International Journal of Modern Physics A © World Scientific Publishing Company

HADRON PHYSICS WITH DIPROTON FINAL STATES AT ANKE-COSY

S. DYMOV FOR THE ANKE COLLABORATION

Physikalisches Institut II, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980 Dubna, Russia s.dymov@fz-juelich.de

> Received Day Month Year Revised Day Month Year

The possibility to select reliably the diproton final state with small excitation energy with the ANKE spectrometer at COSY-Juelich provides a new tool to study hadron interactions at intermediate energies. In this case the final proton pairs are found presumably in the 1S_0 state which simplifies significantly the theoretical analysis. This approach has been successfully applied to the reactions $pd \to \{pp\}_s n$ at high and low momentum transfer kinematics, as well as to the $pp \to \{pp\}_s \pi^0$ and $pp \to \{pp\}_s \gamma$ processes.

Keywords: diproton; pion production; high momentum transfer.

PACS numbers: 25.40.Ep, 25.40.Qa, 13.60.Le

1. Diproton program at ANKE

The two nucleon systems, being the simplest case of (un-)bound hadrons, play an important role in studies of the hadron interaction and the structure of the lightest nuclei. The deuteron, a bound state of proton and neutron, has been studied extensively both theoretically and experimentally in a large number of processes. In this respect, a particular interest arises for the investigation of the diproton, an unbound system of two protons with small excitation energy. The diproton, being the isospin partner of the deuteron, possesses different quantum numbers. Selection of the excitation energy of the proton pair $E_{pp} < 3$ MeV ensures dominance of the $^{1}S_{0}$ state of the diproton, which simplifies significantly the theoretical interpretation. The reactions with formation of a diproton involve transitions in the NN system, different from the case of the deuteron, and, in particular, the role of the Δ isobar is expected to be much suppressed because the S-wave ΔN intermediate state is forbidden.

Detection of the proton pair with $E_{pp} < 3$ MeV in an experiment requires an excellent excitation energy resolution and the ability to resolve the two spatially close trajectories of the protons. This explains the fact that so far there have been few attempts to study processes with the diproton final state. The ANKE spectometer

$2 \quad S. \ Dymov \ for \ the \ ANKE \ collaboration$

¹ provides a resolution of $\sigma(E_{pp}) = 0.2 - 0.6$ MeV in the $E_{pp} = 0 - 3$ MeV range and is particularly well suited for this purpose.

The diproton program at ANKE involves several experiments:

- Study of mesonless deuteron break-up $pd \rightarrow \{pp\}_s n$ in collinear kinematics:
 - at high momentum transfer 2,3 ,
 - at low momentum transfer (charge-exchange reaction) ⁴.
- Study of meson production in $pN \to \{pp\}_s X$, where X is:
 - a single pion,
 - the $(\pi\pi)$ system, used to study of the ABC effect in the process $pp \rightarrow \{pp\}_s(2\pi)$ in the $T_p = 0.8 2.0$ GeV range.
 - a heavier meson like η and ω .
- the inverse diproton photodisintegration $pp \to \{pp\}_s \gamma^5$.

Single pion production and the charge-exchange reaction are the key double polarization experiments in the future physics program at ANKE. The first one includes the study of:

- π^0 production at high momentum transfer in the $T_p = 0.5 2.4$ GeV beam energy range ⁶, that will give new insight into the $\Delta - N$ dynamics at intermediate energies,
- near threshold pion production in the reactions $\vec{pp} \rightarrow \{pp\}_s \pi^0$ and $\vec{pn} \rightarrow \{pp\}_s \pi^-$. The results of the latter will be of relevance for Chiral Perturbation Theory.

2. Deuteron break-up reactions

2.1. High momentum transfer

The process $pd \to \{pp\}_s n$ with a forward emitted diproton is proposed for study. The kinematics of the process is the same as in pd-backward scattering and the same mechanisms can be considered for its description. In contrast to $pd \to dp$, the amplitude of excitation of Δ in the intermediate state is expected to be suppressed by a factor of 3 due to selection of the diproton in *S*-wave. Thus, the one nucleon exchange mechanism, which is sensitive to the short range part of the NN-interaction potential and to the high momentum part of the deuteron wave function, is expected to dominate the cross-section.

The differential cross-section of $pd \rightarrow \{pp\}_s n$ with a forward emitted $\{pp\}$ -pair has been measured in the range of $T_p = 0.5 - 2.0$ GeV². Comparison of the results with a model-calculation including Δ -production, one nucleon exchange and single scattering mechanisms, shows a clear advantage in using the modern CD Bonn NNpotential over the Paris and RSC potentials in the region 0.4 - 0.6 GeV/c of the internal deuteron momentum². For further insight, additional data, in particular polarization measurements, are needed to provide a complete set of observables. Hadron Physics With Diproton Final States at ANKE-COSY 3

2.2. Deuteron charge-exchange break-up reaction

The processes $\vec{dp} \to \{pp\}_s n$ with a forward emitted diproton and $\vec{pd} \to \{pp\}_s n$ with the diproton going backwards proceed with low momentum transfer. One can extract the elementary charge-exchange spin amplitudes of *pn*-scattering from the measured polarization observables in the deuteron charge-exchange break-up process. The existing information on these amplitudes above 800 MeV is scarce. The equivalent neutron beam momentum available for COSY ranges up to 1.1 GeV in the case of deuteron beam, and up to 2.8 GeV in the case of deuteron target.

As a first step of the study, a measurement at $T_n = 585$ MeV was done, where information on the np spin-dependent amplitudes is available. The analysis showed excellent agreement of the extracted np amplitudes with the existing data ⁴. Currently, the data obtained at $T_d = 2.3$ GeV are being analyzed. New double polarization measurements of the spin correlation coefficients $C_{y,y}, C_{x,x}$ are scheduled for the beginning of 2009.

3. Pion production in $pN \to \{pp\}_s \pi$

3.1. π^0 production in 0.5 - 2.0 GeV region

The single pion production in nucleon-nucleon collisions, $NN \to NN\pi^0$, is one of the principial tools used in the investigation of NN dynamics at intermediate energies. Because of large momentum transfers involved, even close to threshold, such a meson production is sensitive to the short-range part of the NN-interaction. The $pp \to (pp)_s \pi^0$ differential cross section has been measured with the ANKE spectrometer at COSY-Jülich for seven proton beam energies T_p between 0.5 and 2.0 GeV ⁶.

In the measured region of $\theta_{pp}^{cm} = \pm 18^{\circ}$, the data reveal a forward dip for $T_p \leq 1.4$ GeV whereas a forward peaking is seen at 1.97 GeV. The energy dependence of the forward cross section shows a broad peak in the 0.6-0.8 GeV region, probably associated with $\Delta(1232)$ excitation, and a minimum at 1.4 GeV.

The ratio of $pp \to (pp)_s(0^\circ)\pi^0$ to $pp \to d(0^\circ)\pi^+$ cross sections can provide information on the relative strength of spin-singlet to spin-triplet production. The resulting ratio shows that singlet production in the forward direction remains small at energies even above the $\Delta(1232)$ excitation region. Below 1.4 GeV the ratio is typically a few per cent, which is significantly smaller than the trivial spin-statistics factor of 1/3.

3.2. Near threshold region

The spin structure of the process $pn \to \{pp\}_s \pi^-$ (or $pp \to \{pp\}_s \pi^0$) with the diproton in 1S_0 state is $\frac{1}{2} + \frac{1}{2}^+ \to 0^+ 0^+$, and there are only two spin amplitudes involved in this process. From this it follows that the measurement of the differential cross section, the analyzing power and one spin correlation coefficient is sufficient to extract magnitudes of the two amplitudes and their relative phase. A combined

4 S. Dymov for the ANKE collaboration

Fig. 1. Missing-mass-squared for the $pp \rightarrow ppX$ reaction with $E_{pp} < 3$ MeV. The shaded area corresponds to the predicted γ peak, the dashed line to the π^0 , and the solid to the sum of these and a straight line background.

study of several observables in $pp \to \{pp\}_s \pi^0$ and $pn \to \{pp\}_s \pi^-$ could be used to isolate the important strength parameter d of the four-nucleon contact interaction in χPT^{-8} .

 $d\sigma/d\Omega$ in the process $pp \to \{pp\}_s \pi^0$ has been measured at 353 MeV in October 2007. Measurement of the differential cross-section and vector analysing power in $pp \to \{pp\}_s \pi^0$ and $pn \to \{pp\}_s \pi^-$ at 353 MeV is scheduled for 2009⁹. In addition, a double-polarized experiment for obtaining of $A_{u,y}$ and $A_{x,x}$ is planned.

4. Inverse diproton photodisintegration

The fundamental reaction $pp \to \{pp\}_s \gamma$ has been observed for proton beam energies of $T_p = 0.353, 0.5$, and 0.55 GeV ⁵. This is equivalent to photodisintegration of a free ¹S₀ diproton for photon energies $E_{\gamma} \approx T_p/2$. The events from this process produce a peak at $M_x^2 \approx 0$ in the experimental missing-mass spectra (Fig. 1).

The differential cross sections measured for c.m. angles $\theta_{pp}^{cm} < 20^{\circ}$ exhibit a steep increase with angle that is compatible with E1 and E2 multipole contributions. The ratio of the measured cross sections to those of $np \to \gamma d$ is on the $10^{-3} - 10^{-2}$ level. The increase of the $pp \to \{pp\}_s \gamma$ cross section with T_p might reflect the influence of the $\Delta(1232)$ excitation. Further information on this process will be obtained within the planned measurement of $pp \to \{pp\}_s \pi^0$ and $pn \to \{pp\}_s \pi^-$ processes with the polarized proton beam at ANKE ⁹.

References

- 1. S. Barsov et al., NIM A 462, 364 (2001).
- 2. V. Komarov et al., Phys. Lett. B 553, 179 (2003).
- 3. S.Yaschenko et al., Phys. Rev. Lett. 94, 072304 (2005).
- 4. D.Chiladze et al., *Phys. Lett.* B 637, 170 (2006).
- 5. V. Komarov et al., accepted for Phys. Rev. Lett., nucl-ex/0806.0648.
- 6. V.Kurbatov et al., *Phys. Lett.* B 661, 22 (2008).
- 7. Spin Physics From COSY To FAIR, COSY proposal # 152, nucl-ex/0511028.
- 8. C. Hanhart, Phys. Rep. **397**, 155 (2004).
- 9. COSY proposal # 192, http://www.fz-juelich.de/ikp/anke/en/proposals.shtml.