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Abstract. We present predictions for the theK−α scattering length obtained within the framework of the multiple
scattering approach. Evaluating the pole position of theK−α scattering amplitude within the zero range approximation,
we find a loosely boundK−α state with a binding energy ofER= − 2. . . − 7 MeV and a widthΓR=11. . .18 MeV.
We propose to measure theK−α scattering length through the final state interaction between theα andK−-meson
produced in the reactiondd→αK+K−. It is found that theK−α invariant mass distribution from this reaction at
energies near the threshold provides a new tool to determinethes-waveK−α scattering length.

PACS. 25.10.+s Meson production – 13.75.-n Deuteron induced reactions

1 Introduction

Low-energyK̄N andK̄A interactions have gained substantial
interest during the last two decades. It is known from the time-
honored Martin analysis [1] that the isoscalars-waveK−N
scattering length is large and repulsive, Rea0=−1.7 fm, while
the isovector length is moderately attractive, Rea1=0.37 fm. It
is clear that such a strong repulsion in theK̄N isoscalar chan-
nel leads also to a repulsion in the low-energyK−p system,
since ReaK−p=0.5Re(a0+a1)=−0.74 fm. It should be noted
that Conboy’s analysis [2] of low energȳKN data gives a solu-
tion with Rea0=−1.03 fm and Rea1=0.94 fm, that also results
in repulsion in theK−p channel, but with substantially smaller
strength, ReaK−p=−0.05 fm. Data from KEK show that the
energy shift of the 1s level of kaonic hydrogen is repulsive [3].
Very recent results for kaonic hydrogen from the DEAR exper-
iment [4] also indicate a repulsive energy shift. However, the
consistency of the bound state with the scattering data can be
questioned, as first pointed out in Ref. [5].

Nevertheless, it is possible that the actualK−p interaction
is attractive if the isoscalarΛ(1405) resonance is a bound state
of K̄N system [6,7]. A fundamental reason for such a sce-
nario is provided by the leading order term in the chiral expan-
sion for theK−N amplitude which is attractive. New devel-
opments in the analysis of thēKN interaction based on chiral
Lagrangians can be found in Refs.[8–11]. These results provide
further support for the description of theΛ(1405) as a meson-
baryon bound state. More recently, it has even been argued that
there are indeed two poles in the complex plane in the vicinity
of the nominalΛ(1405) pole [12]. For recent evidence to sup-
port this scenario, see e.g. [13]. A different view seems to be
taken in Ref.[14].

Such a non-trivial dynamics of thēKN interaction leads to
very interesting in-medium phenomena in interactions of anti-
kaons with finite nuclei as well as with dense nuclear matter,
including neutron stars, see e.g. Refs. [15–20].

Recently, exotic few-body nuclear systems involving the
K̄-meson as a constituent were studied by Akaishi and Ya-
mazaki [21]. They proposed a phenomenologicalK̄N potential
model, which reproduces theK−p andK−n scattering lengths
from the Martin analysis [1], the kaonic hydrogen atom data
from KEK [3,22] and the mass and width of theΛ(1405) res-
onance. ThēKN interaction in this model is characterized by
a strongI=0 attraction, which allows the few-body systems
to form dense nuclear objects. As a result, the nuclear ground
states of aK− in (pp), 3He, 4He and8Be were predicted to
be discrete states with binding energies of 48, 108, 86 and 113
MeV and widths of 61, 20, 34 and 38 MeV, respectively. More
recent work on this subject can be found e.g. in Refs. [23,24].

Furthermore, very recently a strange tribaryonS0(3115)
was detected in the interaction of stoppedK−-mesons with
4He [25]. Its width was found to be less than 21 MeV. In prin-
ciple, this state may be interpreted as a candidate of a deeply
bound state(K̄NNN)Z=0 with I=1, I3=−1. However, the
observed tribaryonS0(3115) is about 100 MeV lighter than the
predicted mass. Moreover, in the experiment an isospin 1 state
was detected at a position where no peak was predicted. Fur-
ther searches for bound kaonic nuclear states as well as new
data on the interactions of̄K-mesons with lightest nuclei are
thus of great importance.

Up to now thes-waveK−α scattering length, which we
denote asA(K−α), has not been measured and relevant the-
oretical calculations have not yet been done. In this paper we
present a first calculation ofA(K−α) within the framework of
the multiple scattering approach (MSA).
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We investigate the pole position of theK−α scattering am-
plitude within the zero range approximation (ZRA) in order to
find out whether the formation of a bound state inK̄α system
is possible. Furthermore, we discuss the possibility to measure
the K̄α scattering length through thēKα final state interac-
tion (FSI). Recently it was proposed to measure the reaction
dd→αK+K− near the threshold at COSY-Jülich [26]. We ap-
ply our approach to calculate theK−α FSI effect in this reac-
tion and demonstrate that theK−α invariant mass distribution
is sensitive enough to theK−α FSI and may be used for a de-
termination of thes-waveK−α scattering length.

Our paper is organized as follows: In Sect. 2 we calculate
theK−α scattering length within the MSA and determine the
pole position of the amplitude in the zero range approximation.
In Sect. 3 an analysis of the FSI in the reactiondd→αK+K−

is considered. Our conclusions are given in Sect. 4.

2 The K
−

α scattering length

2.1 Multiple scattering formalism

To calculate thes-waveK−α scattering length as well as the
FSI enhancement factor, we use the Foldy–Brueckner adia-
batic approach based on the multiple scattering (MS) formal-
ism [27]. Note that this method has already been used for the
calculation of the enhancement factor in the reactionspd→3Heη
[28], pn→dη [29] andpp→dK̄0K+ [30].

In the Foldy–Brueckner adiabatic approach, the continuum
K−α wave function, which is defined at fixed coordinates of
the four nucleons in4He, can be written as the sum of the in-
cident plane wave of the kaon and waves emerging from the
four fixed scattering centers. Keeping only thes-wave contri-
bution, we can express the total wave functionΨk through the
j-channel wave functionsψj(rj) in the following way

Ψk(rK− ;r1, r2, r3, r4)=eik·r
K−+

4
∑

j=1

tK−Nj

e
ikRj

Rj
ψj(rj),(1)

whereRj= |rK−−rj | and the t-matrix,tK−Nj
, is related to the

elastic scattering amplitudefK−N via [29,30]

tK−N (kK−N ) = (1 +
mK−

m
) fK−N (kK−N ), (2)

with m (mK−) the nucleon (charged kaon) mass, andkK̄N is
the modulus of the relativēKN momentum. Note that we use
the unitarized scattering length approximation for the latter,i.e.

f I
K̄N (kK̄N ) =

[

(aI
K̄N )−1 − ikK̄N

]−1
, (3)

whereI is the isospin of theK̄N system. For each scatter-
ing centerj an effective waveψj(rj) is defined as the sum of
the incident plane wave and the waves scattered from the three
other centers

ψj(rj) = eik·rj +
∑

l 6=j

tK−Nl

e
ikRjl

Rjl
ψl(rl) , (4)

whereRjl= |rl−rj |. Therefore, the channel wave functions
ψj(rj) can be found by solving the system of the four linear
equations (4).

To obtain the FSI factor we calculate the total wave func-
tion Ψk given by Eq. (1) atrK−=

∑4

j=1
rj=0 and average it

over the coordinates of the nucleonsrj in 4He. Thus the FSI
enhancement factor is [27]

λMS(kK−α)=

∣

∣

∣

∣

∣

∣

〈

Ψqlab

K−
(rK−=

4
∑

j=1

rj=0; r1, r2, r3, r4)

〉

∣

∣

∣

∣

∣

∣

2

.(5)

For the nuclear density function we use the factorized form

|Φ(r1, r2, r3, r4)|
2 =

4
∏

j=1

ρj(rj) , (6)

where the single nucleon density is taken in Gaussian form as

ρ(r) =
1

(π R2)3/2
e−r2/R2

, (7)

withR2/4=0.62 fm2. Note that the independent particle model
formulated by Eqs. (6-7) provides a rather good descriptionof
the4He electromagnetic form factor up to momentum transfer
q

2=8 fm−2 [31].
The integration in Eq. (5) over the nucleon coordinatesrj

was performed using the Monte-Carlo method. This approach
provides us with a possibility to include all configurationsof
the nucleons in4He. Within this method we can also take into
account in Eq. (1) the dependence of thetK−Nj

amplitude on
the type of nucleonic scatterer,i.e. proton or neutron. Note that
the simple version of the multiple scattering approach usedin
Ref. [32] can be applied only to the case of identical scatterers.

The s-waveK−α scattering length can be derived from the
asymptotic expansion of Eq. (1) atrK−→∞ and it is

A(K−α) =
mα

mα +mK−

〈

4
∑

j=1

tK−N ψj(rj)

〉

∣

∣

∣

∣

∣

∣∑

4

j=1
rj=0

,(8)

with mα theα-particle mass. Here the procedure of averaging
over the coordinates of the nucleons is similar to Eq. (5).

2.2 S-wave scattering length and the pole position of
the amplitude in the zero range approximation

The basic uncertainties of the MSA calculations are given by
the next-to-leading order model corrections such as recoilcor-
rections, contributions from inelastic double and triple scatter-
ing terms,etc. and due to the uncertainties of the elementary
I=0 andI=1 K̄N scattering lengths. The calculations of the
K−α scattering length were done for five sets of parameters
for theK̄N lengths shown in the Table 1. Here we used the re-
sults from aK-matrix fit (Set 1) and a separable fit (Set 2) [33].
We also study the constant scattering length fit (CSL) given
by Dalitz and Deloff [6], which we denoted as Set 3 and the
CSL fit from Conboy [2] (Set 4). The recent predictions for
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Set Reference a0(K̄N)[fm] a1(K̄N)[fm] A(K−α)[fm]

1 [33] −1.59 + i0.76 0.26 + i.57 −1.80 + i0.90

2 [33] −1.61 + i0.75 0.32 + i0.70 −1.87 + i0.95

3 [6] −1.57 + i0.78 0.32 + i0.75 −1.90 + i0.98

4 [2] −1.03 + i0.95 0.94 + i0.72 −2.24 + i1.58

5 [10] −1.31 + i1.24 0.26 + i0.66 −1.98 + i1.08

Table 1. TheK−α scattering length for various sets of the elementaryK̄N scattering lengthsa(K̄N) (I = 0, 1).

K̄N scattering lengths based on the chiral unitary approach of
Ref.[10] are denoted as Set 5.

The results of our calculations are listed in the last column
of Table 1. These results are very similar for the Sets 1–3 giving
the real and imaginary parts of the scattering lengthA(K−α)
within the range of−1.8 ÷ −1.9 fm and0.9 ÷ 0.98 fm, re-
spectively. The results for Set 4 are quite different: ReA(K−α)
=-2.24 fm and ImA(K−α)=1.58 fm. Furthermore, our calcu-
lations with Set 5 are close to the results obtained with Sets
1–3.

Unitarizing the constant scattering length, we can recon-
struct theK̄α scattering amplitude within the zero range ap-
proximation (ZRA) as

fK̄α(k) =
[

A(K̄α)−1 − ik
]−1

, (9)

wherek=kK̄α is the relative momentum of theK−α system.
The denominator of the amplitude of Eq.(9) has a zero at the
complex energy

E∗ = ER −
1

2
iΓR =

k2

2µ
, (10)

whereER andΓR are the binding energy and width of the pos-
sibleK−α resonance, respectively. Hereµ is reduced mass of
the system withα mass taken as 3.728 GeV.

For Set 1 and Set 4 we find a pole at the complex en-
ergies ofE∗=(−6.7−i18/2) MeV andE∗=(−2.0−i11.3/2)
MeV, respectively. The result for Set 5 isE∗=(−4.8−i14.9/2)
MeV. Note that assuming a strongly attractive phenomenologi-
calK̄N potential, Akaishi and Yamazaki [21] predicted a deeply
boundK̄α state atE∗=(−86−i34/2) MeV, which is far from
our solutions. With a very similar elementarȳKN scattering
length given by Set 1 and used in both calculations, we pre-
dict a loosely bound state. It is not clear if medium effects and
higher order corrections might be so strong in order to change
so drastically thēKα scattering length predicted by our calcu-
lations within the multiple scattering approach. In any case it
is very important to measure thes-waveK̄α scattering length
experimentally and to clarify the situation concerning thepos-
sible existence of a (deeply) bound̄Kα state.

Note that in the limit of small absorption,i.e. when the
imaginary part ofA(K̄α) approaches zero, the real part of
the scattering length should be much larger for the case of a
loosely bound state as compared to the case of a deeply bound
state. Such a situation is supported by the calculations within
ZRA (even in the presence of absorption) where in the case of
a deeply bound state we found thatAK̄α=−0.07+i0.72 fm. We
expect that the ZRA can be applied for the description of the

amplitude which is generated by the short range potential used
in Ref.[21].

3 The reaction dd→αK
−

K
+ near

threshold and the K
−

α final-state
interaction

It is well known [26,34] that the reaction

dd→ αK−K+ (11)

provides an opportunity to studyI=0 mesonic resonances in
theK−K+ sector.

At the same time near the reaction threshold it might be
sensitive to the toK−α final state interaction. Here we study
whether it is possible to evaluate thes-waveK−α scattering
length from theK−α final-state interaction. Similar evaluation
of thedK̄0 FSI and relevant scattering length was done in our
previous study [35] of thepp→dK̄0K+ reaction. As has been
stressed in Ref. [36] this reaction should be very sensitiveto
the K̄0d FSI. Through our analysis we extracted a new limit
for theK−d scattering length from theK̄0d invariant mass
spectrum from thepp→dK̄0K+ reaction measured recently at
COSY-Jülich [37].

It is clear that the FSI effect is essential at low invariant
masses of the interacting particles, where the relatives-wave
contribution is expected to be dominant. One can also safely
assume that the range of the FSI is much larger as compared
to the range of the basic hard interaction related to the pro-
duction of theK̄K-meson pair. This means that the basic pro-
duction amplitude and the FSI term can be factorized [27,32,
38–40] and the FSI can be taken into account by multiplying
the production operator by the FSI enhancement factor defined
by Eq.(5).

Fig.1 shows the dependence of theK−α FSI enhancement
factorλMS(k) given by Eq. (5) on the relative momentum of
theK−α system,k. The solid lines in the upper (lower) part
of Fig.1 show the results obtained with Set 1 (Set 4) for the
K̄N scattering length. The calculations with Set 1 result in
λMS(k)≃0.55 atk=0 and FSI factor smoothly decreases with
k. The calculations with Set 4 giveλMS(k)>1 atk=0 and show
a much strongerk-dependence.

Following the Watson–Migdal approximation [42,43] the
k-dependence of the enhancement factor is generally described
in terms of the on-shell scattering amplitude as

λWM =
C

|1 − iqAK̄α|
2
, (12)



4 V. Yu. Grishina et al.:K−α scattering length

Fig. 1. TheK−α FSI enhancement factorλMS(k), Eq.(5), as a func-
tion of the relative momentumk of theK−α system. The solid lines in
the lower and upper part of the figure show our calculations with Set 1
and Set 4 for theK̄N scattering lengths, respectively. The dashed
lines illustrate the Watson–Migdal enhancement factor normalized to
λMS(k) atk = 0.

Fig. 2.TheK−α FSI factor averaged over the three body phase space
of the reactiondd→αK+K− as a function of excess energy. The solid
and dashed lines show the calculations with parameters of Set 1 and
4, respectively.

whereC is normalization constant.
Now, the dashed lines in Fig. 1 illustrate the Watson–Migdal

enhancement factor normalized toλMS(k) at k=0. The upper
and lower parts of Fig. 1 are calculated using the scattering
lengthsAK̄α obtained with parameters of Set 1 (Set 4), re-
spectively, and listed in Table 1. It is clear that the momen-
tum dependence ofλWM(k) andλMS(k) is different at differ-

Fig. 3. The invariant K−α mass spectra produced in the
dd→αK+K− reaction at excess energies 30 and 50 MeV. The solid
lines describe the pure phase space distribution, while thedashed and
dotted lines show our calculations withK−α FSI given by parameters
of Set 1 and 4, respectively.

entk. However, the absolute difference betweenλWM(k) and
λMS(k) atk≤100 MeV/c is relatively small.

Obviously, the energy dependence of the total cross sec-
tion for thedd→αK+K− reaction is also distorted by the the
K−α FSI. In Fig. 2 we show the enhancement factorλMS(k)
averaged over the 3-body phase space as a function of the ex-
cess energyǫ for thedd→αK+K− reaction. The results for the
Sets 2, 3 and 5 are practically the same as for Set 1. It is inter-
esting to note that there is essentially enhancement of the cross
section at smallǫ for the Set 4, while for the Set 1 we obtain
suppression. The experiment would provide only a convolution
of the production amplitude and FSI factor. Since the produc-
tion amplitude is model dependent it is difficult to extract the
absolute value of the FSI factor from the data. However, the de-
pendence of the FSI on the relative momentumk is very well
defined because the dependence of the basic hard interaction
onk can be neglected at smallk. According to Ref.[26] the to-
tal cross section of the reactiondd→αK+K− might be about
0.4. . .1 nb atǫ=40 . . . 50 MeV.

Finally, we calculated theK−α invariant mass spectra at
excess energiesǫ=30 and50 MeV which are shown in Fig. 3.
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The solid lines show the calculations for the pure phase space,
i.e. for the constant production amplitude and neglecting FSI.
The dashed and dotted lines in Fig. 3 show the results obtained
with theK−α FSI calculated with the parameters of the Set
1 and 4, respectively. All lines at each figures are normalized
to the same value, given by the reaction cross section at a cer-
tain excess energy. Atǫ=50 MeV the invariant mass spectra
are normalized to thedd→αK+K− cross section of 1 nb. It is
clear that the FSI significantly changes theK−α mass spectra.
The most pronounced effect is observed at low invariant masses
available in the first 10 MeV bin.

To draw quantitative conclusions, one can compare the ra-
tio of the cross sections at the lowestK−α invariant masses,
within the first 10 MeV bin, calculated with and without FSI.
We found that this ratioR=1.26. . .1.34 at ǫ=30 MeV, 1.49. . .
1.56 at ǫ=50 MeV and1.84. . .2.18 at ǫ=100 MeV. Here the
limits of the ratio at each excess energy are given by the cal-
culations with theK̄N scattering length from the Set 1 and
Set 4. With these estimates it is clear that reasonable determi-
nation of theK−α scattering length requires sufficient statisti-
cal accuracy atK−α invariant masses below 4.23 GeV, at least
100 events. Such a high precision experiment apparently can
be done at COSY.

4 Conclusions

The findings of this study can be summarized as follows:

– We have investigated thes-waveK−α scattering length
and theK−α FSI enhancement factor within the Foldy–
Brueckner adiabatic approach based on the multiple scatter-
ing formalism. We have studied uncertainties of the calcu-
lations due to the elementaryK−N scattering length avail-
able presently. The resultings-waveK−α scattering lengths
for the various input parameters are collected in Tab. 1.

– Through the determination of the pole position of theK−α
scattering amplitude within ZRA, we found a loosely bound
state with binding energyER= − 2. . .− 7MeV and width
ΓR=11. . .18 MeV. Our result differs from the prediction of
Akaishi and Yamazaki [21] obtained under the assumption
of a strongly attractive phenomenologicalK̄N potential.

– We have analyzed theK−α FSI in the reactiondd→αK+K−

and discussed the possibility to evaluate theK−α scatter-
ing length from theK−α invariant mass spectra. We have
demonstrated that the measurement of theK−α mass dis-
tribution near the reaction threshold may provide a new tool
for the determination of thes-waveK−α scattering length.

– Furthermore, we have investigated the momentum depen-
dence of the enhancement factorλMS(k) calculated within
MSA and compared it with the one obtained utilizing the
Watson–Migdal formalism. It was found that the absolute
difference between both calculations is relatively small at
momentaq≤100 MeV/c.

It is important to stress that for kaonic helium atoms, energy
shifts can be measured for the2p state and widths for the2p and
3d states. Thenp→1s transitions for4He cannot be observed
since the absorption from thep states is almost complete [44].
Therefore the possibility to determine thes-waveK̄α scatter-
ing length from experiments with kaonic atoms is questionable.

With this respect a measurement at COSY provides an unique
opportunity to determines-waveK−α scattering length.
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