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4Institut für Kernphysik and Jülich Centre for Hadron Physics,
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The deuteron breakup reaction pd → {pp}sn, where {pp}s is a fast proton pair emitted in forward
direction with small excitation energy Epp < 3 MeV, has been studied at proton beam energies of
0.5−2.0 GeV using the ANKE spectrometer at COSY-Jülich. The differential c.m. cross sections are
measured in complete kinematics and provide angular distributions of the neutron emission angle in
the range θn = 168◦ − 180◦, the dependence on beam energy at θn = 180◦, angular distributions of
the direction of the proton in the pp rest frame, and distributions of the excitation energy Epp of the
proton pair. The obtained data are analyzed on the basis of theoretical models previously developed
for the pd → dp process in a similar kinematics and properly modified for the diproton channel in
pd → {pp}sn. It is shown that the measured observables are highly sensitive to the short-range part
of the nucleon-nucleon interaction.

PACS numbers: 13.75.Cs; 25.10.+s; 25.40.-h 25.40.Qa; 25.45.-z
Keywords: Nuclear reactions; 2H(p, pp)n; Short-range few-nucleon interaction

I. INTRODUCTION

The structure of the lightest nuclei at short distances
(rNN < 0.5 fm) or high relative momenta (q > 1/rNN ∼
0.4GeV/c) and the closely related nucleon-nucleon (NN)
interaction constitute fundamental problems in nuclear
physics. Electromagnetic probes are generally consid-
ered the cleanest approach for these investigations and
most of our knowledge about the short-range structure of
the deuteron was obtained from elastic electron-deuteron
scattering [1, 2]. With increasing transferred momen-
tum Q, however, the theoretical interpretation of elec-
tromagnetic processes becomes less clear due to meson-
exchange currents, whose strength, related to the strong
interaction, is not well established. At photon energies
above 1GeV at large angles in the c.m., the meson-
exchange picture fails to explain, e.g., deuteron photo-
disintegration data on γd → pn [1, 3], since internal
hadronic degrees of freedom become essential, and new
physics mechanisms come into play.

Independent information about the short-range struc-
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ture of nuclei can be obtained from hadronic processes
at large Q. The existing data in deep-inelastic reactions
h + A → p + X in the so-called cumulative region with
a final proton emitted into the backward hemisphere are
often treated in terms of interactions with density fluc-
tuations of cold nuclear matter [4, 5] or short-range NN
correlations in nuclei [6], whose local properties are con-
sidered to be largely independent of the type of nucleus
A and the used probe h. Because of the complicated
structure of the involved nuclei and initial and final state
interactions in the nuclear medium, the analysis of such
processes presents quite a challenge to theory [7]. It
is therefore important to study elementary processes in
few-nucleon systems which probe the short-range NN in-
teraction under conditions that make the theoretical in-
terpretation more transparent by suppressing less well-
constrained contributions.

Investigations of the simplest processes in the GeV
region with high transferred momentum, i.e., proton-
deuteron backward elastic scattering pd → dp [8, 9] and
inclusive dp → p(0◦)X [10–12] deuteron disintegration
turned out to be inconclusive with respect to the short-
range interaction. Below the pion threshold, differen-
tial cross sections, tensor analyzing powers T20 and spin-
transfer coefficients κ in the pd → dp and dp → p(0◦)X
reactions are reasonably well described by quasi-free ap-
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proximations [13]. These are based on one-nucleon ex-
change (ONE) where the external proton interacts with
one nucleon in the deuteron, while the second nucleon
acts as a spectator, whose momentum ~q in the deuteron
rest frame is opposite to the momentum of the inci-
dent proton. In the ONE mechanism the unpolarized
cross section is proportional to u2(q)+w2(q), where u(q)
and w(q) denote the S- and D-wave components of the
deuteron wave function at internal momentum q. T20

and κ are completely determined by the ratio w/u [13].
Within the ONE mechanism the above observables di-
rectly measure the nucleon momentum distribution in
the deuteron. At energies above the ∆-isobar thresh-
old, where internal momenta inside the deuteron above
0.3 GeV/c are probed, the quasi-free ONE approxima-
tion fails to explain the existing data. Except for the ∆
region (0.8 − 1.2GeV) in dp collisions, the ONE model
calculations with the Paris [14] and Reid Soft Core (RSC)
[15] wave function of the deuteron are in rough agreement
with the unpolarized cross sections of the dp → p(0◦)X
and pd→ dp reactions up to very large nucleon momenta
q ∼ 1GeV/c in the deuteron. On the other hand, exper-
imental values of the tensor analyzing power T20 [9, 16]
strongly contradict the ONE model calculations already
at q > 0.3GeV/c for any realistic NN potential. This
puzzling circumstance has sometimes been treated as an
indication for non-nucleonic degrees of freedom in the
deuteron, but this interpretation is not compatible with
the behavior of the tensor polarization T20 in elastic ed
scattering [1, 2].

The above described disagreement in the theoretical
interpretation of pd reactions can be attributed to con-
tributions from three-body forces related to the excita-
tion of nucleon isobars (∆, N∗) in the intermediate state,
which have been neglected in the ONE analyses [9–12].
The ∆ mechanism dominates the large angle unpolarized
pd→ dp cross section at 0.4− 0.6GeV [17–19]. The spin
structure of the three-body forces related to the ∆-isobar
is far from being established [20], and this leads to am-
biguities in the explanation of T20 when the ∆-isobar is
included in the transition amplitude [17–19]. Above the
∆(1232) region the contribution of heavier baryon reso-
nances is expected to increase and the theoretical inter-
pretation of this process becomes much more uncertain.

In view of these difficulties it would be highly desire-
able to study a process kinematically similar to pd→ dp
scattering, where contributions from the excitation of ∆
and N∗ resonances are suppressed. For that purpose, it
was suggested [21–23] to study the reaction

p+ d→ {pp}s + n, (1)

where {pp}s is a proton pair at small excitation energy
(Epp < 3 MeV) emitted in forward direction. The kine-
matics of this reaction is very similar to that of pd back-
ward elastic scattering. Hence, the same mechanisms
can be applied in the analysis of the deuteron breakup
with a diproton in the final state [Eq. (1)]. The restric-
tion to Epp < 3 MeV at high transferred momentum Q

assures that the diproton is in a 1S0 state, in contrast
to the 3S1 − 3D1 state of the deuteron. This differ-
ence changes the relative contributions of the involved
mechanisms to the reaction amplitude. Due to isospin
invariance, the contribution of the excitation of a ∆ res-
onance to the cross section is reduced by a factor of nine
in the pd→ {pp}sn reaction compared to that of pd back-
ward elastic scattering [24]. The same suppression factor
also applies for other isovector excitations, such as N∗

resonances, whereas the ONE mechanism does not suf-
fer a similar suppression [24]. Furthermore, compared
to dp → p(0◦)X and pd backward elastic scattering, the
ONE mechanism of the pd→ {pp}sn reaction is strongly
modified due to the NN repulsive core. This leads to
a node of the NN(1S0) scattering amplitude at off-shell
momenta q′ ∼ 0.4GeV/c [21, 22]. In the pd → dp and
dp → p(0◦)X reactions, the corresponding node of the
S-wave deuteron wave function is hidden by the large D-
wave contribution. The contribution of the ONE mech-
anism, highly sensitive to the NN potential at short dis-
tances, should show a very different energy dependence
in the deuteron breakup with a diproton in the final state
compared to pd backward elastic scattering. Therefore,
due to substantial modifications of the dominant terms
in the transition amplitude, the pd → {pp}sn reaction
might allow one to obtain a better understanding of the
relative importance of contributions from ONE and (∆,
N∗) excitations.

The first measurements of the unpolarized differential
cross section of the deuteron breakup with a diproton
in the final state was performed at beam energies in the
range of 0.6 − 1.9GeV [25]. The theoretical analysis of
the data is described in Ref. [26] using an approach, orig-
inally suggested for pd backward elastic scattering [17],
properly modified for the diproton channel [21], and tak-
ing into account initial and final state interactions [23].
When employing a modern high-accuracy NN potential,
e.g., CD-Bonn [27], a reasonable agreement with the data
of Ref. [25] is obtained [26], while harder NN potentials
like the Paris or the RSC potential strongly contradict
the data. The interpretation is that these potentials gen-
erate too intense high-momentum components of the NN-
wave function and this leads to large ONE contributions,
in particular at energies above 1 GeV. This is the most
important finding of the analysis of the pd → {pp}sn
data [26].

The existing data [25] on unpolarized cross sections are
not yet sufficient in regions critical for the above theoreti-
cal observation. Above 1GeV only two data points of the
differential cross section in pd → {pp}sn were obtained
(at 1.35GeV and 1.90GeV [25]), but this region is most
crucial for the discrimination between soft and hard NN-
potentials. Furthermore, the experimental uncertainties
at those energies were rather large due to small statis-
tics. For the same reason, it was impossible to obtain
the angular dependence of the differential cross section
as function of the neutron c.m. angle θn, which is also
sensitive to the reaction mechanism.



3

The goal of the present work is to remedy these short-
comings. In the present paper we report on new high-
statistics data of the unpolarized differential cross sec-
tion of the deuteron breakup reaction pd → {pp}sn in
the slightly extended energy range of 0.5− 2.0GeV com-
pared to those discussed in Ref. [25]. The earlier data
at proton beam energies of 0.6, 0.7, 0.8, 0.95, 1.35, and
1.90GeV [25] are supplemented here by measurements at
energies of 0.5, 0.8, 1.1, 1.4, and 1.97GeV. Higher statis-
tics allowed us to measure the dependence of the cross
section on the neutron c.m. scattering angle θn and to
obtain the dependence on Epp, important to verify that
the proton pair is in a 1S0 state.

The paper is organized as follows. The measurements
and the data processing are described in Sec. II. The
results are presented in Sec. III. A comparison to theory
is given in Sec. IV, while Sec. V summarizes the paper.
The contribution of P -waves to ONE is discussed in ap-
pendix A.

II. MEASUREMENTS

A. Experimental setup

The experiment was carried out at the magnet spec-
trometer ANKE [28] at the internal beam of the COoler
SYnchrotron COSY [29] in Jülich (Fig. 1). The magnet
system of ANKE comprises three dipole magnets: the
spectrometer magnet D2 for momentum analysis of the
reaction products, and the deflection magnets D1 and D3
that guide the circulating beam onto the target and back
to the nominal orbit.

At the beam energies Tp ranging from 0.5 to 2.0GeV
about 3 × 1010 protons could be stored in the ring. The
beam had a momentum spread of ∆p/p ∼ 10−3 and
the root-mean squared (rms) beam size amounted to
0.8 (1.3)mm vertically and 1.7 (2.5)mm horizontally for
Tp = 2.0 (0.5)GeV. The cluster-jet target [30] produced a
vertically directed deuterium jet with an average target
thickness of 2 × 1014 atoms/cm2 and a width of about
10mm at the interaction point. For calibration mea-
surements, a hydrogen jet was used as well. Positively
charged secondaries produced in the target leave the D2
vacuum chamber through a 0.5mm thick aluminum exit
window and enter the FD comprising a set of multi-
wire proportional chambers (MWPC) and a hodoscope
consisting of two planes of counters with vertically ori-
ented scintillators. Each MWPC includes vertically and
horizontally oriented wire and inclined strip coordinate
planes [31]. The tracking system provides a sufficiently
high momentum resolution ∆p/p for protons from the
deuteron breakup reaction [Eq. (1)]. The typical detec-
tor resolutions are listed in Table I.

The FD scintillation hodoscope provided triggering
of the data acquisition system, timing for two-particle
events, and energy loss measurements. The energy losses
were measured with an accuracy of 11 − 17% (FWHM),

TABLE I: Typical FD resolutions for protons from the
deuteron breakup reaction [Eq. (1)] for the range of beam
energies Tp covered in the experiment: average momentum

of the detected protons 〈p〉, momentum resolution
σ〈p〉

〈p〉
, time

resolution σ∆t for the detection of proton pairs, and preci-
sion σY of the reconstructed vertical coordinate at the target
position.

Tp (GeV) 0.5 0.8 1.1 1.4 1.97

〈p〉 (GeV/c) 0.69 0.9 1.1 1.3 1.61
σ〈p〉

〈p〉
(%) 1.6 1.2 1.1 1.0 0.9

σ∆t (ns) 0.29 0.16 0.13 0.12 0.11

σY (cm) 1.2 0.93 0.77 0.71 0.62

the resolution σ∆t of the time difference between signals
in different counters was 0.1 − 0.3 ns. The hodoscope al-
lowed us also to estimate the vertical hit coordinate with
a precision of 1.5 − 2.2 cm (rms) by comparison of the
time difference of signals from photomultipliers on oppo-
site ends of the counters.

Two types of trigger were applied in parallel. The first
trigger was produced by any charged particle crossing two
planes of the hodoscope (single-particle, or FD-trigger).
The second trigger (double-particle, or DP-trigger) em-
ployed a dedicated electronic unit which suppressed a
major part of single-particle events, retaining only events
with two charged particles in the FD [32]. A DP-trigger
was generated when in both scintillator walls, either two
counters were hit, or when the energy loss in a single
counter amouted to twice the energy loss of a single pro-
ton. In 99.8% of the FD-trigger events, a single parti-
cle was recorded and only the remainder were double-
particle events. The use of the DP-trigger increased the
fraction of double-particle events in the recorded data by
about a factor of ten.

The angular acceptance of the FD is limited to for-
ward angles close to zero degree. The vertical accep-
tance covers angles θyz = ±3.5◦, and the horizontal ac-
ceptance, depending on the particle momentum, is within
θxz = ±12◦ (see Fig. 2), where θxz and θyz are the pro-
jections of the particle laboratory emission angle onto the
XZ and Y Z planes, respectively. The coordinate frame
is indicated in Fig. 1, the X axis is oriented horizontally
outward of the COSY ring, Y is vertically up, and Z
along the beam direction.

The smallest momentum accepted by the FD is ∼ 0.3 ·
p0, where p0 is the beam momentum. As shown in Fig. 2,
proton pairs from the breakup process with Epp < 3MeV
are accepted at laboratory polar angles up to ∼ 7◦. The
FD acceptance allows for the detection of particles from
other processes (pd→ dp, pp→ pp, and pp→ dπ+), that
were recorded for calibration purposes.
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FIG. 1: Top view of the ANKE setup at COSY, showing the components used in the present experiment. The positions of
the dipole magnets D1, D2, and D3, the cluster target spot, and of the forward detector system (FD) are shown. The XY Z
coordinate system is indicated.
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FIG. 2: Single-particle acceptance of the ANKE forward de-
tector at Tp = 0.8 GeV, showing the polar angle projection
θxz as function of particle momentum. The curves show the
kinematical loci for different processes (the detected particles
are labeled in bold face). For the pd → {pp}sn reaction, the
dashed box corresponds to Epp < 3MeV, the full curve is for
Epp = 0.

B. Data taking

In order to minimize systematic uncertainties, the ge-
ometrical arrangement of the spectrometer was the same
in all three runs and at all energies. The angle of the

beam deflection in D1 was fixed (at 7.4◦) and only the
magnetic field in the dipoles was changed according to
the beam energy. The first run was carried out at ener-
gies 0.6, 0.7, 0.8, 0.95, 1.35, and 1.9GeV; the results were
published in Ref. [25]. In the second run, data were taken
at 0.5GeV beam energy. The main part of data was col-
lected in a third run at 0.5, 0.8, 1.1, 1.4, and 1.97GeV.
In the last run at 0.5 and 0.8GeV a polarized beam was
employed and the analyzing powers of the ~pd → {pp}sn
reaction are reported in Ref. [33].

The luminosities at the different energies ranged from
4 to 6×1029 cm−2s−1 in the first run, and were increased
to 7 to 13 × 1030 cm−2s−1 in the third one. Measure-
ments with an H2 target were carried out for calibration
purposes in each of the runs.

C. Event reconstruction

Data processing included procedures of track finding
and ejectile momentum reconstruction. In addition, cali-
brated energy losses and time information from the scin-
tillation hodoscope were obtained [31, 34].

Since the distortions of the particle trajectories in the
magnetic fringe field of D2 and multiple scattering in the
detector materials are small, a straight-line approxima-
tion was used to reconstruct the tracks in the MWPC
region. Each of the three MWPCs measured both hori-
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zontal and vertical track coordinates which provided an
overdetermination of the straight line. This allowed us to
estimate the efficiency of each chamber from the experi-
mental data by excluding one of the chambers from the
track search. The same feature allowed us also to reduce
the effect of MWPC inefficiencies in the track search,
since not all planes of the MWPCs are required to recon-
struct the tracks. The MWPC efficiency was obtained
prior to the main event reconstruction and was used to
estimate the quality of the track candidates during the
track search procedure.

Special attention was paid in the track finding proce-
dure to provide a high efficiency for the reconstruction of
pairs of tracks located close to each other in space. The
algorithm provided about 90% reconstruction efficiency
for proton pairs with Epp above 1MeV, decreasing to 75%
at Epp = 0.2MeV [31]. The efficiency of the single-track
search was 99.5%.

The reconstructed trajectories had to pass various
background rejection criteria, which suppressed ∼ 40%
of the events taken with the FD trigger. One of the cri-
teria used was that the track had to pass the exit window
of the D2 chamber. Another criterion made use of the
smallness of the non-vertical components of the D2 mag-
netic field. Trajectories originating from the interaction
point possess a strong correlation of the vertical track
coordinate with the track angle in the Y Z-plane. This
correlation, after a small correction to the magnetic field,
allowed us to estimate the Y coordinate of the track at
the target position. The distribution of this coordinate
shows a clean peak of beam-target interactions. The as-
sociated uncertainties σY for events from the deuteron
breakup reaction are listed in Table I. The background
level under the peak amounted to less than 1% for pp elas-
tic scattering and to about 5% for the deuteron breakup
reaction.

The magnetic field of D2 was measured on a 3D grid,
and either tracing in the magnetic field by the Runge-
Kutta method, or a polynomial method were used to re-
construct the ejectile momenta [31]. In the latter method,
the components of the ejectile momenta were expressed
as third-order polynomial functions of the measured track
parameters, where the coefficients of the polynomials
were obtained from a simulation.

The energy losses and the timing information obtained
from the hodoscope [34] were calibrated. The recon-
structed particle momenta were fine tuned [31] by slightly
varying the geometrical parameters of the experimental
setup until the nominal missing masses of processes with
only one undetected particle in the final state were well
reproduced (e.g., pp → pp, pp → dπ+, and pp → pnπ+).
After fine tuning of the geometry, the missing mass for
protons from pp elastic scattering, for instance, differed
from its nominal value by less than 0.4% at all energies.
The achieved accuracy of the alignment guaranteed negli-
gible systematic uncertainties in the determination of the
kinematical parameters of the events and of the detector
acceptance.

D. Resolution, efficiency, and acceptance

The momentum resolution of the experimental setup
was studied by a GEANT-based Monte-Carlo simula-
tion [35]. In the simulation the particles were traced
through the setup taking into account multiple scatter-
ing, nuclear interactions in the materials, and dispersion
of the hits in the MWPC. The obtained coordinates, to-
gether with admixed noise hits, were analyzed by the
track reconstruction algorithm.

In case of pp elastic scattering, the resolution obtained
from the simulation could be directly compared to the
width of the observed momentum distribution, taken
at fixed polar angles. This comparison exhibits good
agreement between simulated and experimental resolu-
tions [31]. In Fig. 3, the momentum distributions at
Tp = 0.8GeV recorded with H2 and D2 target are shown,
pp elastic events exhibit a peak in the (5◦ − 10◦) scatter-
ing angle range.
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FIG. 3: Recorded momentum distributions at Tp = 0.8 GeV:
protons with H2 target (thin line), protons with D2 target
(thick line), deuterons with D2 target (filled histogram). (The
relative normalization of the distributions is arbitrary.)

Similar simulations for the pd → {pp}sn reaction al-
lowed us to determine the resolution of single particle
momenta (see Table I), as well as the resolution of all
kinematical variables ξ ≡ (θpp, φpp, θk, φk, Epp) neces-
sary to describe the reaction. θpp and φpp are the polar
and azimuthal angles of the total proton pair momentum
Ppp = P1 +P2, where P1 and P2 denote the proton c.m.
momenta (see Fig. 4). The azimuthal angle φpp is the an-
gle between the direction of the X axis of the coordinate
frame (see Fig. 1) and the projection of the momentum
Ppp onto the XY plane. Polar and azimuthal angles of
the neutron in the pd → {pp}sn reaction are given by
θn = 180◦− θpp and φn = φpp +180◦, respectively. Polar
and azimuthal angles θk and φk in the rest frame of the
proton pair are defined in Fig. 4 (lower panel). The ki-
netic energy in the rest frame of the proton pair is given
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by Epp = 2(m2
p + k2)1/2 − 2mp.

qpp

Ppp

P2

P1

qn

Ppp

θk

φk

<

Pp
k

-k

<

FIG. 4: Upper panel: Kinematics of the pd → {pp}sn reaction

in the pd c.m. system. Lower panel: P̂p and P̂pp denote the
directions of the incoming beam proton and the outgoing pro-
ton pair, respectively. In the rest frame of the proton pair,
protons have the momenta k and −k, polar and azimuthal
angles θk and φk are indicated.

The Epp resolution, shown in Fig. 5, is sufficient not
only to extract pairs with Epp < 3MeV, but allows also
the measurement of the Epp distribution in this region.
In the angular interval θpp = 15◦−20◦ the rms resolution
of θpp is about 0.2◦, for θpp = 5◦ it amounts to ∼ 0.1◦.

The FD acceptance was calculated using the same sim-
ulation program. Events of the pd interaction were gen-
erated according to the phase-space distribution for the
breakup process taking into account the final state in-
teraction for the proton pairs. The ratio of the recon-
structed to generated events was taken as the acceptance
factor in each bin of the ξ space. In most cases it was
possible to restrict the consideration to two-dimensional
maps in cos θpp and Epp, since the distribution of other
parameters could be taken to be uniform. An example
of such a map is shown in Fig. 6. The acceptance factor

(MeV)ppE
0 1 2 3

) 
(M

e
V

)
p

p
(E

s

0.2

0.4

0.6

0.5 GeV

1.97 GeV

FIG. 5: Resolution of the kinetic energy Epp of proton pairs,
obtained from a simulation.

is close to unity at the point (Epp = 0, cos θpp = 1), it
steeply drops with increasing Epp and θpp due to the
geometry of the setup. In order to check the homo-
geneity and to obtain distributions of φpp, θk, and φk,
the acceptance was calculated as a function of each of
these variables, i.e., A(θpp, Epp, φpp), A(θpp, Epp, θk) and
A(θpp, Epp, φk). It should be noted that the calculation
of the acceptance factors takes into account the angular
and momentum resolutions of the setup, and thus the
migration of events between adjacent bins of the ξ space.
The calculation includes also inefficiencies of the MWPCs
and of the track reconstruction algorithm. The efficiency
of the hodoscope was close to 98%, and was taken into
account separately.
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1

1
2

3

A
cc

ep
ta

nc
e
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FIG. 6: Two-dimensional acceptance factor A(θpp, Epp) at
Tp = 0.6 GeV.

E. Identification of the reaction

The main criterion for the identification of proton pairs
was based on the time information from the hodoscope.
For events with two particles hitting different counters in
at least one of the hodoscope planes, the time-of-flight
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differences from the target ∆tmeas can be determined.
Using the measured particle momenta ~p1 and ~p2 and as-
suming that the involved particles are protons, ∆tmeas

can be compared to ∆tcalc = ∆t(~p1, ~p2). In Fig. 7, ∆tmeas

is plotted vs ∆tcalc. While proton pairs populate the line
at ∆tmeas = ∆tcalc, pairs of particles with other masses
show different distinct loci. This time-of-flight (∆t) cri-
terion could be applied to about 85% of all two track
events in the vicinity of the neutron mass (see Fig. 8).

FIG. 7: Distribution of double particle events, showing the
measured ∆tmeas vs the calculated time differences ∆tcalc at
Tp = 0.5 GeV.

The resolution σ∆t of the time differences ∆tmeas−∆tcalc√
2

is listed in Table I. A 2σ∆t cut was applied that sup-
pressed the admixture of other particle pairs among the
selected proton pairs to less than 1%. Accidental events
constitute the dominant contribution to the background
(see Table II). The acceptance calculation took into ac-
count the requirement that the two particles must hit
different counters.

The distribution of the missing mass MX from the
pd → ppX process with proton pairs exhibits a distinct
peak near the neutron mass at all beam energies (Fig. 8).
The mean value 〈MX〉 corresponds to neutron masses
within the accuracy provided by the setup. Their val-
ues are listed in Table II. The background-to-total ratio
Nbg/Ntot in the interval 〈MX〉±3σ〈MX〉 amounts to sev-
eral percent at low energies and increases to ∼ 30% at
1.97GeV. This ratio was calculated for each bin of the
relevant kinematical variables. In order to obtain the
corresponding differential cross sections, the number of
events in each bin was corrected by the acceptance fac-
tor and the background-to-total ratio for that bin. The
numbers listed in Table II correspond to the most recent
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FIG. 8: Missing mass distributions of two-particle events at
three beam energies. The thin line shows all events, the
thick line corresponds to proton pairs selected by the time-
difference ∆t-criterion (Fig. 7), and the filled histograms show
proton pairs with Epp < 3MeV.

measurements where most of the statistics was collected.
The corresponding numbers for the previous measure-
ments are given in Table I of Ref. [25].

A different kinematical identification of two-track
events is illustrated in Fig. 9. Due to kinematical re-
strictions caused by the narrow angular acceptance of
the FD, events from processes with two or three particles
in the final state populate distinct regions when particle
momenta p1 and p2 are plotted vs each other. Protons
from the deuteron breakup reaction pd → {pp}sn form
a narrow band. This method was only used to identify
other processes, i.e., B, C, D, and E in Fig. 9. For the
identification of proton pairs from the pd → {pp}sn re-
action the missing -mass technique was applied.

F. Luminosity

Protons from elastic pd scattering and from quasi-
elastic deuteron disintegration pd → pnp detected at
small angles in the FD allowed us to determine the lumi-
nosities over a wide range of beam energies 0.6−2.0GeV.

At all beam energies, the proton momentum spectra
exhibit a peak, somewhat shifted from the value de-
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FIG. 9: Momentum correlation of two particles detected in the FD at beam energies 0.5, 1.1, and 1.97 GeV. Loci populated by
events from the following processes are indicated: pd → ppn (A), quasi-free pN → ppπ (B), pd → dπ+n (C), pd → 3Hπ+ (D),
and quasi-free pp → pnπ+ (E). The upper panels show all pairs of particles, while the lower ones depict proton pairs selected
by the time-difference ∆t-criterion. The distributions were symmetrized with respect to the bisecting line p1 = p2.

TABLE II: Number of all two-track events N2 track, number
of proton pairs N∆t, identified using the time-difference ∆t-
criterion, and proton pairs N∆t

3MeV with Epp < 3MeV and
∆t-criterion applied. 〈MX〉 is the average missing mass with

resolution σ〈MX〉 (both in units of MeV).
Nbg

Ntot
denotes the

ratio of background-to-total.

Tp (GeV) 0.5 0.8 1.10 1.40 1.97

N2 track (103) 204 1003 3119 5860 11185

N∆t (103) 19.6 133 800 1301 1654

N∆t
3MeV 3417 2761 3848 1090 549

〈MX〉 942 942 941 940 943

σ〈MX〉 16 18 20 20 24
Nbg

Ntot
(%) 2.0 2.7 5.2 16.5 33.6

fined by the kinematics of elastic pp scattering (Fig. 3).
The peak shape is slightly non-Gaussian on the left side,
which is attributed to quasi-elastic deuteron disintegra-
tion. The available momentum resolution does not al-
low one to separate pd elastic scattering from quasi-
elastic deuteron disintegration. The detected events are
therefore associated to the sum of elastic and inelastic

cross sections, ( dσ
dΩ)el and ( dσ

dΩ)inel, respectively. Glauber-
Sitenko diffraction scattering theory [36, 37] was used to
calculate ( dσ

dΩ)el, while ( dσ
dΩ)inel was obtained in closure

approximation of diffraction scattering theory [36]. The
parameters of pN scattering were taken from Ref. [38]
and the deuteron nuclear density was taken in accor-
dance with the S-wave component of the Reid Soft Core
deuteron wave function [15]. The calculation shows that
the contributions of elastic and inelastic scattering are
comparable at θlab ≈ 5◦ − 10◦ in the energy range
Tp = 0.6 − 2.0GeV. The precision of the calculation for

( dσ
dΩ)el was compared to known experimental data on pd

elastic scattering [38–41], while the inelastic part could
be only compared to data at 0.956GeV [42]. Experimen-
tal and theoretical values were found to agree within 7%
(rms), and this value was taken as normalization uncer-
tainty for the luminosity in the range 0.6 − 2.0GeV (see
appendix D of Ref. [43]).

At 0.5GeV, the luminosity was determined in a differ-
ent way. Since the precision of the calculation of ( dσ

dΩ)inel

degrades at energies below 0.6GeV, only for the data ob-
tained at 0.5GeV, a normalization based on pd backward
elastic scattering was used. Deuterons detected in the
FD are identified by their energy losses in the hodoscope
at momenta below ∼ 2GeV/c. As shown in Fig. 3, the
selected deuterons produce a clean peak in the momen-
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tum distributions, and the data were normalized to the
available experimental data [38, 44–49] obtained under
similar kinematical conditions. Based on the available
data, an interpolation was carried out, using an empiri-
cal expression dσ

dΩ(Tp, θ) = exp[A(Tp) cos θ +B(Tp)] with
a smooth energy dependence of the coefficients A(Tp) and
B(Tp) in the range Tp = 0.4− 1.0GeV. The luminosities
obtained this way and from the method described in the
previous paragraph were compared at 0.8GeV and were
found to be consistent within 20%, which is quite reason-
able since the available data at 0.8GeV [46, 49, 50] agree
only within 15%.

The above described determination of the luminosity
was carried out independently for different angular inter-
vals of protons and deuterons. In all cases, the observed
variation of the luminosities at different angles did not
exceed 5%, and this value, taken as an additional system-
atic uncertainty, was included in the total uncertainty of
the luminosity.

As an independent test of the luminosity determina-
tion, the quasi-free pp → dπ+ reaction was used at all
energies 0.5 − 1.97 GeV (see Fig. 9, label C). Deuterons
and pions were detected in the FD, and the neutron was
identified via the missing mass technique. The recon-
structed momentum of the neutron was limited to less
then 100MeV/c, thus the neutron could be considered
as a spectator. The cross section for the free pp → dπ+

process taken at the proper c.m. energy was used for
normalization. The pp→ dπ+ cross section was obtained
from the SAID phase shift analysis [51] for beam energies
up to 1.4GeV, while the data of Ref. [52] were used for
Tp = 1.97GeV. The resulting luminosities agree within
11% with the ones obtained by the pd→ pX and pd→ dp
processes.

III. EXPERIMENTAL RESULTS

In this section, the Epp distributions of the binary reac-
tion pd→ {pp}sn are presented to verify the dominance
of the 1S0 state in the final pp pairs for Epp < 3MeV.
Thereafter, the obtained dependence of the differential
cross sections of the pd → {pp}sn reaction on cos θk,
cos θn, and Tp are presented.

A. Excitation energy Epp

The excitation energy distributions have been obtained
in the interval Epp = 0−3MeV for events with cos θpp =
0.98 − 1.0. The raw spectra near Epp = 0 are distorted
by the efficiency of the pair reconstruction algorithm and
by migration of events caused by the resolution in Epp.
The two effects act in opposite directions, therefore the
resulting correction in the lowest bin, ranging from 0 to
0.13MeV, is only at the level of about 10%. The ob-
served event distributions N(Epp, cos θpp) were corrected
by the two-dimensional acceptance factorA(Epp, cos θpp).

In order to avoid event losses near the upper boundary,
the acceptance correction was carried out in a wider Epp

interval up to 7.5MeV.

Using the Migdal-Watson final-state interaction (FSI)
approach [53, 54], the Epp distributions were generated

in the form dN
dEpp

= k · |Mpp(Epp)|2, where the momen-

tum k comes from the phase-space factor, and the factor
|Mpp(Epp)|2 is given by the squared amplitude of pp scat-
tering [55]

Mpp(Epp) = eiδ sin δ

k

1

Ck
. (2)

Here, Ck is the Coulomb penetration factor and δ is the
hadronic phase shift of pp(1S0) scattering, modified by
the Coulomb interaction.

Using the luminosities listed in Table IV, the accep-
tance corrected distributions were converted into differ-
ential cross sections dσ

dEpp
, which are shown in Fig. 10.

The experimental distributions clearly differ from phase-
space, but are satisfactorily described within the Migdal-
Watson FSI approach. The data at Tp = 1.97GeV are of
limited accuracy and contain a substantially larger back-
ground contamination. Neither phase-space distributions
nor the Migdal-Watson FSI approach describe these data
well. It should be noted that the Migdal-Watson FSI ap-
proximation is valid if Epp is small but the transferred
momentum Q is large so that the short-range part of the
S-wave of the internal ppmotion dominates the transition
amplitude [53, 54]. The accuracy of the Migdal-Watson
approach in describing the shape of the Epp distribu-
tions was analyzed in Refs. [56, 57], and was found to
be about 10%. The analysis of the Epp distributions in
the pd→ {pp}sn reaction beyond the Migdal-Watson ap-
proximation is discussed in Sec. IVA.

B. Proton emission angle θk in the rest frame of
the proton pair

In the framework of the Migdal-Watson FSI approach,
the distribution of the proton emission angle θk in the
c.m. system of the proton pair (Fig. 4) is determined by
the amplitude of low-energy pp scattering. At energies
Epp & 0.2MeV, pp scattering is governed by the strong
interaction in the 1S0 state [58], and therefore should re-
sult in an isotropic angular distribution, except at very
small angles where effects from Coulomb scattering be-
gin to appear. The cos θk distributions obtained with the
3-dimensional acceptance factors A(Epp, cos θpp, cos θk)
and integrated in the intervals Epp = 0 − 3MeV and
cos θpp = 0.98 − 1 are almost isotropic, as shown in
Fig. 11. The anisotropy in the pp system was estimated
by fitting the distributions in even terms of Legendre
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FIG. 10: Differential cross section dσ

dEpp
as function of Epp, integrated in the interval cos θpp = 0.98 − 1 and φpp = 0− 2π. The

solid lines correspond to the Migdal-Watson approach, and dotted lines depict phase-space distributions.

polynomials up to order l=2,

dσ

dΩ
(θk) =

∑

l=0,2

Cl(2l + 1)Pl(cos θk)

= C0

(
1 +

C2

C0
· 5(3 cos2 θk − 1)

2

)
. (3)

Only even Legendre polynomials Pl are included, because
the differential cross section should be symmetric with
respect to the exchange of the two protons, dσ

dΩ(θk) ≡
dσ
dΩ(π − θk)

The fit parameters in Table III indicate that within
statistics, negligibly small anisotropies are observed.
Possible P -wave contributions to ONE are discussed in
appendix A.

C. Neutron emission angle cos θn

For the interval of neutron emission angles in the c.m. ,
θn = 168.5◦ − 180◦, the differential cross sections, inte-
grated over Epp from 0 to 3 MeV, are shown in Fig. 12.
The acceptance of the setup includes θn = 180◦, therefore
the data allow one to obtain the differential cross section
dσ
dΩ(θn) exactly in backward direction. The data were fit-
ted by a linear function in the interval cos θn = −0.985
to −1.00, where the cross sections vary smoothly.

In pd elastic scattering many measurements were per-
formed at backward proton angles θp . 170◦ [38, 44–
48, 50]. The measured cross sections drop monotonously
with decreasing proton scattering angles, exhibiting a
wide backward peak. Very close to scattering angles

θp = 180◦ experimental data are absent. The only com-
parable measurement in the angular range up to about
179◦ was carried out at 0.794GeV in nd → dn scatter-
ing [49]. The observed angular dependence in the range
171.8◦−178.57◦ is flat, quite similar to our measurement
at 0.8GeV (see Fig. 12).

D. Differential cross section at θn = 180◦

The differential cross sections at θn=180◦ of the new
data obtained here, of the previously published ones from
Ref. [25], and of the data obtained during the measure-
ment with polarized beam [33], for which differential
cross sections were not yet published, are given in Ta-
ble IV. The new data and the data obained with polar-
ized beam allowed a direct determination of the differen-
tial cross sections at θn = 180◦ using the measured an-
gular distributions. Because of the limited statistics, this
was not possible for the previously published ones [25],
for which only the differential cross sections averaged in
the interval θn = 172◦ − 180◦ were obtained. Using the
new data, the ratios of the differential cross sections at
θn = 180◦ to the ones averaged over that interval were
determined individually at Tp = 0.5, 0.8, 1.1, 1.4, and
1.97GeV. By interpolation, the corresponding ratios for
the published data were determined, and by multiplying
the previously obtained averaged cross sections with this
ratio, also for these data the differential cross sections
at θn = 180◦ could be determined. Differential cross sec-
tions measured during different runs at the same energies
(0.5 and 0.8GeV) agreed within errors and were weighted
averaged. Data obtained with polarized beam [33] at 0.5
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TABLE III: Parameters of the cos θk distributions (shown in Fig. 11), obtained from Legendre polynomial fits using Eq. (3).

Tp (GeV) 0.5 0.8 1.1 1.4 1.97

C2/C0 (10−2) −2.5 ± 1.0 0.6 ± 0.9 −2.0 ± 0.7 0.2 ± 1.3 0.5 ± 1.6

χ2/ndf 6.6/8 1.6/8 5.6/8 6.6/8 10.2/8
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FIG. 11: Dependence of the differential c.m. cross section
on cos θk. The curves show Legendre polynomial fits using
Eq. (3), their parameters are listed in Table III.

and 0.8GeV were spin averaged, and otherwise treated in
the same way as the new data at 1.1, 1.4, and 1.97GeV.

The energy dependence of the cross section at θn=180◦

is shown in Fig. 13 together with the data for pd back-
ward elastic scattering. It should be noted that the
pd→ dp data are extrapolated to 180◦ due to the absence
of direct measurements at this angle. In the energy range
of Tp = 0.5−1.4GeV, the differential cross section of the
pd → {pp}sn reaction drops almost exponentially with
increasing energy, while in the region above ∼ 1.4GeV
the energy dependence is much flatter.

The ratio of the differential cross sections of the
pd → {pp}sn reaction and pd backward elastic scatter-
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FIG. 12: Dependence of the differential c.m. cross section of
the pd → {pp}sn reaction on the neutron emission angle θn

in the c.m. system for the interval Epp = 0−3MeV. The lines
represent linear fits in the interval cos θn = −0.985 to −1.00.

ing amounts to ∼ 1/115, as shown in Fig. 13. This ratio
remains constant in the energy range of 0.5 − 2.0GeV.
Very similar results were obtained in Ref. [59] for the ra-
tio of the differential cross sections of the pd → {pn}sp
and dp → dp reactions at 585 and 800MeV for proton
c.m. scattering angles ranging from θ = 70◦ to 120◦. As
discussed in Ref. [60], the ratio of the differential cross
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TABLE IV: Differential c.m. cross sections of the pd → {pp}sn reaction at θn = 180◦, and averaged in the interval θn =
172◦−180◦ in units of µb/sr. Listed also are the statistical and total uncertainties σstat and σtot, and the integrated luminosities
Lint in units of 1034 cm−2. New data are indicated by a bullet (•).

Tp (GeV) 0.50 0.60 0.70 0.80 0.95 1.10 1.35 1.40 1.90 1.97

Refs. • [25] [25] •, [25] [25] • [25] • [25] •

Lint 18.69 1.41 1.93 31.5 1.28 71.9 0.69 126.2 0.74 136.0

σLint

1.80 0.12 0.17 2.4 0.11 5.9 0.06 10.5 0.07 10.9
dσ

dΩ
(θn = 180◦) 3.36 1.92 0.79 0.73 0.42 0.300 0.088 0.046 0.034 0.034

σstat 0.21 0.12 0.06 0.05 0.04 0.009 0.029 0.003 0.012 0.002

σtot 0.38 0.22 0.10 0.08 0.06 0.027 0.032 0.006 0.016 0.004
dσ

dΩ
(θn = 172◦ − 180◦) 2.95 1.72 0.72 0.68 0.41 0.303 0.10 0.053 0.03 0.029

σstat 0.13 0.09 0.05 0.02 0.04 0.006 0.02 0.002 0.01 0.002

σtot 0.29 0.19 0.09 0.06 0.06 0.027 0.04 0.005 0.014 0.003

Beam energy (GeV)
0 0.5 1 1.5 2 2.5

b/
sr

)
µ

 (
Ω

/dσd

-210

-110

1

10

210

310

)o) + p(180o d(0→pd

)o)+n(180o(0
s

 {pp}→pd

FIG. 13: Energy dependence of the differential c.m. cross sec-
tions of the deuteron breakup pd → {pp}sn at θn = 180◦ and
of backward pd elastic scattering ([38, 44–47, 50] and Refs.
therein). The previously obtained data of Ref. [25] are shown
by open circles (◦), and the new data by bullets (•). The full
line represents a quadratic fit to log( dσ

dΩ
) of the pd → dp data,

the dashed line is obtained by scaling the full line by a factor
r = 8.8 · 10−3, introduced in Eq. (4).

sections can be written as

r =

dσ
dΩ

(pd→ {pp}sn)

dσ
dΩ

(pd→ dp)
= 2RZζ , (4)

where ζ is the ratio |As|2/|At|2 of the squared reduced
matrix elements of the pd → p(pn)s,t reaction with an
np pair in the spin-singlet (s) and triplet (t) states,
as defined in Ref. [60] within the Migdal-Watson ap-
proximation. The factors R and Z are determined in

Ref. [60] by the on-shell NN-scattering data at low en-
ergies. Using the values Z = 0.101 and R = 2.29, one
obtains the singlet-to-triplet ratio ζ = (2.3±0.5)×10−2,
(1.6 ± 0.3) × 10−2, and (2.1 ± 1.2) × 10−2 for 0.6, 0.7,
and 1.9GeV, respectively. The results for ζ, obtained
here (Fig. 13), can be explained by the dominance of the
∆-isobar or N∗-excitation mechanism. The spin statisti-
cal factor contributes a factor of 1/3 to this ratio. The
remaining difference given by a factor ∼ 6 × 10−2 is de-
termined by the reaction mechanism and the difference
in the diproton and deuteron wave functions. Assum-
ing the ∆-isobar excitation mechanism or, in the more
general case, isovector meson-nucleon exchange [24], one
obtains the isotopic factor 1/9 [24]. With this additional
factor the ratio in Eq. (4) is in agreement with the data
up to a factor ∼ 2.

IV. COMPARISON TO THEORY

The theoretical analysis of hard pd collisions at en-
ergies around 1 GeV appears to be rather complicated.
At high transferred momenta, corresponding to internal
momenta in excess of 0.4 GeV/c, non-nucleonic degrees
of freedom such as NN∗, N∗N∗, N∆, ∆∆ components,
and possibly also multi-quark components are expected
to contribute in the deuteron and diproton. These contri-
butions are strongly model-dependent. Choosing a par-
ticular reaction such as pd→ {pp}sn simplifies the theo-
retical analysis considerably. In collinear kinematics the
internal momenta probed in this reaction are only mod-
erately large (q < 0.6GeV/c), and it is therefore appro-
priate to perform a theoretical analysis using a meson-
baryon picture. The kinematics of the pd → {pp}sn re-
action is actually very similar to that of pd backward
elastic scattering, hence it is reasonable to apply as a
first step of the theoretical analysis the same reaction
mechanisms [17–19].
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A. ONE + SS + ∆ approach

The analysis of the Epp excitation energy distribution,
and the energy and angular dependence of the differ-
ential cross section has been performed within a ONE
+ SS + ∆ approximation [21, 23]. The approach is
based on the multistep scattering theory (Watson se-
ries). The involved Feynman diagrams are depicted in
Fig. 14. Only the first terms up to two-loop diagrams
were kept in the series, assuming that the contribution of
higher-order terms is small at high energies. For the one-
nucleon exchange (ONE) mechanisms, plane wave and
distorted wave Born approximations were used (abbrevi-
ated here by ONE(PWBA) ≡ ONE, and ONE(DWBA).
In the latter case, the rescatterings in the initial and fi-
nal states were taken into account as described for the
pd → dp reaction in Ref. [61]. Unlike the original Wat-
son series which includes only nucleons in the interme-
diate states, possible nucleon isobars can be taken into
account as well. The ∆(1232) isobar is considered explic-
itly. All necessary phenomenological parameters for the
∆ excitation amplitude in πN and ρN elastic scattering
were determined from the data of the pp → pnπ+ re-
action at 800MeV [62] and were described within the
∆-isobar model [63]. This allowed one to determine
cut-off parameters of the monopole form factors enter-
ing at the πN∆ and ρN∆ vertices, where the coupling
constants were taken from Ref. [64]. The d → np and
pp → {pp}s vertices were determined on the basis of
the Lippmann-Schwinger equation using phenomenolog-
ical NN potentials. Finally, small angle rescatterings in
the initial and final states involve on-shell pN-scattering
amplitudes, which were also taken from the world exper-
imental data via a parametrization used in the Glauber
theory [65]. Therefore, the ONE + SS + ∆ approach
used in the analysis presented here, has no additional
free parameters.
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FIG. 14: Mechanisms included in the ONE + SS + ∆ model
of the pd → {pp}sn reaction: (a) one-nucleon exchange within
the plane-wave Born approximation (ONE), (b) single scat-
tering (SS), (c) double pN-scattering with excitation of the
∆ or N∗ isobar (∆). Rescatterings within the distorted-wave
Born approximation (DWBA) are shown for ONE in the ini-
tial (d), final (e), and initial plus final (f) states.

1. Excitation energy Epp

The Migdal-Watson method, used in Sec. III A to de-
scribe the distribution of Epp, was developed by making
certain approximations when evaluating loop integrals,
which usually appear when accounting for FSI in the re-
action amplitude. An obvious advantage of the Migdal-
Watson approximation is that the final result does not
depend on the reaction mechanism and the type of NN
interaction potential. However, if those integrals are cal-
culated exactly for a given model of the NN interaction,
this should lead to a more appropriate shape of the Epp

distribution as compared to the Migdal-Watson approx-
imation for the same NN model. The only condition
needed to obtain the shape of the Epp dependence is
that the production mechanism has to be short-ranged.
In this way the precision of the Migdal-Watson approx-
imation was tested for the case of the pp → NNπ reac-
tion, assuming a one-loop mechanism with virtual pion
exchange [56, 57]. An accounting for the FSI can be
carried out also within the approach used here for the
pd → {pp}sn reaction. Thus, for the ONE mechanism,
the Epp dependence is determined by the t-matrix of the
half-off-shell pp scattering in the 1S0-state. The t-matrix
is given by the integral in configuration space

t(q, k) = −4π

∫ ∞

0

F0(qr)

qr
V (r)ψ

(−)
k

∗
(r)r2dr, (5)

where ψ
(−)
k (r) is the pp scattering wave function with

on-shell momentum k, F0(qr) is the regular Coulomb
function for zero orbital momentum, q is the off-shell
pp momentum, and V (r) is the strong interaction po-
tential in the 1S0-state. The k-dependence of the wave

function ψ
(−)
k (r) determines also the Epp dependence of

the reaction amplitude for all other mechanisms. We
found numerically that the shape of the Epp distribution
calculated within this approach depends very little on
the reaction mechanism itself. Furthermore, the theoret-
ical result is almost independent of energy in the range
0.5 − 2 GeV.

In order to increase the statistics, the data of Fig. 10
were combined by adding the acceptance corrected num-
ber of proton pairs per Epp bin in the energy interval
Tp = 0.5 − 1.4GeV. The experimental data, shown in
Fig. 15, agree with the Migdal-Watson and the ONE + SS
+ ∆ descriptions. Although the discrepancies are small,
the distributions differ systematically from the Migdal-
Watson ones. For the Migdal-Watson approximation a
χ2/ndf = 15.2/13 (confidence level CL = 0.29) was ob-
tained, and χ2/ndf = 8.6/13 (CL = 0.80) for the ONE
+ SS + ∆ approximation.

2. Dependence on cos θk

Another way to test the dominance of the S wave in
the internal state of the diproton is to study the angular
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FIG. 15: Excitation energy Epp of proton pairs from the pd →
{pp}sn reaction. The data were summed in the interval Tp =
0.5 − 1.4 GeV. The curves show fits with the ONE + SS +
∆ approximation (full line) and the Migdal-Watson approach
(dashed line).

dependence of the direction of the proton momentum in
the c.m. system of the proton pair with respect to the
total momentum of the diproton (see Fig. 4). For the
1S0 state of the pp pair, this dependence is isotropic. A
possible anisotropy could be produced by the admixture
of states with non-zero orbital momentum l 6= 0 in the in-
ternal pp motion. The expected contribution of P waves
to the ONE mechanism is estimated in appendix A. The
3P0,

3P1, and 3P2 final pp states were taken into ac-
count in addition to the 1S0 state. Numerical results
were obtained for the CD Bonn NN potential. The ra-
tio of P - to S-wave contributions in the differential cross
section is found to be ≈ 1% in the range 0.5−2.0GeV at
Epp = 3MeV. The only exception is the vicinity of the
node at 0.8GeV, where the S-wave contribution vanishes
due to the node in the half-off-shell amplitude [Eq.(5)] at
q ∼ 0.4GeV/c, but the P -wave contribution does not. In
view of the large transferred momenta in this reaction,
a P -wave contribution of a few percent is expected for
the SS and ∆ mechanisms. Higher partial waves yield
smaller contributions due to the centrifugal barrier.

The anisotropic cos θk dependence in the vicinity of the
ONE node for the 1S0 state of the diproton, if it were
observed, would directly indicate that the ONE mech-
anism dominates the reaction amplitude. According to
the numerical calculation for the ONE mechanism alone,
given in appendix A, the anisotropic part makes up about
37% at 0.8 GeV, therefore the θk dependence would be
strongly anisotropic. Since this is not the case, as shown
in Fig. 11, the ONE mechanism clearly does not domi-
nate at this energy.
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FIG. 16: Differential c.m. cross section averaged over the an-
gular interval 172◦ − 180◦ vs beam energy [26]. The curves
are the result of calculations using the CD Bonn NN potential
with the ONE (dashed) and ∆ mechanisms (full thin), both
without distortions and Coulomb effects. The ONE(DWBA)
+ SS + ∆ is the dotted line, and the ONE(DWBA) + ∆
(full thick line) contributions are obtained with a Coulomb
suppression factor 0.83 [26]. The previously obtained data of
Ref. [25] are shown by open circles (◦), and the new data by
bullets (•). The upper scale shows the internal momentum q
of the nucleons in the deuteron for ONE at θn = 180◦.

3. Energy dependence of the differential cross section

The differential cross section of the pd→ {pp}sn reac-
tion, averaged over the angular interval 172◦ − 180◦, is
shown in Fig. 16 as function of beam energy together
with the results of calculations performed within the
ONE(DWBA) + SS + ∆ approach. The new data re-
ported in this paper are indicated by bullets (•). The
ONE mechanism alone completely fails to describe the
data in the 0.5− 1.5GeV region. On the contrary, the ∆
mechanism dominates in this region and its contribution
alone is sufficient to explain the gross structure of the
data at 0.6 − 1.4GeV. However, outside of this interval,
the ONE contribution is sizeable. Thus, the inclusion of
the ONE mechanism below 0.6GeV improves the agree-
ment with the data as compared to the ∆ mechanism
alone. Above 1.3GeV the ∆ contribution drops quickly
with increasing energy, while the ONE contribution pro-
duces a plateau in the 1.3 − 2.0GeV region, smoothly
decreasing with increasing energy. At these energies the
ONE(DWBA) contribution also improves the agreement
compared to the ∆ mechanism alone, but the agreement
is not as good as at 0.5GeV.

The sensitivity of the ONE mechanism to high-
momentum components of the NN wave functions is very
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high, since the momenta probed in the deuteron (q) and
diproton (q′) for the ONE range from q ≈ q′ = 0.45
to 0.55GeV/c for beam energies 1.4 − 2.0GeV. Because
of the high sensitivity, as shown in Ref. [26], those in-
teraction potentials which are too repulsive at short NN
distances (rNN < 0.6 fm), like RSC [15] and Paris [14],
strongly overestimate the cross sections of Ref. [25] at
these energies within the ONE(DWBA) + SS + ∆ ap-
proach. On the other hand, the results with the CD Bonn
potential were found to be in agreement with the data.
The new data reported here are in agreement with this in-
terpretation of the pd→ {pp}sn reaction, although over-
all only a qualitative agreement is achieved. In this re-
gion, heavier nucleon isobars are expected to be of minor
importance, for a more detailed discussion, see Sec. IVB.

4. Angular dependence of θn

The results of the calculations of the angular depen-
dence of the differential cross section are presented in
Fig. 17 for 0.5GeV and in Fig. 18 for the energy inter-
val 0.5−2.0GeV. The ONE(DWBA) yields smaller cross
sections as compared to ONE. Although at 0.5GeV this
difference is rather small in magnitude, one can show
that the corresponding distortion factor originating from
the rescatterings in the initial and final state within the
ONE(DWBA) is larger by about a factor 2−3 at energies
Tp > 1GeV. Very similar results were found in pd elas-
tic scattering within the ONE mechanism in Ref. [61].
This behavior is related to the fact that with increasing
beam energy at fixed angle θn ≈ 180◦ shorter distances
are probed by the ONE mechanism in the deuteron (or
diproton) and, therefore, this implies that rescatterings
on the spectator proton become more important. Fur-
thermore, since the elastic pN-scattering amplitudes are
mainly absorptive (i.e., having large imaginary parts) at
these energies, the rescatterings lead to a decrease of the
reaction cross section.

At 0.5GeV, the agreement between the ONE(DWBA)
+ ∆ approximation and the experimental data is quite
good. One should note that neither the ∆ nor the ONE
mechanisms alone suffice to reproduce the data, under-
estimating the measured cross section by factors of 3 to
5, respectively. Only their coherent sum provides good
agreement at this energy.

At higher energies, the theoretical description of the
angular dependences becomes worse (see Fig. 18). In
general the model confirms the experimentally observed
weak dependence on θn, but the slope and its magnitude
for some energies are not well reproduced by the consid-
ered mechanisms [66]. Indeed, one can see that within
the ONE(DWBA) + SS + ∆ approach, the cross section
smoothly increases with increasing cos θn and the shape
of the angular dependence changes very little in the en-
ergy range of 0.5 − 2.0GeV for −1 ≤ cos θn ≤ −0.98.

The disagreement between theory and experiment at
higher energies can be attributed in part to the following
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FIG. 17: Angular dependence of the differential c.m. cross
section at 0.5 GeV. The curves show the results of calcula-
tions within the ONE(DWBA) + SS + ∆ approach using the
CD Bonn NN potential without Coulomb interaction: ONE
(dashed line), ONE(DWBA) (dashed-dotted), ∆ (full thin),
ONE(DWBA) + SS + ∆ (dotted), and ONE(DWBA) + ∆
(full thick). The Coulomb repulsion in the pp system, which
would scale all the curves by a factor 0.83, is not introduced
here.

factors. Firstly, when the energy is increasing, the contri-
butions of high-momentum components (q > 0.3GeV/c)
of the two-nucleon wave function are growing, but these
are not well known and depend on the choice of the NN
potential used. Secondly, the role of absorptive rescat-
terings increases. In this connection, we note that in the
present work (see also Ref. [26]) rescatterings in the ini-
tial and final states are taken into account within the
approximation employing only the on-shell part of the
singular integrals, whereas the principal value integrals
(off-shell parts) are neglected. Furthermore, it is assumed
in these calculations that the internal state of the dipro-
ton is not altered by rescatterings in the intermediate
state. When accounting for these effects, also including
a contribution from heavier nucleon resonances, one may
expect to obtain a better agreement with the data in the
range of 1 − 2GeV.

B. OPE model

The ONE + SS + ∆ approach accounts for the exci-
tation of only one nucleon resonance, e.g., the ∆(1232)
isobar, because for other heavier isobars, the necessary
information is much more uncertain. Recently, for the
description of the pd → {pp}sn reaction, a one-pion ex-
change (OPE) model (Fig. 19) was applied [67], which
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FIG. 18: Angular dependence of the differential c.m. cross
section for different beam energies. The curves are for the
ONE(DWBA) + SS + ∆ description. The results of the cal-
culations are scaled at 1.4 and 1.97 GeV by factors 0.5 and 0.7,
respectively. The Coulomb repulsion in the pp system, which
would scale all the curves by a factor 0.83, is not introduced
here.

takes into account the ∆(1232) contribution in pd colli-
sion in a different way compared to the ONE + ∆ + SS
approach. This model allows one to take into account
contribution of heavier isobars.

p p

pp

{pp}s

{pp}s

( )a ( )b

( )c ( )d

FIG. 19: Mechanisms of the pd → dp (a, c) and pd → {pp}sn
(b, d) processes for the OPE-I (a, b) and OPE-II (c, d) mod-
els.

In one version of the OPE model, called OPE-II [67]
(see Fig. 19 c, d), the cross sections of the pd → dp and
pN → {pp}sπ reactions are proportional to the pion ab-
sorption cross section on the deuteron, πd → NN. For
the unpolarized pd elastic cross section, this model is
equivalent to the one previously suggested in Ref. [68].

For the pd → {pp}sn reaction, the OPE-I model, shown
in Fig. 19, includes the unknown coherent sum of the
amplitudes of the pp→ {pp}sπ

0 and pn→ {pp}sπ
− sub-

processes. In contrast to that, the OPE-II model involves
only the known subprocess π0d → pn and, therefore, its
predictions are unambiguous. The OPE-II model rea-
sonably well reproduces the differential cross sections of
both reactions between 0.6 and 0.8GeV at θn = 180◦ (see
Fig. 5 of Ref. [67]). Since the NN → dπ cross section at
these energies is dominated by the ∆(1232) isobar, the
obtained result, to a large extent, confirms independently
the conclusion about the dominance of the ∆(1232) iso-
bar in the pd→ {pp}sn reaction, found within the ONE
+ SS + ∆ approach. The OPE-II model yields for the
ratio of the pd → {pp}sn and pd → dp cross sections
[Eq. (4)] rth = 0.016−0.013. This is in qualitative agree-
ment with the experimental value of rexp = 0.009−0.011,
found for the pd → dp and pd → {pp}sn data [38, 44–
47, 50]. The larger probability for the formation of a
deuteron compared to the {pp}s diproton is naturally
explained within this model. It is a consequence of sev-
eral reasons, including spin-isospin, combinatorial, and
phase-space factors, the ratio of the relevant nuclear form
factors enters as well.

At higher energies, the role of heavier nucleon iso-
bars in the subprocesses π+d → pp and πd → pn in-
creases [69, 70]. As a result, the OPE model shows a de-
crease of the slope in the energy dependence of the cross
sections of the pd → dp and pd → {pp}sn reactions at
about 1.5GeV. This tendency is in qualitative agreement
with pd elastic data and the new data on pd → {pp}sn,
obtained in this work. However, the OPE model under-
estimates sizeably the absolute value of the cross section
above 1GeV both for the pd → dp and pd → {pp}sn re-
actions, indicating that contributions from other mech-
anisms are also relevant in this region. According to
Ref. [67], agreement with the data on pd → {pp}sn can
be improved taking into account the ONE mechanism
in addition to OPE, although one should note that this
procedure is problematic due to double counting.

At last, a successful description of the data on the un-
polarized cross section, tensor analyzing power T20, and
polarization transfer κ0 in pd backward elastic scattering
in the energy range from 0.5 to 2.7GeV was obtained re-
cently [71] within the OPE model plus ONE mechanism
considered within a covariant form of relativistic dynam-
ics [72]. It would be very instructive to further develop
and to apply this approach [71] to the analysis of the
pd→ {pp}sn reaction.

C. Other approaches

Here we consider other approaches to the pd→ {pp}sn
reaction which were stimulated by the ANKE data.
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1. Bethe-Salpeter approach

With increasing beam energy, relativistic effects be-
come more important in the pd → {pp}sn reaction.
In the ONE + SS + ∆ approach, these effects were
taken into account within a relativistic Hamiltonian dy-
namics, developed for systems with a fixed number of
particles [73]. A fully covariant approach based on
the spinor-spinor Bethe-Salpeter equation with a real-
istic one-boson-exchange kernel in the ladder approxi-
mation was applied in Ref. [74] to the analysis of the
pd→ {pp}sn reaction, and a rather good agreement with
the data of Ref. [25] was achieved. The FSI effects have
been taken into account in the pp pair by treating it as
a relativistic 1S0 scattering state. A rather important
contribution of the Lorentz-boost effects and relativis-
tic P -waves in the pp system has been found. This re-
sults in the shifting of the minimum and removal of the
dip in the ONE cross section caused by the repulsion in
the 1S0 pp interaction. The inclusion of P -wave com-
ponents corresponds to the involvement of intermediate
NNNNN states which can be compared with the effects
of pair meson-exchange currents and isobar contributions
in non-relativistic calculations. The N∆N configurations
taken into account within the ONE + SS + ∆ approach in
Refs. [26, 67] were found to dominate in the pd→ {pp}sn
reaction at about 0.6− 1.2GeV, but were not considered
in Ref. [74].

2. Constituent counting rules

At asymptotically high energies
√
s and transferred

momenta t, dimensional analyses [75, 76] and perturba-
tive QCD [77, 78] lead to constituent quark counting rules
(CCR) for exclusive binary reactions, dσ

dt ∼ s−nf( t
s),

where n + 2 is the total number of point-like objects in
the initial and final states. The s−n dependence was ob-
served for many reactions with free hadrons at moderate
energies and large fixed scattering angles (see, for exam-
ple, Ref. [79]).

For reactions with nuclei, the CCR behavior of the
cross section would be considered as an indication of a
transition region from hadron to quark degrees of free-
dom. As in the case of electromagnetic form factors and
two-body hadronic reactions, the scale for the onset of
the CCR regime cannot be predicted theoretically, and
must be determined experimentally. At SLAC and JLab
the CCR behavior was observed in the region of 1GeV in
deuteron photodisintegration γd→ pn (see Ref. [80] and
references therein). A recent analysis of available data
on pure hadronic reactions, i.e., dd → 3Hp and dp → dp
at large fixed scattering angles θcm ∼ 60−90◦ also shows
a similar onset of CCR scaling in the GeV region [81].
The internal nucleon momenta that correspond to the
observed onset of CCR scaling are about 1 GeV/c for the
γd → pn reaction, and ∼ 0.5GeV/c in the dd → 3Hp
and dp → dp reactions. These large momenta reflect the
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FIG. 20: Differential cross section ln ( dσ
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) as function of ln (s)

for pd backward elastic scattering and the pd → {pp}sn re-
action. The previously obtained data of Ref. [25] are shown
by open circles (◦), the new data by bullets (•). The fits
in the range 0.95 − 2.0 GeV for pd backward elastic scatter-
ing and pd → {pp}sn yield exponents of n = 11.70 ± 0.32
(χ2/ndf = 18/9) and n = 11.88 ± 0.53 (χ2/ndf = 56/4),
respectively. The upper scale indicates the incident proton
beam energy.

hardness of those reactions and can be considered as a
criterion for the scaling regime.

The pd → {pp}sn and the pd → dp processes are con-
sidered here at energies, which are very far from those
where CCR are usually applied. Nevertheless, in the re-
gion between the ∆(1232) and ∆(1920) resonances, a test
for a possible CCR scaling behavior is meaningful, be-
cause the internal momenta in the deuteron and diproton
in these reactions reach large values q ∼ 0.5GeV/c. (For
the ONE mechanism, this corresponds to Tp = 1.5GeV.)
In both reactions, the total number of quarks in the
initial and final states is 18, therefore one should ex-
pect an exponent of n = 16. A fit in the energy range
Tp = 1 − 2GeV to the pd → dp data and the previously
published pd → {pp}sn data [25] at θcm = 172 − 180◦

gave an exponent of n ≃ 12.9 [67]. The deviation
from the expected asymptotic value n = 16 was at-
tributed to diquark-cluster configurations in free nucleons
of deuteron and diproton. If the momentum transfer is
not large enough to resolve the intrinsic structure of the
diquarks, these would act as point-like objects, thereby
lowering the expected exponent n.

Our fits, shown in Fig. 20, were performed at fixed
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angle θcm = 180◦ in the region 0.95 − 2 GeV, and yield
exponents of n = 11.88 ± 0.53 (χ2/ndf = 56/4) for the
pd → {pp}sn reaction, and n = 11.70 ± 0.32 (χ2/ndf =
18/9) for the pd → dp process. Since the χ2/ndf are
rather large, realistic uncertainties of the two exponents
are considerably larger by factors of 4 and 2, respectively,
compared to those listed above. The obtained exponents
are within errors the same for both reactions, and are in
the CCR ballpark. Here we recall that CCR experiments
for πN, KN, K̄N, and NN scattering have been confirmed
within 1 − 1.5 units [79].

D. Related topics

The study of hard pd interactions in the GeV region
induced in the past several fruitful ideas. When studying
the quasi-elastic knock-out of fast deuterons from nuclei
by protons at 675 MeV, for instance, a hypothesis about
density fluctuations of nuclear matter was supposed in
Ref. [82]. This idea stimulated an intensive search for
fluctons (or, in modern language, multiquark configura-
tions) in nuclei and led to the observation of cumulative
effects [4] (for a recent review, see Ref. [5]). The possi-
bility to search for NN∗ components in the deuteron had
been related also to pd backward elastic scattering [83].
Furthermore, the possible formation of other exotic ob-
jects in the intermediate state, like three-baryon reso-
nances [17] and color strings [84] was also discussed in
conjunction with pd backward elastic scattering in the
GeV region.

The contribution of these ingredients, however, is
strongly model dependent and in spite of the many ef-
forts undertaken, well established results were not ob-
tained. On the other hand, the excitation of well-known
resonances, like the ∆ isobar, plays an important role
in these collisions. The expected contribution of three-
baryon resonances, introduced as an attempt to solve the
T20 puzzle in pd backward elastic scattering, was sig-
nificantly reduced, after a more careful analysis of the
∆(1232) isobar contribution was carried out [85]. The ∆-
isobar excitation, caused by the long and medium range
interaction, complicates the study of short-range prop-
erties of few-nucleon systems. Studies of the breakup
reaction with a diproton in the final state, in which the
∆ and N∗ contributions are suppressed by isospin invari-
ance, could reveal the above mentioned aspects of the
short-range dynamics in pd collisions.

The results of the analysis performed within the con-
ventional meson-baryon picture in this work and in
Ref. [26] show that non-nucleonic degrees of freedom yield
rather small contributions in the GeV region. At mod-
erate energies, but large enough to test the region of the
NN core via the ONE mechanism, the agreement between
theory and data on unpolarized cross sections can be
considered to be almost quantitative. The ∆(1232) still
dominates at these energies. This mechanism realizes the
contribution of a special type of three-body force, whose

relative contribution at lower energies is much smaller
and rather uncertain [20, 86]. One may conclude that the
pd→ {pp}sn reaction at 0.5 − 1.0GeV offers a new tool
for the study of this type of three-body force, as discussed
in Ref. [87]. At higher energies the agreement is worse,
nevertheless, one observes that better phenomenological
NN potentials lead to a better agreement with the experi-
mental data on the pd→ {pp}sn reaction [26]. In general,
three-body reactions allow one to test those properties of
the interaction between nucleons which are absent in two-
body NN data, e.g., high-momentum components of the
NN-wave functions and three-body forces. As suggested
in Ref. [26] and confirmed here by the more precise new
data, high-momentum components in the deuteron and
diproton appear to be rather weak.

Very similar arguments were applied to motivate in-
vestigations of other reactions with formation of a dipro-
ton in the final state [88–90]. These are pp → {pp}sπ

0

and pp → {pp}sγ, investigated at several hundred MeV
in kinematics of pp → dπ+ and pn → dγ, respectively.
Like in the present study, the ∆-isobar contributions were
expected to be significantly suppressed compared to the
corresponding reactions with a final deuteron due to gen-
eral symmetry properties. But the measurements [88–90]
show pronounced enhancements of the cross sections in
the ∆ region. Presumably, these results also indicate that
high-momentum components in the NN wave functions
are rather weak [91].

Under the assumption that the ONE mechanism dom-
inates at energies above the ∆(1232)-isobar region (Tp >
1.5GeV) the observed small ratio r ≈ 10−2, given in
Eq. (4), implies that triplet pn pairs (deuterons) with
high internal momenta q = 0.5 − 0.6GeV/c occur much
more often than singlet {pp}s pairs. A similar finding was
recently reported with respect to correlated NN pairs in
nuclei [6] in the analysis of nuclear reactions (p, ppn) in
Ref. [92, 93], and in the (e, e′pp) and (e, e′pn) reactions
at high transferred momenta [94]. Calculations of two-
nucleon momentum distributions for the ground states
of the lightest nuclei are in agreement with this conjec-
ture [95].

V. SUMMARY AND CONCLUSIONS

The pd → {pp}sn reaction has been studied in the
energy range 0.5 − 2.0GeV in a kinematics similar to
that of pd backward elastic scattering. The cross section
of the deuteron breakup reaction with a diproton in the
final state was found to be about two orders of magnitude
smaller than the latter. The high statistics obtained at
beam energies of 0.5, 0.8, 1.1, 1.4, and 1.97GeV allowed
us to determine the dependence of the differential cross
section on the diproton excitation energy Epp, on the
proton emission angle θk in the rest frame of the proton
pair, and on the neutron emission angle θn. For Epp

less than 3MeV the distributions of Epp (Fig. 10) and θk

(Fig. 11) are caused by the final-state interaction between
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the protons, and are used here to validate the dominance
of the 1S0 pp state.

The shape of the energy dependence of the measured
differential cross section of the pd → {pp}sn reaction
obtained at θn = 180◦ is similar to the one of pd backward
elastic scattering. Both processes exhibit a decrease of
the cross section in the energy range ∼ 0.7 − 1.4GeV
by one order of magnitude with a smaller decrease at
the higher energies. In the angular range from 168◦ to
180◦ the differential cross sections change smoothly with
θn and exhibit only a small variation of the slope near
θn = 180◦ as function of energy.

The theoretical analysis shows that the ONE + SS
+ ∆ model with rescatterings in the initial and final
states allows one to describe reasonably well the obtained
pd→ {pp}sn differential cross section when a rather soft
short-distance NN potential is used, like the CD Bonn po-
tential. The results of calculations [26] performed within
the same model, but with harder NN potentials, like the
Paris or the RSC potentials, are clearly contradicting
the data. This observation, first described in Ref. [26]
and confirmed here by the new high-statistics data, con-
stitutes the most important finding of the study of the
pd→ {pp}sn reaction.

The excitation of a ∆(1232) in the intermediate state
represents a contribution of a three-body force to the
pd → {pp}sn reaction. This contribution turned out to
become important at energies 0.5 − 1.0GeV due to the
node in the ONE amplitude (see Fig. 16), located in this
reaction at ≈ 0.8 GeV, which is caused by the repulsive
NN core in the 1S0 state. One should note, however,
that neither ∆ mechanism alone, nor the separate ONE
mechanism provide an agreement with the experimen-
tal data below 1 GeV. Only their coherent sum allows
one to describe the data. An analysis within the OPE
model with the subprocess π0d → pn confirms indepen-
dently the dominance of the ∆(1232) isobar contribution
at energies below 1 GeV. Above 1 GeV, the OPE model
accounts for the contribution of heavier nucleon isobars,
but underestimates the absolute value of the measured
cross section at ∼ 1 − 2GeV. In accordance with the
results of the ONE + SS + ∆ calculations, this implies
that the ONE contribution cannot be neglected at higher
energies 1 − 2 GeV.

In view of high internal momenta q ∼ 0.5 − 0.6GeV/c
probed by the ONE mechanism in this energy region, it is
important to gain more insight into the ONE contribu-
tion by independent measurements. The planned mea-
surements of the tensor analyzing power T20 and spin

correlation Cy,y of the ~p~d → {pp}sn reaction could clar-

ify further the underlying dynamics of this process and
shed light on the role of the ONE mechanism [96].

Appendix A: Contribution of P-waves to ONE

We write the deuteron breakup reaction pd→ {pp}sn
with the c.m. three-momenta and polarizations indicated
in brackets,

p(p1, σ1)+d(Pd, λd) → p(p′
1, σ

′
1)+p(p

′
2, σ

′
2)+n(pn, σn) .

(A1)
The general expression for the invariant cross section of
the reaction is

dσ = (2π)4δ4(Pi − Pf )
1

4I
|Afi|

2
(A2)

× d3p′1
2E′

1(2π)3
d3p′2

2E′
2(2π)3

d3pn

2En(2π)3
.

|Afi|
2

denotes the squared spin-averaged reaction am-
plitude, Pi and Pf are the total four-momenta of
the initial and final system of particles, respectively.
I =

√
(E1Ed − p1Pd)2 −m2M2

d , Md and m are the

masses of deuteron and nucleon, Ei =
√

p2
i +m2, E′

i =√
p

′2
i +m2, and Ed =

√
P2

d +M2
d . Integrating Eq. (A2)

over the three-momentum p′
2 and the energy En, the dif-

ferential cross section reads

dσ

dk2dΩkdΩn
=
pn

p1

k

(4π)5 sEk
|Afi|

2
. (A3)

Here k denotes the relative momentum in the final proton
pair, Ek = k2/m is the kinetic energy in the c.m. system
of the pair, and s is the invariant mass of the p+d system.
In order to obtain the differential cross section dσ/dΩn,
one has to integrate Eq. (A3) over k2 from 0 to maximum
momentum squared k2

max and over all directions of the
momentum k. Due to the identity of the final protons,
when performing integration over dΩk within the full 4π
solid angle, the right-hand side of Eq. (A3) has to be
multiplied by a factor 1

2 .

Only the 1S0 state of the final pp pair was taken into
account in Ref. [26]. In the following, we evaluate the
contribution of P waves in the final state of the two pro-
tons under the assumption that only the ONE mecha-
nism is present in the pd → {pp}sn reaction. According
to Ref. [22] where a general formalism for this mecha-
nism was developed in plane wave approximation, the
spin-averaged squared matrix element can be written as

|Afi|
2

=
1

6

∑

λd σ1 σ′
1 σ′

2 σn

|Afi|2 =
Ed(E2 + E′

n) εp(q)

16πE2
2

[
u2

0(q) + u2
2(q)

]
F (q′,k). (A4)
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Here εp(q) =
√
m2 + q2, and u0(q) and u2(q) are the S-

and D-wave components of the deuteron wave function,
Ed, E2 and En are the total energies of the deuteron, in-
termediate proton and final neutron in the c.m. system of
the reaction; q is the internal momentum in the deuteron,
q′ is the off-shell relative momentum in the proton pair,

and k its on-shell momentum. The internal momenta q
and q′ are related to the momenta of initial and final par-
ticles according to the relativistic kinematics. The func-
tion F (q′,k) can be written via the amplitude of elastic
pp scattering Tpp(q

′,k) in the form

F (q′,k) =
∑

σ′
1

σ′
2

σ1 σ2

∣∣∣T σ′
1 σ′

2

NN σ1 σ2
(q′,k)

∣∣∣
2

=
∑

JLL′ eJ eLfL′Sl

N 2
pp(L, S) tJS

LL′(q′, k)
(
t

eJS
eLfL′

(q′, k)
)∗

× C
eL0
L0 l0 C

fL′0
L′0 l0(2J + 1)(2J̃ + 1)(2l + 1)

×
√

(2L+ 1)(2L′ + 1)

{
L̃ L l

J J̃ S

}{
L̃′ L′ l

J J̃ S

}
× Pl(q

′k/q′k) , (A5)

where Npp(L, S) = 1 + (−1)L+S is the combinatorial
factor for two protons; the braces stand for usual no-
tation of 6j symbols. CJ MJ

L M l m is the Clebsh-Gordan co-
efficient, and Pl is the Legendre polynomial of l-th order.
tJS
LL′(q′, k) is the partial t-matrix of pp scattering for the

transition L→ L′ in the state with spin S and total an-
gular momentum J . The function F(q’,k) in Eq. (A5)
at q′ = k describes the differential cross section of pp
scattering. As seen from Eq. (A5), the states with dif-
ferent spins S do not interfere in the cross section. This
is a consequence of the total angular momentum J and
parity conservation. Therefore, it is reasonable to sep-
arate transitions in singlet (S = 0) and triplet (S = 1)
channels.

Let us now consider the relative contributions of the
spin-singlet 1S0 and spin-triplet waves 3P0,

3P1,
3P2 for

Emax
pp = 3 MeV. For simplicity, we consider collinear kine-

matics with θn = 180◦. In this case, the direction of the
vector q′ coincides with the beam direction, therefore,
the angle between q′ and k is equivalent to θk, which is
the angle between k and the total diproton momentum.
Thus, the squared transition matrix element in Eq. (A4)
can be written as

|Afi|
2

=
∑

l

Cl(2l + 1)Pl(cos θk) , (A6)

where the coefficients Cl can be deduced from Eq. (A5).
The angular momentum l takes the values 0, 1, or 2.
One can find that l = 0 corresponds to the following
combinations of partial t-matrices tJS

LL′(q′, k): 1S0 ×1 S0,
3P0×3P0,

3P1×3P1, and 3P2×3P2, each of them leading to
an isotropic distribution over cos θk. The value l = 1 cor-
responds to combinations 3P0×3P1,

3P1×3P0,
3P1×3P1,

3P1 ×3P2,
3P2 ×3 P1, and 3P2 ×3 P2. At last, l = 2 comes

from combinations 3P1 ×3 P1,
3P1 ×3 P2,

3P2 ×3 P1, and
3P2 ×3 P2. One can see from Eq. (A4) that for P waves

the Clebsh-Gordan coefficients C
eL0
L0 l0 and C

fL′0
L′0 l0 are re-

duced to C10
1010 = 0. Therefore, the coefficient in front

of P1(cos θ) in Eqs. (A4) and (A6) reads C1 = 0. The
only non-isotropic term for the ONE mechanism is given
by l = 2. In a numerical calculations for the 1S0 and
P -wave scattering amplitudes, we used separable repre-
sentations of the t-matrices from Ref. [97] obtained for
the CD Bonn potential. At Epp = 3 MeV and l = 2,
we found the following ratios at the different beam ener-
gies, C2/C0 = 0.0022 (0.5GeV), 0.0748 (0.8GeV), 0.0164
(1.1GeV), 0.0048 (1.4GeV), and 0.002 (1.97GeV). The
experimentally determined ratios C2/C0 are listed in Ta-
ble III. The P -wave contribution to the isotropic part
of the squared matrix element of Eq. (A6), i.e., to the
coefficient C0, is 0.007, 0.229, 0.053, 0.016, 0.007 at the
same energies. The large increase of the C2/C0 ratio
at 0.8 GeV originates from the vanishing half-off shell
t(q, k)(1S0)-matrix at this energy, but does not occur in
the other mechanisms, where such nods do not exist.
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