

COSY-Experiments: A general overview and selected

results

February 11, 2014 | Michael Hartmann (FZ Jülich)

Content

Physics program (ANKE, PAX, TOF, WASA)

Preparatory work for FAIR (HESR and PANDA, CBM, NUSTAR, ...)

Future plans (EDM)

... the machine for hadron spin physics

Feb. 11, 2014 | M. Hartmann

WASA: ABC structure

Isospin decomposition of ABC resonance structure Phys. Lett. B 721 (2013) 229

 \rightarrow pure isoscalar effect

If resonance in np system:

 \rightarrow effect should be present in np scattering

Most sensitive observable in np scattering: analyzing power $A_{\!_V}$ and its energy dependence

near $\theta_{\rm CM} \approx 90^{\circ}$

First result: corresponding signal at resonance position

Further analysis needed

J-PARC workshop

LICH

Feb. 11, 2014 | M. Hartmann

WASA: CSB in dd \rightarrow ⁴He π^{0}

TOF: Hyperon production

COSY-TOF high statistic data of pN -> $pK\Lambda$ – exclusive and kinematically complete - allow examination of influence of N* resonances, coupled channel effects, and N – hyperon interactions.

(see e.g.: EPJA 49 (2013)157, PLB 688 (2010) 142

Separation of singlet and triplet scattering length

Feb. 11, 2014 | M. Hartmann

EDDA → ANKE: NN-scattering

om'82-1 AUPE roulle) evington'78: LAMPF 798Me ANKE 796 MeV errol'07: SATURN 1 SOM Perrol'87 SATLEN LOOMA-L WIND: SATURN 1995 NeV anhi'sa KEK 1803MeV ANKE 1600 M TO SATI EN LTON er'on-SATURN 1795H SATUEN 1795 HeV ANKE 1800 MeV CERN 1950M **ANKE 1965** ANKE 2157 rice: COSY 2291.6 He on-SATI Bit 2005 He' **ANKE 2368**

IcNauchton'81: LAUPE 798

great impact on NN phase shifts (SAID group) fundamental quantities for nuclear physics Ongoing: <u>double polarized</u> measurements (np system)

Feb. 11, 2014 | M. Hartmann

ABS: Openable storage cell (luminosity factor 5 more)

down to 10 mm diameter, about 85% polarization

Double-polarized experiments approved

Feb. 11, 2014 | M. Hartmann

(i) $\overrightarrow{p} \overrightarrow{n} \rightarrow n p (A_{I}, A_{I,J})$

COSY: Kk/Φ production (ANKE, ...)

(www.fz-juelich.de/ikp or MH, PoS 057 (2011))

KK & Φ production in pp, pd & dd (world data)

ANKE: pp \rightarrow ppK⁺K⁻ at ε_{KK} = 51 MeV

Feb. 11, 2014 | M. Hartmann

ANKE: ppK⁺K⁻ production at ϵ_{KK} = 108 MeV

Feb. 11, 2014 | M. Hartmann

J-PARC workshop

ÜLICH

ratio of exp. K⁺K⁻ inv. mass to MC (without KK interaction)

$pp \rightarrow ppK^+K^-$ (total cross section)

ANKE: $pp \rightarrow dK^+\overline{K}^0$

ANKE: pn→dK⁺K[−]

dK⁻ FSI is visible

Proton & deuteron induced KK production (world data)

ANKE: $pp \rightarrow pp\Phi$ total cross sections

ANKE: pp \rightarrow pp Φ (differential cross sections) at ϵ_{ω} = 18.5 MeV

close to threshold the angular decay distribution must display a $sin^2 \theta_{0}^{\kappa^{\dagger}}$

Φ in relative S-wave

transition from ${}^{3}P_{1}$ (pp)-entrance channel to ${}^{1}S_{0}$ (pp) final-state

clear effect of pp-FSI

MH et.al. PRL 96 (2006) 242301

ANKE: pp \rightarrow pp Φ production at / $\epsilon_{\phi} = 76 \text{ MeV} \dots$

multiplied by pp-FSI (Jost function)

Feb. 11, 2014 | M. Hartmann

2.00

 $IM_{K^+K^-p}[GeV/c^2]$

0.2

0.3

 $p_{n}(GeV/c)$

1.95

... and final differential distributions at 76 MeV

angular distributions (symmetric about $\cos \theta = 0$)

$$\frac{d\sigma}{d\Omega} = a \left[1 + b P_2(\cos \theta) \right].$$

... and final differential distributions ULICH at 76 MeV

Q.J. Ye et.al., PRC 85 (2012) 035211

... and ppФ total cross section dilemma

Simplest way out: A Φp threshold enhancement leads to a significant energy dependence of some of the A_{Ll} coefficients.

ANKE: $pn \rightarrow d\Phi$ (differential & total

 $|\cos(\Theta_{cm}^{\phi})|$

higher PW

Feb. 11, 2014 | M. Hartmann

J-PARC workshop

 $|\cos(\Theta_{\phi}^{\mathbf{K}^{\dagger}})|$

 $|cos(\Theta_{cm}^{\phi})|$

lcos(⊖^{K⁺})I

ANKE: $\Phi(\rightarrow K^+K^-)$ production in pA -Φ-width measurement

Method: Attenuation measurements of the Φ flux

SPring-8 photo-production, later also by CLAS.

$$D = \exp\left(-\int_{z}^{\infty} dl \, \frac{\Gamma^{*}(\rho(r))M_{0}}{p_{\Phi}}\right), \rho(r) - local \, nuclear \, density$$

 Φ survival probability in the nucleus matter rest frame: In-medium width deduced from the target mass dependence.

dominate K⁺K⁻ BR =0.49

We present the A-dependence of the Φ production in the following form:

nuclear transparency ratio

Reaction: $pA \rightarrow \Phi X$, via K⁺K⁻ decay p-Energy: 2.83 GeV (ε_{free NN}≈ 76MeV) Targets: C, Cu, Ag, Au

Momentum and angular range:

(0.6 — 1.6) GeV/c, $0^{\circ} \leq \Theta_{\perp} \leq 8^{\circ}$

Φ / K⁺K⁻ selection

Transparency ratios: experiment

and models

In-medium width Γ_{Φ} and $\sigma^{*}_{\Phi N}$ cross section

significant momentum dependence

cf. A. Polyanskiy et.al., PLB 695 (2011) 74, (*) MH et.al., EPJ Web Conf. 36 (2012) 00011

Double differential cross section of Φ production MH et.al., PRC 85, 035206 (2012)

d²ơ/dpdΩ [µb/(sr GeV/c) 50F 20-С Cu 40F 15 30 20 ANKE 10 BUU **Excess** in low NSP appr_ momentum part Au Ag 80⊢ 60 60 40 40 20 20 1.2 1.2 0.6 0.8 1.4 1.6 0.6 0.8 1.4 1.6 1 p₆ [GeV/c] p_{_b} [GeV/c] + common systematics ~ 20 %

J-PARC workshop

IICH

ANKE: (non-Φ) K⁺K⁻ production in p - first look/preliminary!

 $0.2 < p(K^+) < 0.6 \text{ GeV/c}, \ \theta(K^+,K^-) < 12^\circ, \ IM(K^+,K^-) < 1.005 \text{ GeV}$ model calculation (NSP appr. / E. Paryev), absorption from KN scatt. data

ANKE: (non-Φ) K⁺K⁻ production in p^A JÜLICH - first look/preliminary!

finalization of exp. data; in-depth model analysis needed

Feb. 11, 2014 | M. Hartmann

PAX: Transverse polarization buildup of a stored beam by Spin-Filtering

Experiment with COSY / schematic

COSY Cycle / schematic

Results target polarization target polarizatio

W. Augustyniak et.al., PLB 718 (2012) 64

PAX: Transverse polarization buildup of a stored beam by Spin-Filtering

COSY Cycle / schematic

Results

W. Augustyniak et.al., PLB 718 (2012) 64

Preparation for longitudinal polarization build-up at COSY and PAX-at-CERN/AD

Feb. 11, 2014 | M. Hartmann

HESR Prototyping and Beam Physics

HESR accelerator component tests

Feb. 11, 2014 | M. Hartmann

Preparatory Work for FAIR Detectors

CBM, **PANDA**

- CBM: Silicon Tracker Tests GEM Detector Tests RPC ToF-Detector Tests
- HADES: Diamond Detector Tests

PANDA: Straw-tube Tests

Micro-vertex Detector Tests (Disk DIRC Tests)

"Preassembly" of PANDA parts (TOF area)

Feb. 11, 2014 | M. Hartmann

Electric Dipole Moments

EDM: Permanent spatial separation of positive an negative charges

Permanent EDMs violate parity P and time reversal symmetry T Assuming CPT to hold, combined symmetry CP violated as well.

EDMs are candidates to solve mystery of matter-antimatter asymmetry

Feb. 11, 2014 | M. Hartmann

EDMs – Ongoing / Planned

P. Harris, K. Kirch ... A huge worldwide effort

Feb. 11, 2014 | M. Hartmann

EDM – Charged particles (p,d, ...)

Why? (charged particles)

- Identification of the CPV-source
- Highest sensitivity (goal 10⁻²⁹ e cm)

How? (spin tracking in E-, B-fields)

- Polarized particles
- Precision storage ring

Where? (COSY at Forschungszentrum Jülich)

- Storage ring (conventional) and polarized beams
- Accelerator and experimental experience in spin physics
- Strong environment (e.g. FZJ infrastructure, JARA)

JÜLICH FORSCHUNGSZENTRUM

EDM – Strategy

Charged-particle EDM searches at storage rings represent **a challenge**! > Stepwise approach

Spin-off: Accelerators, instrumentation, metrology, ...

Summary and Outlook

COSY has a strong physics program: spin physics and symmetries

COSY is an ideal test machine for FAIR preparatory work: accelerator and detector components

COSY is the ideal starting place for charged - particle EDMs and precision measurements: R&D work, first direct measurement and dedicated storage ring

Summary and Outlook

COSY has a strong physics program: spin physics and symmetries

COSY is an ideal test machine for FAIR preparatory work: accelerator and detector components

COSY is the ideal starting place for charged - particle EDMs and precision measurements: R&D work, first direct measurement and dedicated storage ring

Extra slides

Storage Ring EDM Project

~ 100 members

(Aachen, Dubna, Ferrara, Cornell, Jülich, Krakow, Michigan, St. Petersburg, Minsk, Novosibirsk, Stockholm, Tbilisi, . . .) 10 PhD students

Feb. 11, 2014 | M. Hartmann

Topic 2: Cosmic Matter in the Laboratory

Spin Coherence Time Studies at COSY

Greta Guidoboni, INFN and University of Ferrara and Forschungszentrum Jülich

Motivation: Search for Physics beyond the Standard Model

Observation of a charged-particle EDM

- Storage ring with a radial electric field. - Start with spin along velocity.

EDM signal = spin precession out of the horizontal plane

Spin Coherence Time

Test of Physics beyond SM requires a sensitivity of 10-29 e-cm.

Prerequisite: maintain horizontal polarization lifetime for 1000 s.

Horizontal polarization lifetime = Spin Coherence Time (SCT)

R&D Work at COSY (preliminary)

Prerequisites to get long SCT:

Beam bunching Beam cooling Sextupole correction SCT $\approx 400s$

Up-down asymmetry (~ horizontal polarization) as a function of time

Precision of spin tune measurement:

10⁻⁸ per 4 seconds

Averaged spin tune can be determined to 10⁻¹⁰ in a single 100s cycle

High-precision spin physics !

Feb. 11, 2014 | M. Hartmann

EDM accelerator and detector component tests

Method of Φ-width measurement

 Attenuation measurements of the Φ flux CLAS results. SPring-8 photo-production, up-coming

$$D = \exp\left(-\int_{z}^{\infty} dl \, \frac{\Gamma^{*}(\rho(r))M_{0}}{p_{\Phi}}\right), \rho(r) - local \, nuclear \, density$$

 Φ survival probability in the nucleus matter rest frame: In-medium width deduced from the target mass dependence.

dominate K⁺K⁻ BR =0.49

SPring-8 / LEPS experiment

Result: large $\sigma_{\phi N} = 35^{+17}_{-11}$ mb, using Glauber-type multi-scatt. theory (free $\sigma_{\phi N} \approx 8-10$ mb)

T. Ishikawa et al., PLB 608 (2005) 215

COSY experiment at ANKE

Momentum and angular range:

 $(0.6 - 1.6) \text{ GeV/c}, 0^{\circ} \le \Theta_{\phi} \le 8^{\circ}$

Transparency ratios: experiment

Any interpretation of the transparency ratio has to rely on a detailed theoretical treatment

Limited sensitivity to in-medium signal

$$\frac{d \sigma_{V \to X_1 X_2}}{d \mu} \sim A(\mu) \quad \frac{\Gamma_{V \to X_1 X_2}}{\Gamma_{tot}} = \frac{\mu \Gamma_{tot}}{(\mu^2 - m_V^2)^2 + \mu^2 \Gamma_{tot}^2} \frac{\Gamma_{V \to X_1 X_2}}{\Gamma_{tot}}$$

experimental observed mass distribution = convolution of spectral function with the branching ratio into channel being studied

After integration over all nucleons and parameterizing strength function with Breit Wigner

$$\Gamma_{med}(\rho(r)) = \Gamma_{med}(\rho_0) \frac{\rho(r)}{\rho_0}$$

In the low density approximation

3 effects limit sensitivity:

 $\Gamma_{tot} = \Gamma_{vac} + \Gamma_{med}$

- i. yield reduced by increase of in-medium width ($\Gamma_{med} >> \Gamma_{vac}$)
- ii. reduced yield spreads out in mass, difficult to distinguish from background
- iii. decays occur at low densities ($\rho << \rho_0$) even for low momentum selection

Eichstaedt

[[]PSuppl. 168 (2007) 495

Limited sensitivity to in-medium signal

3 effects limit sensitivity:

- i. yield reduced by increase of in-medium width ($\Gamma_{med} >> \Gamma_{vac}$)
- ii. reduced yield spreads out in mass, difficult to distinguish from background
- iii. decays occur at low densities ($\rho << \rho_0$) even for low momentum selection

Eichstaed

Methods of Φ-width measurement

 Study of the meson spectral function - measure low momentum Φ's via leptonic decays. Not really done yet.

R.Muto et al., PRL 98 (2007) 042501

 $\Phi \rightarrow e^+e^-$

Invariant mass spectra for 6 momentum bins

phase space distribution of ϕ in ANKE acceptance

$pp \rightarrow pp\Phi$ (energy dependence)

[μ] SPESIII OZI rule: $4.2 \times 10^{-3} \equiv R_{OZI}$ TOF 10^{2} DISTO $R_{\Phi/\omega}$ (high energy) \approx (1 - 2.4)× R_{OZI} (in agreement with πN data and 10E $pp \rightarrow pp\omega$ the $\Phi \rho \pi$ and $\omega \rho \pi$ coupling) $pp \rightarrow pp\phi$ R_{Φ/ω}(18.5-79.5 MeV, ANKE) ≈ 7×R_{OZI} 4 PRL 96 (2006) 242301 ANKE 10⁻¹ DISTO 10^{2} 10^{3} 10 ∈ [MeV]

Giessen-BUU calculations (SPring-8 data)

Valencia calculations (SPring-8-data)

Feb. 11, 2014 | M. Hartmann

SPring-8 and up-coming JLAB-g7 (CLAS) result

Momentum dependence of the in-medium Φ -width

Feb. 11, 2014 | M. Hartmann

J-PARC WORKSHOP

Determination of α for π production

$pp \rightarrow pK^+Y^0(1405, width 50MeV) \rightarrow K^-p$

Simplest description of the I = 0 coupled-channel system is provided by a separable-potential model [e.g. PRC 76 (2007) 055204].

Suggests that $\Lambda(1405)$ is the main doorway state also for ppK⁺K⁻. (similar conclusion: Xie & Wilkin PRC 82 (2010) 025210; N*(1535) $\Leftrightarrow \Lambda(1405)$ K).

Should analyse $\pi^0 \Sigma^0$ and K-p production at the same time !

Model: elastic K⁺K⁻ rescattering plus contribution of a K⁰K⁰ pair production followed by charge exchange rescattering

K-matrix formalism, three basic simplifications:

PLB 668 (2008) 315

- (I) constant elements of K-matrix
- (ii) isospin invariance broken only by $K^0 K^{\pm}$ mass difference
- (iii) distortions are taken only in first order (s-wave scattering, formula have transparent interpretations)

$$\mathcal{F} = \left| \frac{B_1/(B_1 + B_0)}{\left(1 - i\frac{1}{2}q[A_1 - A_0]\right)\left(1 - ikA_1\right)} + \frac{B_0/(B_1 + B_0)}{\left(1 - i\frac{1}{2}q[A_0 - A_1]\right)\left(1 - ikA_0\right)} \right|^2$$

"charge exchange scattering" "elastic scattering"

KK production amplitudes (I=0,1): $|B_1/B_0|^2 = 0.38^{+0.24}_{-0.14}$