

Investigation on the tensor analyzing power t_{20} in the reaction $\vec{d}+p \rightarrow {}^{3}\text{He}+\eta$

Michael Papenbrock

Westfälische Wilhelms-Universität Münster for the ANKE collaboration

March 5th, 2013 DPG spring conference, Dresden

Motivation

- Previous unpolarized measurements on $dp \rightarrow {}^{3}He\eta$ provided detailed cross section data near the production threshold
- Excitation function has shown indications of an unexpected strong final state interaction (FSI)

- Test for contributions to the cross section other than FSI possible by polarized measurements
- ANKE: Investigation of the reaction with a tensor/vector polarized deuteron beam

Measuring dp \rightarrow $^{3}\mathrm{He}\,\eta$ at ANKE at COSY

- Internal fixed target experiment with a cluster-jet target
- ³He nuclei detected in the forward-system
- Full geometrical acceptance for dp \rightarrow ³He η up to 20 MeV excess energy

Acceptance of the ANKE detector system

- Full acceptance for dp ightarrow ³He η
- Continuously ramped beam from Q = -5 MeV to Q = 11 MeV

High precision η mass determination

ANKE-COSY result of the η mass

$$m_\eta = (547.873 \pm 0.005_{
m stat.} \pm 0.023_{
m sys.}) \; {
m MeV/c^2}$$

ANKE η meson mass

- Highest precision measurement yet
- In agreement with higher η meson mass measurements
- Published in Physical Review D85, 112011 (2012)

³He η final state interaction

Description of the differential cross section

Differential cross section of a two-body reaction:

$$\frac{p_i}{p_f} \cdot \frac{d\sigma}{d\Omega} = |f|^2 = |f_B \cdot FSI|^2 = |f_B|^2 \cdot |FSI|^2$$

Effective range approximation:

$$FSI = \frac{1}{1 + i \cdot a \cdot p_f + \frac{1}{2}a \cdot r_0 \cdot p_f^2}$$

Alternative description with poles:

$$FSI = \frac{1}{\left(1 - \frac{p_f}{p_1}\right) \cdot \left(1 - \frac{p_f}{p_2}\right)}$$

with
$$a = -i \cdot \frac{p_1 + p_2}{p_1 \cdot p_2}$$
 and $r_0 = + \frac{2 \cdot i}{p_1 + p_2}$

³He η final state interaction: unpolarized data

- Very good description for the whole energy range
- ▶ Pole close to threshold $(|Q_0| \approx 0.4 \text{ MeV})$ might be an indication for a quasi-bound state

Investigation of the reaction ${\rm pn}{\rightarrow}~{\rm d}\eta$

- Investigation of A dependence of the η-nucleus FSI
 → further important information about η-mesic nuclei
- Determination of $d\eta$ scattering length

 \rightarrow information about still unprecisely known ηN scattering length

Measurement has been performed earlier this year

Why polarised measurements?

Additional information for FSI ansatz needed

- Test for further contributions besides FSI
- Investigate production amplitude close to threshold

Alternative description of the η^3 He s-wave production amplitude:

$$f = \bar{u}_{^{3}\text{He}}\hat{p}_{\text{p}} \cdot (A\vec{arepsilon_{d}} + iB\vec{arepsilon_{d}} imes \vec{\sigma}) u_{\text{p}}$$

(Shown in J.-F. Germond & C. Wilkin, J. Phys. G 14, 181 (1988))

$$\frac{d\sigma}{d\Omega} = \frac{1}{3} \frac{p_f}{p_i} \left[|A|^2 + 2 \cdot |B|^2 \right]$$

with A, B as the two s-wave amplitudes of the ${}^{3}\text{He}\eta$ system

Why polarised measurements?

Assumption 1 Cross sections only differ from phase space because of FSI

 \Rightarrow *A*, *B* show same energy dependence

Assumption 2 Cross sections depend on spin dependent production amplitudes (no FSI effect)

 \Rightarrow A, B might show different energy dependence

How to separate $|A|^2$ and $|B|^2$?

 \Rightarrow Tensor analysing power t_{20} :

$$t_{20}(p_f) = \sqrt{2} \frac{|B|^2 - |A|^2}{|A|^2 + 2|B|^2}$$

Why polarised measurements?

Assumption: $|A|^2$ and $|B|^2$ only depend on FSI

$$|A|^2 = |A_0|^2 \cdot \mathsf{FSI}(p_f)$$
$$|B|^2 = |B_0|^2 \cdot \mathsf{FSI}(p_f)$$

$$\Rightarrow t_{20}(p_f) = \sqrt{2} \cdot \frac{|B_0|^2 - |A_0|^2}{|A_0|^2 + 2|B_0|^2} \cdot \frac{\mathsf{FSI}(p_f)}{\mathsf{FSI}(p_f)} = const.$$

Measure
$$t_{20}$$
 in collinear kinematics
 $t_{20}(p_f) = \frac{2\sqrt{2}}{p_{zz}} \cdot \left(\frac{\frac{d\sigma^0}{d\Omega}(\vartheta) - \frac{d\sigma^{\uparrow}}{d\Omega}(\vartheta)}{\frac{d\sigma^0}{d\Omega}(\vartheta)}\right)$

Determining p_{zz}

Investigate reaction $d + p \rightarrow (pp) + n$ with known analyzing powers at lower energy ($T_d = 1.2 \text{ GeV}$)

$$\frac{d\sigma^{\uparrow}}{dt}(q,\varphi)/\frac{d\sigma^{0}}{dt}(q) = 1 + \sqrt{3}p_{z}it_{11}(\vartheta)\cos\varphi$$
$$-\frac{1}{2\sqrt{2}}p_{zz}t_{20}(\vartheta) - \frac{\sqrt{3}}{2}p_{zz}t_{22}(\vartheta)\cos2\varphi$$

Determining t_{20}

Reminder:

$$t_{20}(p_f) = \frac{2\sqrt{2}}{p_{zz}} \cdot \left(\frac{\frac{d\sigma^0}{d\Omega}(\vartheta) - \frac{d\sigma^{\uparrow}}{d\Omega}(\vartheta)}{\frac{d\sigma^0}{d\Omega}(\vartheta)}\right) \qquad \vartheta = 0^{\circ}, 180^{\circ}$$

Hence:

$$t_{20}(p_f) = \frac{2\sqrt{2}}{p_{zz}} \left(1 - \frac{N^{\uparrow}}{N^0}\right)$$

 N^{\uparrow}, N^{0} are normalized counts

Current status

- ▶ Data on *t*₂₀ consistent with Berger, et al.
- No energy dependence visible within uncertainties

Current status

Allow slope to put upper limit on spin dependent contributions

Summary

- ► Studied reaction $\vec{d} + p \rightarrow {}^{3}He + \eta$ in energy range Q = -5 MeV to 15 MeV relative to η -threshold
- ► No energy dependence of t₂₀ observed, t₂₀ consistent with Berger, et al.
- Amplitudes A, B show same energy dependence within uncertainties
- ▶ Ratio of $|A|^2/|B|^2$ will allow to quantify spin dependent contributions
- $\rightarrow\,$ Threshold behavior of d + p $\rightarrow\,^{3}{\rm He} + \eta$ consistent with pure FSI ansatz

Final data available soon

Thank you for your attention

Additional Slides

Additional Slides

Production amplitude

- Two independent η s-wave amplitudes (close to threshold)
- Possible dp spin combinations: $S = \frac{3}{2}, \frac{1}{2}$
- ► Couples with orbital angular momentum of dp: $L_{dp} = 1$ $\Rightarrow J = \frac{1}{2}^{-}$
- Alternative production amplitude used for analogous π⁰ production

$$f = \bar{u}_{^{3}\mathsf{He}}\hat{p}_{\mathsf{p}} \cdot (A\vec{arepsilon_{\mathsf{d}}} + iB\vec{arepsilon_{\mathsf{d}}} imes \vec{\sigma}) u_{\mathsf{p}}$$

 $\bar{u}_{^{3}\text{He}}$:Spinors of the particles

- $\vec{\varepsilon_{\rm d}}$:Polarisation vector of the deuteron
- \hat{p}_{p} :Direction of momentum
- $\vec{\sigma}$:Pauli matrix

³He η final state interaction

• Fit to the data for Q < 11MeV

$$p_{1} = \left[\left(-5 \pm 7^{+2}_{-1} \right) \pm i \cdot (19 \pm 2 \pm 1) \right] \frac{\text{MeV}}{\text{c}}$$
$$p_{2} = \left[(106 \pm 5) \pm i \cdot \left(76 \pm 13^{+1}_{-2} \right) \right] \frac{\text{MeV}}{\text{c}}$$

Pole of the production amplitude:

$$\begin{aligned} Q_0 &= \frac{p_1^2}{2 \cdot m_{\text{red}}} \\ &= \left[(-0.30 \pm 0.15 \pm 0.04) \pm i \cdot (0.21 \pm 0.29 \pm 0.06) \right] \text{MeV} \\ Q_0 &| \approx 0.4 \end{aligned}$$

Pole close to threshold expected from a quasi-bound state

³He η final state interaction

Very good description for the whole energy range

► Unexpected large scattering length: $a_{^{3}\text{He}\eta} = \left[\pm \left(10.7 \pm 0.8^{+0.1}_{-0.5}\right) + i \cdot \left(1.5 \pm 2.6^{-0.3}_{+1.0}\right)\right] \text{fm}$