Investigation on the tensor analyzing power t_{20} in the reaction $\overrightarrow{\mathrm{d}}+\mathrm{p} \rightarrow{ }^{3} \mathrm{He}+\eta$

Michael Papenbrock

Westfälische Wilhelms-Universität Münster
for the ANKE collaboration

March 5th, 2013
DPG spring conference, Dresden

Motivation

- Previous unpolarized measurements on $\mathbf{d p} \rightarrow{ }^{3} \mathrm{He} \eta$ provided detailed cross section data near the production threshold
- Excitation function has shown indications of an unexpected strong final state interaction (FSI)

- Test for contributions to the cross section other than FSI possible by polarized measurements
- ANKE: Investigation of the reaction with a tensor/vector polarized deuteron beam

Measuring $\mathrm{dp} \rightarrow{ }^{3} \mathrm{He} \eta$ at ANKE at COSY

- Internal fixed target experiment with a cluster-jet target
- ${ }^{3} \mathrm{He}$ nuclei detected in the forward-system
- Full geometrical acceptance for $\mathrm{dp} \rightarrow{ }^{3} \mathrm{He} \eta$ up to 20 MeV excess energy

Acceptance of the ANKE detector system

- Full acceptance for $\mathrm{dp} \rightarrow{ }^{3} \mathrm{He} \eta$
- Continuously ramped beam from $Q=-5 \mathrm{MeV}$ to $Q=11 \mathrm{MeV}$

High precision η mass determination

ANKE-COSY result of the η mass

$$
m_{\eta}=\left(547.873 \pm 0.005_{\text {stat. }} \pm 0.023_{\text {sys. }}\right) \mathrm{MeV} / \mathrm{c}^{2}
$$

ANKE η meson mass

- Highest precision measurement yet
- In agreement with higher η meson mass measurements
- Published in Physical Review D85, 112011 (2012)

${ }^{3} \mathrm{He} \eta$ final state interaction

Description of the differential cross section

- Differential cross section of a two-body reaction:

$$
\frac{p_{i}}{p_{f}} \cdot \frac{d \sigma}{d \Omega}=|f|^{2}=\left|f_{B} \cdot F S I\right|^{2}=\left|f_{B}\right|^{2} \cdot|F S I|^{2}
$$

- Effective range approximation:

$$
F S I=\frac{1}{1+i \cdot a \cdot p_{f}+\frac{1}{2} a \cdot r_{0} \cdot p_{f}^{2}}
$$

- Alternative description with poles:

$$
F S I=\frac{1}{\left(1-\frac{p_{f}}{p_{1}}\right) \cdot\left(1-\frac{p_{f}}{p_{2}}\right)}
$$

with $a=-i \cdot \frac{p_{1}+p_{2}}{p_{1} \cdot p_{2}}$ and $r_{0}=+\frac{2 \cdot i}{p_{1}+p_{2}}$

${ }^{3} \mathrm{He} \eta$ final state interaction: unpolarized data

- Very good description for the whole energy range
- Pole close to threshold ($\left|Q_{0}\right| \approx 0.4 \mathrm{MeV}$) might be an indication for a quasi-bound state

Investigation of the reaction $\mathrm{pn} \rightarrow \mathrm{d} \eta$

- Investigation of A dependence of the η-nucleus FSI
\rightarrow further important information about η-mesic nuclei
- Determination of $\mathrm{d} \eta$ scattering length
\rightarrow information about still unprecisely known $\eta \mathrm{N}$ scattering length

- Measurement has been performed earlier this year

Why polarised measurements?

Additional information for FSI ansatz needed

- Test for further contributions besides FSI
- Investigate production amplitude close to threshold

Alternative description of the $\eta^{3} \mathrm{He}$ s-wave production amplitude:

$$
f=\bar{u}_{3 \mathrm{He}} \hat{p}_{\mathrm{p}} \cdot\left(A \vec{\varepsilon}_{\mathrm{d}}+i B \vec{\varepsilon}_{\mathrm{d}} \times \vec{\sigma}\right) u_{\mathrm{p}}
$$

(Shown in J.-F. Germond \& C. Wilkin, J. Phys. G 14, 181 (1988))

$$
\frac{d \sigma}{d \Omega}=\frac{1}{3} \frac{p_{f}}{p_{i}}\left[|A|^{2}+2 \cdot|B|^{2}\right]
$$

with A, B as the two s-wave amplitudes of the ${ }^{3} \mathrm{He} \eta$ system

Why polarised measurements?

Assumption 1 Cross sections only differ from phase space because of FSI
$\Rightarrow A, B$ show same energy dependence
Assumption 2 Cross sections depend on spin dependent production amplitudes (no FSI effect)
$\Rightarrow A, B$ might show different energy dependence

How to separate $|A|^{2}$ and $|B|^{2}$?
\Rightarrow Tensor analysing power t_{20} :

$$
t_{20}\left(p_{f}\right)=\sqrt{2} \frac{|B|^{2}-|A|^{2}}{|A|^{2}+2|B|^{2}}
$$

Why polarised measurements?

Assumption: $|A|^{2}$ and $|B|^{2}$ only depend on FSI

$$
\begin{aligned}
& |A|^{2}=\left|A_{0}\right|^{2} \cdot \operatorname{FSI}\left(p_{f}\right) \\
& |B|^{2}=\left|B_{0}\right|^{2} \cdot \operatorname{FSI}\left(p_{f}\right) \\
& \Rightarrow t_{20}\left(p_{f}\right)=\sqrt{2} \cdot \frac{\left|B_{0}\right|^{2}-\left|A_{0}\right|^{2}}{\left|A_{0}\right|^{2}+2\left|B_{0}\right|^{2}} \cdot \frac{\operatorname{FSI}\left(p_{f}\right)}{\operatorname{FSI}\left(p_{f}\right)}=\text { const. }
\end{aligned}
$$

Measure t_{20} in collinear kinematics

$$
t_{20}\left(p_{f}\right)=\frac{2 \sqrt{2}}{p_{z z}} \cdot\left(\frac{\frac{d \sigma^{0}}{d \Omega}(\vartheta)-\frac{d \sigma^{\top}}{d \Omega}(\vartheta)}{\frac{d \sigma^{\prime}}{d \Omega}(\vartheta)}\right)
$$

Determining $p_{z z}$

Investigate reaction $d+p \rightarrow(p p)+n$ with known analyzing powers at lower energy ($T_{d}=1.2 \mathrm{GeV}$)

$$
\begin{aligned}
& \frac{d \sigma^{\uparrow}}{d t}(q, \varphi) / \frac{d \sigma^{0}}{d t}(q)=1+\sqrt{3} p_{z} i t_{11}(\vartheta) \cos \varphi \\
& \quad-\frac{1}{2 \sqrt{2}} p_{z z} t_{20}(\vartheta)-\frac{\sqrt{3}}{2} p_{z z} t_{22}(\vartheta) \cos 2 \varphi
\end{aligned}
$$

Determining t_{20}

- Reminder:

$$
t_{20}\left(p_{f}\right)=\frac{2 \sqrt{2}}{p_{z z}} \cdot\left(\frac{\frac{d \sigma^{0}}{d \Omega}(\vartheta)-\frac{d \sigma^{\uparrow}}{d \Omega}(\vartheta)}{\frac{d \sigma^{0}}{d \Omega}(\vartheta)}\right) \quad \vartheta=0^{\circ}, 180^{\circ}
$$

- Hence:

$$
t_{20}\left(p_{f}\right)=\frac{2 \sqrt{2}}{p_{z z}}\left(1-\frac{N^{\uparrow}}{N^{0}}\right)
$$

N^{\uparrow}, N^{0} are normalized counts

Current status

- Data on t_{20} consistent with Berger, et al.
- No energy dependence visible within uncertainties

Current status

- Allow slope to put upper limit on spin dependent contributions

Summary

- Studied reaction $\overrightarrow{\mathrm{d}}+\mathrm{p} \rightarrow{ }^{3} \mathrm{He}+\eta$ in energy range $Q=-5 \mathrm{MeV}$ to 15 MeV relative to η-threshold
- No energy dependence of t_{20} observed, t_{20} consistent with Berger, et al.
- Amplitudes A, B show same energy dependence within uncertainties
- Ratio of $|A|^{2} /|B|^{2}$ will allow to quantify spin dependent contributions
\rightarrow Threshold behavior of $\mathrm{d}+\mathrm{p} \rightarrow{ }^{3} \mathrm{He}+\eta$ consistent with pure FSI ansatz

Final data available soon

Thank you for your attention

Additional Slides

Additional Slides

Production amplitude

- Two independent η s-wave amplitudes (close to threshold)
- Possible dp spin combinations: $S=\frac{3}{2}, \frac{1}{2}$
- Couples with orbital angular momentum of $\mathrm{dp}: L_{d p}=1$ $\Rightarrow \quad J=\frac{1}{2}^{-}$
- Alternative production amplitude used for analogous π^{0} production

$$
f=\bar{u}_{3} \mathrm{He}_{\mathrm{e}} \hat{p}_{\mathrm{p}} \cdot\left(A \vec{\varepsilon}_{\mathrm{d}}+i B \vec{\varepsilon}_{\mathrm{d}} \times \vec{\sigma}\right) u_{\mathrm{p}}
$$

$\bar{u}_{3} \mathrm{He}$:Spinors of the particles
$\vec{\varepsilon}_{\mathrm{d}}$:Polarisation vector of the deuteron
\hat{p}_{p} :Direction of momentum
$\vec{\sigma}$:Pauli matrix

${ }^{3} \mathrm{He} \eta$ final state interaction

- Fit to the data for $Q<11 \mathrm{MeV}$

$$
\begin{aligned}
& p_{1}=\left[\left(-5 \pm 7_{-1}^{+2}\right) \pm i \cdot(19 \pm 2 \pm 1)\right] \frac{\mathrm{MeV}}{\mathrm{c}} \\
& p_{2}=\left[(106 \pm 5) \pm i \cdot\left(76 \pm 13_{-2}^{+1}\right)\right] \frac{\mathrm{MeV}}{\mathrm{c}}
\end{aligned}
$$

- Pole of the production amplitude:

$$
\begin{aligned}
Q_{0} & =\frac{p_{1}^{2}}{2 \cdot m_{\mathrm{red}}} \\
& =[(-0.30 \pm 0.15 \pm 0.04) \pm i \cdot(0.21 \pm 0.29 \pm 0.06)] \mathrm{MeV} \\
\left|Q_{0}\right| & \approx 0.4
\end{aligned}
$$

- Pole close to threshold expected from a quasi-bound state

${ }^{3} \mathrm{He} \mathrm{\eta}$ final state interaction

- Very good description for the whole energy range
- Unexpected large scattering length:

$$
a_{3} \mathrm{He} \eta=\left[\pm\left(10.7 \pm 0.8_{-0.5}^{+0.1}\right)+i \cdot\left(1.5 \pm 2.6_{+1.0}^{-0.3}\right)\right] \mathrm{fm}
$$

