–2.3.

The forward differential cross section for reaction
(a) as a function of the proton beam momentum is
presented in Fig. 12. The thick dash-dotted and solid
curves (taken from [18] and calculated for the zero
width limit) describe the results of the TSM for differ-
ent values of the nucleon cutoff parameter, ΛN = 1.2
and 1.3 GeV, respectively.

In order to take into account the finite width of
a0, we use a Flatté mass distribution with the same
parameters as in [19]: theK-matrix pole at 999 MeV,
Γa0→πη = 70 MeV, and Γ(KK̄)/Γ(πη) = 0.23 (see
also [24] and references therein). The thin dash-
dotted and solid curves in Fig. 12 are calculated
within TSM using this mass distribution with the
cut Mπ+η ≥ 0.85 GeV and ΛN = 1.2 and 1.3 GeV,
respectively. The corresponding π0η invariant mass
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Fig. 15. Differential cross section of the reaction pn →
da0

0 at Tlab = 2.6 GeV as a function of θc.m.. The solid
curve corresponds to the case of isospin conservation,
i.e., |ξ|2 = 0. The dash-dotted curves include the mix-
ing effect with |ξ|2 = 0.05 for the lower curves (1a and
2a) and |ξ|2 = 0.11 for the upper curves (1b and 2b).
The curves 1a, 1b and 2a, 2b have been calculated for
R(f0/a0) = 1.46 and 2.3, respectively.

distribution for the reaction pn → da0
0 → dπ0η at

3.4 GeV/c is shown in Fig. 13 by the dashed curve.

In the case of the f0 meson, where Br(KK̄) is not
yet fixed [24], we use the Breit–Wigner mass dis-
tribution with MR = 980 MeV and ΓR � Γf0→ππ =
70MeV.

The calculated total cross sections for the reac-
tions pn → da0 and pn → df0 (as a function of Tlab for
ΛN = 1.2 GeV ) are shown in Fig. 14. The solid and
dashed curves describe the calculations with zero and
finite widths, respectively. In the case of f0 production
in the ππ mode, we take the same cut in the invariant
mass of the ππ system, Mππ ≥ 0.85 GeV. The curves
denoted by 1 and 2 are obtained for R(f0/a0) = 1.46
and 2.3. Comparing the solid and dashed curves, we
see that near the threshold the finite-width correc-
tions to the cross sections are quite important. The
most important changes are introduced to the energy
behavior of the a0-production cross section. (Com-
pare also thick and thin curves in Fig. 12.)

In principle, mixing can modify the mass spectrum
of the a0 and f0. However, in this case, the effect
is expected to be less spectacular than for the ρ–ω
case where the widths of ρ and ω are very different
(see, e.g., the discussion in [57] and references there-
in). Nevertheless, the modification of the a0

0 spec-
tral function due to a0–f0 mixing can be measured
comparing the invariant mass distributions of a0

0 with
that of a+

0 . According to our analysis, a much cleaner
signal for isospin violation can be obtained from the
measurement of the forward–backward asymmetry
in the reaction pn → da0

0 → dπ0η for the integrated
strength of the a0. That is why, for all calculations

on isospin-violation effects below, the strengths of f0

and a0 are integrated over the invariant masses in the
interval 0.85–1.02 GeV.

The magnitude of the isospin-violation effects is
shown in Fig. 15, where we present the differen-
tial cross section of the reaction pn → da0

0 at Tlab =
2.6GeV as a function of θc.m. for different values of the
mixing intensity |ξ|2 = 0.05 and 0.11. For reference,
the solid curve shows the case of isospin conserva-
tion, i.e., |ξ|2 = 0. The dash-dotted curves include
the mixing effect. Note that all curves in Fig. 15
were calculated assuming maximal interference of the
amplitudes describing the direct a0 production and
its production through f0. The maximal values of the
differential cross section may also occur at θc.m. = 0◦
depending on the sign of the coefficientC1 in Eq. (36).

It follows from Fig. 15 in either case that the
isospin-violation parameter Ab(θ) for θc.m. = 180◦
may be quite large, i.e.,

Ab(180◦) = 0.86 − 0.96 or 0.9 − 0.98 (43)

for R(f0/a0) = 1.46 or 2.3, respectively. Note that
the asymmetry depends rather weakly on R(f0/a0).
It might be more sensitive to the relative phase of a0

and f0 contributions.
5.2.3. Background. The dash-dotted curve in

Fig. 13 shows our estimates of possible background
from nonresonant π0η production in the reaction
pn → dπ0η at Tlab = 2.6 GeV (see also [63]). The
background amplitude was described by the diagram
shown in Fig. 11e, where η and π mesons are created
through the intermediate production of ∆(1232)
(in the amplitude πN → πN ) and N(1535) (in the
amplitude πN → ηN ). The total cross section of the
nonresonant πη production due to this mechanism
was found to be σbg � 0.8 µb for a cutoff in the OPE
Λπ = 1GeV.

The background is charge-symmetric and cancels
in the difference of the cross sections σ(θ)− σ(π− θ).
Therefore, the complete separation of the background
is not crucial for a test of isospin violation due to the
a0–f0 mixing. There will also be some contribution
from π–η mixing as discussed in [57, 58]. According
to the results of [57], this mechanism yields a charge-
symmetry breaking in the ηNN system of about 6%:

R = dσ(π+d → ppη)/dσ(π−d → nnη)
= 0.938 ± 0.009.

A similar isospin violation due to π–ηmixing can also
be expected in our case.

The best strategy to search for isospin violation
is a measurement of the forward–backward asym-
metry for different intervals of Mπ0η. As follows from
Fig. 13, we have σa0(σbg) = 0.3(0.4), 0.27(0.29), and

PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003



NEAR-THRESHOLD PRODUCTION OF a0(980) MESONS 169

0.19(0.15) µb forMπ0η ≥ 0.85, 0.9, and 0.95GeV, re-
spectively. For Mπ0η ≤ 0.7 GeV, the resonance con-
tribution is rather small and the charge-symmetry
breaking will be mainly related to π–η mixing and,
therefore, will be small. On the other hand, in the
interval Mπ0η ≥ 0.95 GeV, the background does not
exceed the resonance contribution and we expect a
comparatively large isospin breaking due to a0–f0
mixing.

5.3. Reaction pn → df0 → dππ

The isospin-violation effects can also be measured
in the reaction

pn → df0 → dπ+π−, (44)

where, due to mixing, the f0 may also be produced via
the a0. The corresponding differential cross section is
shown in Fig. 16. The differential cross section for
f0 production is expected to be substantially larger
than for a0 production, but the isospin-violation effect
turns out to be smaller than in the πη-production
channel. Nevertheless, the isospin-violation param-
eter A is expected to be about 10–30% and can be
detected experimentally.

5.4. Reactions pd → 3H a+
0 and pd → 3He a0

0

We continue with pd reactions and compare the
final states 3H a+

0 (c) and 3He a0
0 (d). Near the thresh-

old, the amplitudes of these reactions can be written
as

T (pd → 3H a+
0 ) =

√
2DaSA · e, (45)

T (pd → 3He a0
0) = (Da + ξDf )SA · e, (46)

with SA = φTAσ2σφN . Da and Df are the scalar S-
wave amplitudes describing the a0 and f0 production
in the case of ξ = 0. The ratio of the differential cross
sections for reactions (d) and (c) is then given by

Rdc =
|Da + ξDf |2
2|Da|2

=
1
2
+
2Re(D∗

aξDf ) + |ξDf |2
|Da|2

.

(47)

The magnitude of the ratio Rdc now depends on the
relative value of the amplitudesDa andDf . If they are
comparable (|Da| ∼ |Df |) or |Df |2 � |Da|2, the de-
viation of Rdc from 0.5 (which corresponds to isospin
conservation) might be 100% or more. Only in the
case |Df |2 � |Da|2 will the difference of |Rdc|2 from
0.5 be small. However, this seems to be very unlikely.

Using the two-step model for the reactions pd →
3He a0

0 and pd → 3He f0, involving the subprocesses
pp → dπ+ and π+n → p a0/f0 (cf. [64, 65]), we find

σ(pd → 3He a0
0)

σ(pd → 3He f0)
� σ(π+n → p a0

0)
σ(π+n → p f0)

. (48)
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According to the calculations in [18], we expect
σ(π+n → pa0

0) = σ(π−p → na0
0) � 0.5–1 mb at

1.75–2GeV/c. A similar value forσ(π−p → nf0) can
be found using the results from [41]. According to the
latter study, σ(π−p → nf0 → nK+K−) � 6–8 µb at
1.75–2 GeV/c and Br(f0 → K+K−) � 1%, which
implies that σ(π−p → nf0) � 0.6–0.8 mb. Thus, we
expect that near threshold |Da| ∼ |Df | . This would
imply that the effect of isospin violation in the ratio
Rdc can become quite large.

Recently, the cross section of the reaction pd →
3HeK+K− has been measured by the MOMO
collaboration at COSY (Jülich) [66]. It was found
that σ = 9.6± 1.0 and 17.5 ± 1.8 nb for Q = 40
and 56 MeV, respectively. The authors note that the
invariant K+K− mass distributions in those data
contain a broad peak which follows phase space.
However, as was shown in [19], the form of the
invariant mass spectrum, which follows phase space,
cannot be distinguished from the a0-resonance con-
tribution at such small Q. Therefore, the events from
the broad peak in [66] can also be related to a0 and/or
f0. Moreover, due to the phase-space behavior near
the threshold, one would expect a dominance of two-
body reactions. Thus, the real cross section of the
reaction pd → 3He a0

0 → 3He π0η is not expected to
be substantially smaller than its upper limit of about
40–70 nb atQ = 40–60MeV, which follows from the
MOMO data [66].

5.5. Reaction dd → 4He a0
0

The direct production of a0 in the reaction dd →
4He a0

0 is forbidden. It thus can only be observed due

PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003



170 KONDRATYUK et al.

to the f0–a0 mixing:

σ(dd → 4He a0
0)

σ(dd → 4Hef0)
= |ξ|2. (49)

Therefore, it will be very interesting to study the reac-
tion

dd → 4He(π0η) (50)

near the f0-production threshold. Any signal of the
reaction (50) then will be related to isospin breaking.
It is expected to be much more pronounced near the
f0 threshold as compared to the region below this
threshold.

In summarizing this section, we have discussed
the effects of isospin violation in the reactions pN →
da0, pn → df0, pd →3 He(3H)a0, and dd → 4He a0,
which can be generated by f0–a0 mixing. It has
been demonstrated that, for a mixing intensity of
about (8± 3)%, the isospin violation in the ratio
of the differential cross sections of the reactions
pp → da+

0 → dπ+η and pn → da0
0 → dπ0η as well as

in the forward–backward asymmetry in the reaction
pn → da0

0 → dπ0η not far from the threshold may be
about 50–100%. Such large effects are caused by the
interference of direct a0 production and its production
via the f0 (the former amplitude is suppressed close
to threshold due to the P-wave amplitude, whereas
the latter is large due to the S-wave mechanism).
A similar isospin violation is expected in the ratio
of the differential cross sections of the reactions
pd → 3H a+

0 (π
+η) and pd → 3He a0

0(π
0η). Finally,

we have also discussed the isospin violation effects in
the reactions pn → df0(π+π−) and dd → 4Hea0. All
reactions together—once studied experimentally—
are expected to provide detailed information on the
strength of the f0–a0 mixing. Corresponding mea-
surements are now in preparation for the ANKE
spectrometer at COSY (Jülich) [67].
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67. M. Büscher et al., COSY Proposal #97 “Investiga-
tion of Neutral Scalar Mesons with ANKE” (2001);
http://www.fz-juelich.de/ikp/anke

PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 1 2003


